API src

Found 35 results.

Similar terms

s/feme/FAME/gi

Zweite Verordnung zur Änderung der Verordnung über die Beschaffenheit und die Auszeichnung der Qualitäten von Kraft- und Brennstoffen

Zur Umsetzung von europarechtlichen Vorgaben sind Anpassungen im untergesetzlichen Regelwerk des Bundes-Immissionsschutzgesetzes erforderlich. Dazu wurde die Verordnung über die Beschaffenheit und die Auszeichnung der Qualitäten von Kraft- und Brennstoffen (10. BImSchV) geändert. Die Änderung der 10. BImSchV dient der Umsetzung der Richtlinie 98/70/EG des Europäischen Parlaments und des Rates vom 13. Oktober 1998 über die Qualität von Otto- und Dieselkraftstoffen und zur Änderung der Richtlinie 93/12/EWG des Rates, die zuletzt durch die Richtlinie (EU) 2023/2413 geändert worden ist. Mit der Richtlinie 2023/2413/EU wird Diesel B10, also konventioneller Diesel, dem bis zu 10 Prozent Biodiesel (Fettsäuremethylester, FAME) beigemischt werden kann, eingeführt. Darüber hinaus sieht die Richtlinie 2023/2413/EU vor, dass die Mitgliedsstaaten verpflichtet sind, die Verfügbarkeit der Bestandsschutzsorte Diesel B7 sicherzustellen. Die Verordnung wurde am 22. November 2023 vom Kabinett beschlossen. Es handelt sich um eine Verordnung auf nationaler Ebene. Der übergeordnete Rahmen ist die/das 10. BImSchV.

3 - Erdöl, Mineralöl-, -erzeugnisse, Gase

3 - Erdöl, Mineralöl-, -erzeugnisse, Gase 31 Rohes Erdöl, Mineralöl Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 310 Rohes Erdöl, Mineralöl 3100 Erdöl, roh, Mineralöl, roh (Rohnaphtha) X X S 32 Kraftstoffe und Heizöl Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 321 Motorbenzin und andere Leichtöle 3211 Benzin, Benzin-Benzolgemisch X X S 3212 Mineralleichtöl, Naphtha, Vergaserkraftstoffe, nicht spezifiziert X X S 323 Petroleum, Turbinenkraftstoff 3231 Petroleum, Heizpetroleum, Leuchtpetroleum X X S 3232 Kerosin, Turbinenkraftstoff, Düsentreibstoff, nicht spezifiziert X X S 325 Gasöl, Dieselöl und leichtes Heizöl 3251 Dieselkraftstoff, Dieselöl, Gasöl X X S 3252 Heizöl, leicht, extra leicht X X S 3253 Fettsäuremethylester ( FAME , Biodiesel) X X S 327 Schweres Heizöl 3270 Heizöl, mittel, mittelschwer, schwer X X S 33 Natur-, Raffinerie- und verwandte Gase Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 330 Natur-, Raffinerie- und verwandte Gase 3301 Butadien X X S 3302 Acetylen, Cyclohexan, gasförmige Kohlenwasserstoffe, Methan, sonstige Naturgase X X S 3303 Äthylen (= Ethen), Butan, Butylen, Isobutan, Isobutylen, Kohlenwasserstoffgemische, Propan, Propan-Butangemische, Propylen, Raffineriegase, nicht spezifiziert X X S 34 Mineralölerzeugnisse, nicht spezifiziert Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 341 Schmieröle und Fette 3411 Mineralschmieröle, Motorenöle, Schmierfette X X S 3412 Altöl, Ablauföl X X S 343 Bitumen und bituminöse Gemische 3430 Bitumen, Bitumenemulsionen, -lösungen, Bitumenklebmasse, Kaltteer, Kaltasphalt, Pechemulsionen (Kaltbitumen), Pechlösungen, Teeremulsionen, Teerlösungen, bituminöse Gemische, nicht spezifiziert X X S 349 Mineralölerzeugnisse, nicht spezifiziert 3491 Acetylenkoks, Petroleumkoks (Petrolkoks) X X S 4) 3492 Carbon Black Oil , Paraffingatsch, Pyrolyseöl, -rückstände (Pyrotar), Schweröl, nicht zum Verheizen X X S 3493 Paraffin, Transformatorenöl, Wachs, Mineralölerzeugnisse, nicht spezifiziert X X S Bemerkungen: 4) Als Alternative zu „S“ ist ein Aufspritzen auf Lagerhaltung möglich, sofern nationale Bestimmungen dies nicht verbieten. Ist das Aufspritzen auf die Lagerhaltung auf Grund innerstaatlicher Bestimmungen verboten, muss eine Abfuhr des Waschwassers in eine Einrichtung zur unschädlichen Beseitigung des Abwassers erfolgen. Stand: 01. Januar 2018

Untersuchungen zu 10 Prozent (V/V) FAME in Dieselkraftstoffen

Das Projekt "Untersuchungen zu 10 Prozent (V/V) FAME in Dieselkraftstoffen" wird vom Umweltbundesamt gefördert und von DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. durchgeführt.

DYPAG, FEME und Referenznetz I und II

Das Projekt "DYPAG, FEME und Referenznetz I und II" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Physische Geographie durchgeführt. Das BMBF hat in den letzten Jahren mehrere Verbundprojekte der Antarktisforschung gefoerdert, die satellitengestuetzte, flugzeuggetragene und terrestrische Systeme zur Gewinnung von Daten und Informationen genutzt haben. Zwischen den Aktivitaeten dieser Verbundprojekte besteht ein hohes Mass an Synergie, die eine wechselseitige Unterstuetzung, Kosteneinsparungen sowie fachliche Ergaenzung und Vertiefung ermoeglicht. Diese Synergien sollen unter besonderer Beruecksichtigung der Verbundprojekte DYPAG, FEME und Referenznetz I und II herausgearbeitet und oeffentlichkeitswirksam dargestellt werden.

Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung - Fortschreibung

Das Projekt "Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung - Fortschreibung" wird vom Umweltbundesamt gefördert und von DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. durchgeführt. Dieser DGMK-Forschungsbericht ist eine Fortschreibung des DGMK-Forschungsberichts 611 'Biokraftstoffe -Eigenschaften und Erfahrungen bei der Anwendung', der im Jahr 2002 erschienen ist. Seit dieser Zeit haben sich die Pläne der Europäischen Kommission, den Einsatz von Biokraftstoffen zu fördern, konkretisiert. Die Direktive 2003/30/EC gibt für den Zeitraum von 2005 bis 2010 Zielvorgaben, in welchem Umfang Biokraftstoffe in den Handel gebracht werden sollen. Bei Dieselkraftstoffen wird das im Wesentlichen durch Zugabe von bis zu 5 Prozent Fettsäuremethylestern und nicht durch einen Einsatz in reiner Form geschehen. Bei den Ottokraftstoffen kommen Ethanol und Ethyltertiärbutylether (ETBE) als Beimischungen in Frage. Sowohl bei Diesel- als auch bei Ottokraftstoff sind für den Fall einer Beimischung durch die gültigen Normen Maximalwerte für die sauerstoffhaltigen Verbindungen gegeben. Wegen seiner geringeren Oxidations- und Lagerstabilität besteht ein Interesse an Labortests, die für Biodiesel und Dieselkraftstoffe, die Biodiesel enthalten, eine Vorhersage darüber erlauben, ob der Kraftstoff über eine für den praktischen Betrieb ausreichend große Stabilität verfügt. Die ASTM D 4625-Methode, bei der die Probe bei 43 Grad Celsius gelagert wird und die allgemein als das geeigneste Testverfahren zur Bestimmung der Lagerstabilität von Mitteldestillaten angesehen wird, ist für Fettsäuremethylester und Mischungen mit ihnen weniger gut geeignet. Unter vielen untersuchten Prüfverfahren hat für die Bestimmung der Lagerstabilität die Rancimat-Methode die weiteste Anerkennung gefunden, obwohl auch Ergebnisse vorliegen, die es fraglich erscheinen lassen, ob generell ein Zusammenhang zwischen den Rancimat-Ergebnissen und der Lagerstabilität besteht. Vereinzelt gibt es Dieselkraftstoffe, die für eine Zumischung auch nur einer so geringen Menge wie 5 Prozent Biodiesel schlecht geeignet erscheinen. Für solche Dieselkraftstoffe scheint eine besonders kleine Rancimat-Induktionsperiode kennzeichnend zu sein. Nicht alle für Kohlenwasserstoffe bewährten Antioxidationsmittel sind in Mischungen mit Biodiesel gleich gut wirksam. Nach den bisherigen Erfahrungen kommt es beim Einsatz von Mischungen mit Biodiesel in Kraftfahrzeugen zu keinen Problemen, wenn der Biodieselgehalt 5 Prozent nicht übersteigt, auf Abwesenheit von Wasser geachtet und die Lagerzeit auf 6 Monate begrenzt wird. Der eingesetzte Biodiesel muss den Anforderungen der Norm EN 14214 genügen. Überflüssiger Kontakt mit Luft beispielsweise durch Rühren sollte bei der Lagerung von Biodiesel unbedingt vermieden werden. Auch wenn in dem durch die Norm erlaubten Rahmen Ethanol oder ETBE konventionellen Ottokraftstoffen beigemischt wird, sind im praktischen Betrieb keine Schwierigkeiten zu erwarten. Allerdings muss beim Zusatz von Ethanol auf die Abwesenheit von Wasser im System geachtet werden. Bei einer unkontrollierten Vermischung von ethanolhaltigen und ethanolfreien Kraftstoffen kann der Dampfdruckgrenzwert ...

Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung

Das Projekt "Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung" wird vom Umweltbundesamt gefördert und von DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. durchgeführt. Die vorliegende Literaturstudie beleuchtet den Umfang der CO2- bzw. Klimagasreduktion, die Verfügbarkeit der Biokraftstoffe und fasst die ökonomischen und technischen Erfahrungen zusammen, die bisher in ihrer Anwendung erhalten wurden. Die Nutzung von reinen Pflanzenölen, Dimethylether und Pyrolyseöl wird gestreift. Beim Einsatz von Biodiesel (in Deutschland üblicherweise Rapsmethylester, RME) ergeben sich Probleme vor allem bei Lagerung über längere Zeit. Fettsäuremethylester neigen zur Oxidation und sind anfällig gegen den Zutritt von Wasser. Bei Gegenwart von Wasser kann es zur Zersetzung durch Hydrolyse und zu mikrobiellem Befall kommen. Im Automobilbau muss auf Metalle und Elastomere umgestellt werden, die mit Fettsäuremethylester verträglich sind. Insgesamt fehlt es jedoch noch an ausreichend breiten Erfahrungen im Alltagsbetrieb, so dass die Automobilindustrie aufgrund möglicher anwendungstechnischer Risiken auch zurückhaltend hinsichtlich der Verwendung von Biodiesel in Fahrzeugen ist. Ethanol und der dem Methyltertiärbutylether ähnliche Ethyltertiärbutylether werden international schon heute in begrenzten Mengen in Kraftstoffen eingesetzt. Deshalb können alle auf dem Markt befindlichen Fahrzeuge zum Betrieb mit diesen Stoffen ausgerüstet werden. Bei ethanolhaltigen Ottokraftstoffen können sich Probleme durch die Ausbildung einer Wasser-Alkohol-Phase ergeben. Bei hohen Alkoholkonzentrationen sind die Motoren den veränderten Verbrennungsparametern anzupassen. Die Emissionen von Kohlenmonoxid, Kohlenwasserstoffen und polyzyklischen Aromaten sinken bei der Verwendung von Biodiesel, Ethanol und ETBE, wogegen sich die Emissionen von Stickoxiden meist leicht erhöhen. Der volumetrische Kraftstoffverbrauch steigt bei der Verwendung von Biokraftstoffen in der Regel an.

Ionische Vernetzung von Fetten, Oelen und Ligninen (Oleolink)

Das Projekt "Ionische Vernetzung von Fetten, Oelen und Ligninen (Oleolink)" wird vom Umweltbundesamt gefördert und von Henkel KGaA durchgeführt. Ziel des Vorhabens ist es, aus Pflanzenölen und Ligninen technisch und wirtschaftlich konkurrenzfähige Produkte herzustellen, die zum Kleben, Dichten und Beschichten eingesetzt werden können. Hintergrund hierfür ist die Tatsache, das carboxyl-terminierte Rohstoffe mit mehrwertigen Metallionen zu schwerlöslichen Salzen reagieren. Edukte mit mehreren Carboxylgruppen (funktionalisierte Öle oder Lignine) können auf diese Weise zu Polymeren bzw. Substanzen mit polymerähnlichem Verhalten verknüpft werden. Im Rahmen des Vorhabens erfolgt die Auswahl und Synthese verschiedener carboxyl-terminierter Oleochemikalien sowie die Auswahl geeigneter Metallsalze. Zur Herstellung der Oleopolymere werden die carboxyl-terminierten Oleochemikalien mit den Metallsalzen zu Oleopolymeren umgesetzt. Anschließend erfolgt deren Charakterisierung und Durchführung von anwendungstechnischen Tests. Den erhaltenen zweikomponenteigen Produkten eröffnen sich eine Reihe von Anwendungsfelder wie z.B. als Klebstoffe, Dichtmassen, Beschichtungen, Schmelzklebstoffe, und Haftklebstoffe.In der Anfangsphase des Projektes wurde die Synthese geeigneter fettchemischer carboxylterminierter Oleoderivate (z. B. Dimerfettsäuren, Umsetzungsprodukte von Fettsäuremethylestern und Fettsäureepoxiden mit ungesättigten Säureanhydriden, Diaminen, Polyolen oder Dicarbonsäuren) untersucht. Als Rohstoffbasis für die neu entwickelten Oleopolymere dienten Sonnenblumen-, Raps- und Leinöl. Die carboxylterminierten Oleoderivate wurden in der zweiten Phase des Projektes mit Metalloxiden (z. B. CaO, ZnO, MgO) zu Halatopolymeren umgesetzt. Dabei wurden die Einsatzverhältnisse der Reaktanden und die Reaktionstemperaturen variiert. Bei der Untersuchung der Eigenschaften der Halatopolymere zeigte sich, dass die physikalische Vernetzung zu Polymeren mit starkem kalten Fluss und geringer Kohäsion führte. Lediglich durch eine kovalente Vorvernetzung der Oleoderivate mit anschließender physikalischer Vernetzung konnte der kalte Fluss teilweise eingedämmt werden. Mit ausgewählten Halatopolymeren wurden in der dritten Projektphase anwendungstechnische Tests durchgeführt. Es ging in erster Linie um die Kompatibilität der Halatopolymere mit handelsüblichen Polymerdispersionen und bei entsprechender Verträglichkeit um Untersuchungen zur Haftung der so modifizierten Dispersionen. Die verträglichen Dispersionen zeigten im Test, dass die zugesetzten Halatopolymere nicht den gewünschten Beitrag bzgl. Verstärkung der Klebkraft liefern. Bei weiteren anwendungstechnischen Untersuchungen wurde versucht, die in Bodenbelagsklebstoffen eingesetzten Harzschmelzen durch Oleoderivate oder Halatopolymere zu ersetzen. Aber die ausgewählten Polymere reagierten mit den in den Klebern enthaltene Füllstoffen, so dass es zu einer starken und nicht akzeptablen Verringerung des Tacks und der Klebkraft kam. Somit sind die hergestellten Oleoderivate und Halatopolymere als Harzschmelzersatz für füllstoffhaltige Bodenbelagsklebstoffe nicht geeignet.

Einfluss der Zusammensetzung von Heizöl EL auf die Korrosion von Flammenrohren durch Metal Dusting

Das Projekt "Einfluss der Zusammensetzung von Heizöl EL auf die Korrosion von Flammenrohren durch Metal Dusting" wird vom Umweltbundesamt gefördert und von DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. durchgeführt. Zur Überprüfung brennstoffseitiger Einflussgrößen auf das Auftreten der als Metal Dusting bekannten Form der Hochtemperaturkorrosion werden umfangreiche Testreihen an realitätsnahen und idealisierten Prüfständen durchgeführt. Von einer Vielzahl untersuchter Brennstoffparameter erweist sich der Schwefelgehalt als guter Indikator für eine erhöhte Wahrscheinlichkeit des Auftretens von Metal Dusting an hierfür anfälligen Brennersystemen. Als potentiell kritisch sind hierbei Schwefelgehalte im Intervall 20 ppm kleinr S kleinr als 300 ppm anzusehen. Ein Maximum der Aufkohlungsrate wird bei Schwefelgehalten im Intervall 100 ppm kleiner S kleiner als 200 ppm festgestellt. Bei den weiterhin untersuchten brennstoffseitigen Parametern (Stickstoffgehalt, Mono-, Di- und Polyaromatengehalt, Siedeverlauf, Siedeende (simulierte Destillation), Thermische Stabilität, Gehalt an Biokomponenten (FAME), u.a.) wird keine eindeutige Korrelation zur Wahrscheinlichkeit des Auftretens von Metal Dusting festgestellt. An einem idealisierten Prüfstand kann gezeigt werden, dass die hohen Aufkohlungsraten, die an bezüglich des Auftretens von Metal Dusting kritischen Systemen beobachtet werden, nicht durch Kohlenstoffabscheidung aus der Gasphase verursacht werden. Damit ein Schaden auftritt, muss neben der Verwendung eines potentiell kritischen Brennstoffes auch ein für Metal Dusting anfälliges Verbrennungssystem und ein Flammenrohr aus einem gefährdeten Werkstoff vorliegen.

Entwicklung eines Verfahrens zur Trocknung und Reinigung von Biodiesel mittels organoselektiver poröser Membranen

Das Projekt "Entwicklung eines Verfahrens zur Trocknung und Reinigung von Biodiesel mittels organoselektiver poröser Membranen" wird vom Umweltbundesamt gefördert und von audita Unternehmensberatung GmbH durchgeführt. Einleitung: Die Campa Biodiesel GmbH & Co. KG. in Ochsenfurt, welche Antragsteller war, wurde 1998 als Produktionsunternehmen zur Herstellung von Rapsmethylester gegründet und zählte zu den Pionierunternehmen der Biokraftstoffbranche. Die Versuche im technischen Maßstab wurden alle an deren Produktionsanlage für Biodiesel durchgeführt. Biodiesel lässt sich praktisch aus allen pflanzlichen Ölen und tierischen Fetten gewinnen. Während sich unter europäischen Verhältnissen Raps als ertragsreichste Ölpflanze darstellt, spielen in anderen Weltregionen Soja - oder Palmöl die herausragende Rolle. Chemisch gesehen ist Biodiesel ein Fettsäuremethylester (FAME). Er entsteht durch einen Umesterungsprozess, wie er in einer Abbildung dargestellt ist. Bei der Umesterung von Pflanzenöl zu Biodiesel werden die drei Rohstoffe Pflanzenöl, Methanol und Katalysator in einem Reaktor gemischt. Lässt man basenkatalysiert einen Alkohol auf einen Ester einwirken (in diesem Fall dem Triglyzerid), so tritt Umesterung unter Bildung einer Gleichgewichtsmischung der Edukt- und Produktester ein. Im Reaktor entsteht ein Gemisch aus Fettsäuremethylestern und Glyzerin. Diese zwei Phasen trennen sich voneinander aufgrund ihrer unterschiedlichen Dichte und Polarität. In der Praxis der Biodieselproduktion muss eine Vielzahl von Faktoren berücksichtigt werden. Da es sich bei Pflanzenöl um ein Naturprodukt handelt, treten teilweise drastische Qualitätsunterschiede auf, die durch ständige Anpassungen der Anlagenparameter ausgeglichen werden müssen. Bei zu hohen Phosphorgehalten wirken die Phosphatide als Emulgatoren zwischen Biodiesel- und Glyzerinphase, was die Phasentrennung behindert und zu hohen Glyzerin- und Seifengehalten im Biodiesel führt. Freie Fettsäuren im Öl reagieren unter Anwesenheit von Wasser zu Kaliumseifen und wirken somit als Katalysatorfänger. Dadurch wird bei gleichzeitiger Verschlechterung der Phasentrennung die Umesterung behindert. Deshalb wird das Öl zunächst mit alkalischem Rohglyzerin aus der Umesterung versetzt. Durch die im Glyzerin enthaltenen Katalysatorreste werden die freien Fettsäuren verseift und setzen sich mit dem Glyzerin ab. Die hohe Dichte des Glyzerins fördert ebenfalls die Geschwindigkeit der Phasentrennung. Zudem ist Glyzerin in Öl nahezu unlöslich. Die nun als Seifen vorliegenden freien Fettsäuren und die im Öl enthaltenen Phosphatide lassen sich durch diese Methode bis zu einer Konzentration von 50 ppm Phosphor und 0,1 % freie Fettsäuren entfernen. Das Glyzerin kann nach erfolgter Phasentrennung abgepumpt werden und das aufschwimmende Öl mit gesenktem Phosphorgehalt und geringem Anteil an freien Fettsäuren wird in der Umesterung eingesetzt (Patent der AT-Agrar-Technik GmbH EP 1 183 225 B1). (Text gekürzt)

Teilvorhaben 2: Analyse von Kraftstoffen und Kraftstoffkomponenten, Entwicklung von Schnelltests

Das Projekt "Teilvorhaben 2: Analyse von Kraftstoffen und Kraftstoffkomponenten, Entwicklung von Schnelltests" wird vom Umweltbundesamt gefördert und von ASG Analytik-Service AG durchgeführt. 1. Vorhabenziel: Ziel des Forschungsvorhabens ist die Entwicklung einer Methodik für die Auslegung von kraftstoffbeaufschlagten Komponenten hinsichtlich Ihrer Eignung für biogene Kraftstoffzusammensetzungen. Im Fokus der Untersuchung stehen Komponenten der Kraftstoffspeicherung, -förderung und -verteilung. Im Rahmen des Projektes sollen Biodiesel (FAME), Biodiesel-Dieselkraftstoff-Mischungen sowie Biomass-to-Liquid Kraftstoffe und Bioethanol-Benzin-Mischungen näher untersucht werden. 2. Arbeitsplanung: Vergleiche hierzu ausführliche Vorhabenbeschreibung für Verbundprojekt GObio, sowie Abbildung 5 Seite 24/24 3. Ergebnisverwertung: Verbesserungen an den kraftstoffführenden Bauteilen, wie Pumpe, Filter, Schläuche usw., können in die Serienproduktion eingebracht werden, um die Nutzung von regenerativen Brennstoffen im Automobilsektor zu sichern. Im gleichen Maße wird durch die Verbesserung und Neuentwicklung von Additiven die Kraftstoffstabilität verbessert, die in vielen technischen Bereich eingesetzt werden kann.

1 2 3 4