API src

Found 114 results.

Similar terms

s/feme/FAME/gi

Untersuchung von Erschuetterungsauswirkungen durch Ramm- und Ruettelgeraete auf erdverlegte Rohrleitungen

Im Tiefbaubereich werden Ramm- und Verdichtungs- (Ruettel-) Arbeiten durchgefuehrt, deren Schwingungsbelastungen sich im Untergrund fortpflanzen und Auswirkungen auf Bauwerke haben. erschuetterungserzeugende Geraete sind vor allem Bodenverdichter sowie Rammen oder Meissel zum Einbringen von Bauteilen oder z.B. zum Brechen von Fahrbahndecken. Fuer erschuetterungsempfindliche Bauwerke wie z.B. fuer erdverlegte Versorgungsleitungen, Gebaeude oder auch Gebaeudeeinrichtungen (z.B. Rechenzentrum) muessen entweder die Emissionen reduziert oder es muss ein ausreichender Immissionsschutz hergestellt werden. Einen gleichen Stellenwert wie der bauliche Erschuetterungsschutz haben Erschuetterungseinwirkungen auf Menschen in Gebaeuden. Die Erschuetterungsausbreitung im Untergrund ist in hohem Masse von den Untergrundverhaeltnissen, den eingesetzten Geraetschaften sowie von der Gelaendegeometrie abhaengig. Speziell fuer erdverlegte Versorgungsleitungen ist der Einfluss der Bettung von Bedeutung. Das Randwertproblem ist in der Fachliteratur bislang nur unter Beruecksichtigung idealisierter Annahmen behandelt. Als Einwirkungen auf den Untergrund wird ein breites Spektrum der Frequenzen sowie wirkenden Energien betrachtet. Die Stoffgesetze fuer die anstehenden Boeden enthalten sowohl die Parameter Saettigungsgrad als auch die hysteretische Daempfung. In Parameterstudien ist ausser einer Variation des Abstandes zwischen Erregerquelle und dem zu beurteilenden Punkt auch eine Variation geometrischer Groessen des Bauwerkes vorgesehen. Zentraler Punkt sind Untersuchungen zum Einfluss der Einbettungs- und Ueberschuettungsbedingungen. Im Hinblick auf Sackungen unterhalb der Rohrleitung sind vor allem auch die Auswirkungen einer Ueberhoehung der Schwingungsamplitude zu untersuchen. Als numerisches Verfahren ist die FEM herangezogen. Die Abbildung des Halbraumes erfolgt mit Hilfe infiniter Elemente. Zur Ueberpruefung der Guete der numerischen Ergebnisse sind fuer einfache, genau definierte Faelle Feldmessungen vorgesehen.

Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung, Biokraftstoffe - Eigenschaften und Erfahrungen bei der Anwendung - Fortschreibung

Dieser DGMK-Forschungsbericht ist eine Fortschreibung des DGMK-Forschungsberichts 611 'Biokraftstoffe -Eigenschaften und Erfahrungen bei der Anwendung', der im Jahr 2002 erschienen ist. Seit dieser Zeit haben sich die Pläne der Europäischen Kommission, den Einsatz von Biokraftstoffen zu fördern, konkretisiert. Die Direktive 2003/30/EC gibt für den Zeitraum von 2005 bis 2010 Zielvorgaben, in welchem Umfang Biokraftstoffe in den Handel gebracht werden sollen. Bei Dieselkraftstoffen wird das im Wesentlichen durch Zugabe von bis zu 5 Prozent Fettsäuremethylestern und nicht durch einen Einsatz in reiner Form geschehen. Bei den Ottokraftstoffen kommen Ethanol und Ethyltertiärbutylether (ETBE) als Beimischungen in Frage. Sowohl bei Diesel- als auch bei Ottokraftstoff sind für den Fall einer Beimischung durch die gültigen Normen Maximalwerte für die sauerstoffhaltigen Verbindungen gegeben. Wegen seiner geringeren Oxidations- und Lagerstabilität besteht ein Interesse an Labortests, die für Biodiesel und Dieselkraftstoffe, die Biodiesel enthalten, eine Vorhersage darüber erlauben, ob der Kraftstoff über eine für den praktischen Betrieb ausreichend große Stabilität verfügt. Die ASTM D 4625-Methode, bei der die Probe bei 43 Grad Celsius gelagert wird und die allgemein als das geeigneste Testverfahren zur Bestimmung der Lagerstabilität von Mitteldestillaten angesehen wird, ist für Fettsäuremethylester und Mischungen mit ihnen weniger gut geeignet. Unter vielen untersuchten Prüfverfahren hat für die Bestimmung der Lagerstabilität die Rancimat-Methode die weiteste Anerkennung gefunden, obwohl auch Ergebnisse vorliegen, die es fraglich erscheinen lassen, ob generell ein Zusammenhang zwischen den Rancimat-Ergebnissen und der Lagerstabilität besteht. Vereinzelt gibt es Dieselkraftstoffe, die für eine Zumischung auch nur einer so geringen Menge wie 5 Prozent Biodiesel schlecht geeignet erscheinen. Für solche Dieselkraftstoffe scheint eine besonders kleine Rancimat-Induktionsperiode kennzeichnend zu sein. Nicht alle für Kohlenwasserstoffe bewährten Antioxidationsmittel sind in Mischungen mit Biodiesel gleich gut wirksam. Nach den bisherigen Erfahrungen kommt es beim Einsatz von Mischungen mit Biodiesel in Kraftfahrzeugen zu keinen Problemen, wenn der Biodieselgehalt 5 Prozent nicht übersteigt, auf Abwesenheit von Wasser geachtet und die Lagerzeit auf 6 Monate begrenzt wird. Der eingesetzte Biodiesel muss den Anforderungen der Norm EN 14214 genügen. Überflüssiger Kontakt mit Luft beispielsweise durch Rühren sollte bei der Lagerung von Biodiesel unbedingt vermieden werden. Auch wenn in dem durch die Norm erlaubten Rahmen Ethanol oder ETBE konventionellen Ottokraftstoffen beigemischt wird, sind im praktischen Betrieb keine Schwierigkeiten zu erwarten. Allerdings muss beim Zusatz von Ethanol auf die Abwesenheit von Wasser im System geachtet werden. Bei einer unkontrollierten Vermischung von ethanolhaltigen und ethanolfreien Kraftstoffen kann der Dampfdruckgrenzwert ...

Zweite Verordnung zur Änderung der Verordnung über die Beschaffenheit und die Auszeichnung der Qualitäten von Kraft- und Brennstoffen

Zur Umsetzung von europarechtlichen Vorgaben sind Anpassungen im untergesetzlichen Regelwerk des Bundes-Immissionsschutzgesetzes erforderlich. Dazu wurde die Verordnung über die Beschaffenheit und die Auszeichnung der Qualitäten von Kraft- und Brennstoffen (10. BImSchV) geändert. Die Änderung der 10. BImSchV dient der Umsetzung der Richtlinie 98/70/EG des Europäischen Parlaments und des Rates vom 13. Oktober 1998 über die Qualität von Otto- und Dieselkraftstoffen und zur Änderung der Richtlinie 93/12/EWG des Rates, die zuletzt durch die Richtlinie (EU) 2023/2413 geändert worden ist. Mit der Richtlinie 2023/2413/EU wird Diesel B10, also konventioneller Diesel, dem bis zu 10 Prozent Biodiesel (Fettsäuremethylester, FAME) beigemischt werden kann, eingeführt. Darüber hinaus sieht die Richtlinie 2023/2413/EU vor, dass die Mitgliedsstaaten verpflichtet sind, die Verfügbarkeit der Bestandsschutzsorte Diesel B7 sicherzustellen. Die Verordnung wurde am 22. November 2023 vom Kabinett beschlossen.

Verbund Oxymethylenether (OME): Umweltfreundliche Dieselkraftstoffadditive aus nachwachsenden Rohstoffen, Teilvorhaben 3 der Technischen Universität München: Motorische Nutzung

Der Einsatz von Biokraftstoffen im Transportsektor erfährt gegenwärtig einen beispiellosen Aufschwung, was nicht nur auf die Verknappung fossiler Ressourcen sondern auch auf die sich stetig verschärfende Klimaproblematik zurückzuführen ist. Darüber hinaus müssen immer höhere Anforderungen im Hinblick auf NOx- und Partikelemissionssenkungen erfüllt werden. Gegenwärtig sind insbesondere solche Biokraftstoffe gefragt, die keine aufwändigen Modifikationen sowohl der Motoren als auch des Versorgungsnetzes erfordern. Dies setzt möglichst gleiche physikalisch-chemische Kenngrößen wie die konventioneller, auf Basis von Erdöl gewonnener Kraftstoffe voraus. Wichtige Parameter sind z.B. Siedepunkt, Dampfdruck, Löseeigenschaften, Verunreinigungen, Dichte oder der Heizwert sowie Kenngrößen zur motorischen Verbrennung wie z.B. Zündtemperatur, Oktan- bzw. Cetanzahl. Als Substituenten für Dieselkraftstoffe sind biobasierte Kraftstoffe wie z.B. Fettsäuremethylester (Fatty Acid Methyl Ester, FAME) und hydrierte Pflanzenöle (Hydrogenated Vegetable Oil, HVO) bereits weit verbreitet und finden sich insbesondere in Blends mit konventionellen Dieselkraftstoffen wieder. Eine weitere Option stellt Dimethylether (DME) dar. In seinen Eigenschaften ist DME dem Flüssiggas (Liquefied Petroleum Gas, LPG) sehr ähnlich, weist aber im Gegensatz zu diesem eine sehr hohe Cetanzahl von ca. 55 auf und ist damit als alternativer Dieselkraftstoff geeignet. Mit DME ist eine emissionsarme Verbrennung ohne Rußbildung sowie eine einfache Abgasnachbehandlung möglich, was auf den Sauerstoffgehalt im Kraftstoff zurückgeführt werden kann. Nachteilig ist allerdings, dass DME bei Normalbedingungen als gasförmige Substanz vorliegt, so dass Anpassungen sowohl des Fahrzeugs als auch der Kraftstofflogistik erforderlich sind. Diese Nachteile können umgangen werden, wenn Oxymethylenether CH3O-(CH2O)n-CH3 (OME) mit kurzen Kettenlängen zum Einsatz kommen. Sie leiten sich formal von DME (n = 0) ab und liegen unter Normalbedingungen als Flüssigkeiten vor. Ziel der Arbeit ist die Senkung von NOx- und Partikelemissionen von Dieselmotoren im Hinblick auf die EU VI Norm. Um den sich stetig verschärfenden, gesetzlichen Abgasnormen gerecht zu werden, wird der Ansatz verfolgt den konventionellen Dieselkraftstoff durch 'sauber' verbrennendes OME zu ersetzen. Durch den erhöhten Sauerstoffgehalt wird eine direkte Rußminderung während der Verbrennung und somit eine deutliche Vereinfachung der Abgasnachbehandlung erreicht. Darüber hinaus soll durch solche OME der Luftbedarf des Motors und damit die Ladungswechselarbeit verringert werden, was zu einer Erhöhung des Wirkungsgrades des Motors führt. Die OME werden am Lehrstuhl für Verbrennungskraftmaschinen (LVK) der Technischen Universität München (TUM) in Motorentests untersucht. Parallel dazu werden die Anforderungen an OME-geeignete Motoren hinsichtlich des Brennverfahrens durch rechnerische Simulation ermittelt.

3 - Erdöl, Mineralöl-, -erzeugnisse, Gase

3 - Erdöl, Mineralöl-, -erzeugnisse, Gase 31 Rohes Erdöl, Mineralöl Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 310 Rohes Erdöl, Mineralöl 3100 Erdöl, roh, Mineralöl, roh (Rohnaphtha) X X S 32 Kraftstoffe und Heizöl Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 321 Motorbenzin und andere Leichtöle 3211 Benzin, Benzin-Benzolgemisch X X S 3212 Mineralleichtöl, Naphtha, Vergaserkraftstoffe, nicht spezifiziert X X S 323 Petroleum, Turbinenkraftstoff 3231 Petroleum, Heizpetroleum, Leuchtpetroleum X X S 3232 Kerosin, Turbinenkraftstoff, Düsentreibstoff, nicht spezifiziert X X S 325 Gasöl, Dieselöl und leichtes Heizöl 3251 Dieselkraftstoff, Dieselöl, Gasöl X X S 3252 Heizöl, leicht, extra leicht X X S 3253 Fettsäuremethylester ( FAME , Biodiesel) X X S 327 Schweres Heizöl 3270 Heizöl, mittel, mittelschwer, schwer X X S 33 Natur-, Raffinerie- und verwandte Gase Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 330 Natur-, Raffinerie- und verwandte Gase 3301 Butadien X X S 3302 Acetylen, Cyclohexan, gasförmige Kohlenwasserstoffe, Methan, sonstige Naturgase X X S 3303 Äthylen (= Ethen), Butan, Butylen, Isobutan, Isobutylen, Kohlenwasserstoffgemische, Propan, Propan-Butangemische, Propylen, Raffineriegase, nicht spezifiziert X X S 34 Mineralölerzeugnisse, nicht spezifiziert Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 341 Schmieröle und Fette 3411 Mineralschmieröle, Motorenöle, Schmierfette X X S 3412 Altöl, Ablauföl X X S 343 Bitumen und bituminöse Gemische 3430 Bitumen, Bitumenemulsionen, -lösungen, Bitumenklebmasse, Kaltteer, Kaltasphalt, Pechemulsionen (Kaltbitumen), Pechlösungen, Teeremulsionen, Teerlösungen, bituminöse Gemische, nicht spezifiziert X X S 349 Mineralölerzeugnisse, nicht spezifiziert 3491 Acetylenkoks, Petroleumkoks (Petrolkoks) X X S 4) 3492 Carbon Black Oil , Paraffingatsch, Pyrolyseöl, -rückstände (Pyrotar), Schweröl, nicht zum Verheizen X X S 3493 Paraffin, Transformatorenöl, Wachs, Mineralölerzeugnisse, nicht spezifiziert X X S Bemerkungen: 4) Als Alternative zu „S“ ist ein Aufspritzen auf Lagerhaltung möglich, sofern nationale Bestimmungen dies nicht verbieten. Ist das Aufspritzen auf die Lagerhaltung auf Grund innerstaatlicher Bestimmungen verboten, muss eine Abfuhr des Waschwassers in eine Einrichtung zur unschädlichen Beseitigung des Abwassers erfolgen. Stand: 01. Januar 2018

VEIK: Verbesserung der Wärmebehandlung und Erwärmung in Industrieöfen durch Einsatz neuer innovativer keramischer Heißgasventilatoren, Teilprojekt: Numerische Simulationsrechnungen und messtechnische Untersuchungen

Ziel des Vorhabens ist die gezielte Umwälzung von oxidierenden Atmosphären in Thermoprozessanlagen bei Temperaturen bis über 1.200 °C mittels eines neuartigen keramischen Heißgasventilators. Damit können sowohl konvektions- als auch strahlungsbestimmte Wärm- und Wärmebehandlungsprozesse in einem Ofengefäß durchgeführt werden. Durch die variable Ofenfahrweise und die dadurch verbesserte Anlagenauslastung können die Anzahl und damit die Investitions- und Betriebskosten benötigter Thermoprozessanlagen gesenkt werden. Ein innovativer keramischer Heißgasventilator soll im Vorhaben entwickelt, optimiert und in einer Thermoprozessanlage erprobt werden.

Differenzierung unterschiedlicher Biokraftstoffqualitäten im Hinblick auf die Ablagerungsbildung, Teilvorhaben 2: Entwicklung v. Prüfmethoden für unterschiedliche Biokraftstoffqualitäten zur Flammencharakterisierung sowie zu Verdampfungseigenschaften und deren Einfluss auf die Ablagerungsbildung

In diesem Projekt wird der Einfluss biogener Brennstoffe auf die Funktion von Fahrzeugstandheizungen untersucht. Im Fokus steht die Neigung der Brennstoffe zur Bildung von Ablagerungen und Rückständen. Der Untersuchungsumfang umfasst sowohl Dieselkraftstoffblends mit Beimischungen von Fettsäuremethylestern (FAME) und vollständig hydrierten Pflanzenölen (HVO) als auch Ottokraftstoffe mit Zusatz von Ethanol, Methanol oder Butanol. Zur Bewertung werden zum einen idealisierte Versuche mit einem Prüfstand zur Einzeltropfenverdampfung auf heißen Oberflächen (Tiegelverdampfer) durchgeführt. Hierbei können die prinzipiellen chemisch-physikalischen Vorgänge bei der Entstehung von Ablagerungen optimal beobachtet werden. Zum anderen soll mit einem realitätsnahen Prüfaufbau die Ablagerungsbildung bei kontinuierlicher Verdampfung in einem porösen Medium (Verdampfer-Vlies) untersucht werden, was dem Prinzip der Brennstoffaufbereitung bei typischen Fahrzeugstandheizungen entspricht. Als Randbedingungen werden z.B. die Temperatur, die Brennstoffzusammensetzung oder die Eigenschaften des porösen Mediums variiert. Ziel ist die bestmögliche Auslegung von Verdampferbrennern, besonders für zukünftige, höhere Zumischquoten von Bio-Kraftstoffen im nationalen und internationalen Markt. Speziell für Diesel-Kraftstoffe wird ferner der Einfluss von biogenen Bestandteilen auf die Funktion der bei mobilen Heizgeräten häufig eingesetzten Hubkolben-Dosierpumpen in entsprechenden Dauerlauf-Tests untersucht. Damit soll die Funktionssicherheit dieser Fördereinrichtung auch bei kritischen Kraftstoffen bzgl. Ablagerungsbildung und Bauteilverschleiß nachgewiesen werden. Zudem wird an einem entsprechenden Prüfstand (Heatflux-Methode) die Beeinflussung der laminaren Brenngeschwindigkeit durch Alkohol-Beimischungen, wie Ethanol oder Butanol in Ottokraftstoffen bestimmt. Diese Ergebnisse sind ebenfalls wesentlich für die Auslegung der Brennraumgeometrie für entsprechende Brennstoffe, unter anderem um einen minimalen Schadstoffausstoß sicherzustellen.

Differenzierung unterschiedlicher Biokraftstoffqualitäten im Hinblick auf die Ablagerungsbildung, Teilvorhaben 1: Einfluss von Vliesvariablen

In diesem Projekt wird der Einfluss biogener Brennstoffe auf die Funktion von Fahrzeugstandheizungen untersucht. Im Fokus steht die Neigung der Brennstoffe zur Bildung von Ablagerungen und Rückständen. Der Untersuchungsumfang umfasst sowohl Dieselkraftstoffblends mit Beimischungen von Fettsäuremethylestern (FAME) und vollständig hydrierten Pflanzenölen (HVO) als auch Ottokraftstoffe mit Zusatz von Ethanol, Methanol oder Butanol. Zur Bewertung werden zum einen idealisierte Versuche mit einem Prüfstand zur Einzeltropfenverdampfung auf heißen Oberflächen (Tiegelverdampfer) durchgeführt. Hierbei können die prinzipiellen chemisch-physikalischen Vorgänge bei der Entstehung von Ablagerungen optimal beobachtet werden. Zum anderen soll mit einem realitätsnahen Prüfaufbau die Ablagerungsbildung bei kontinuierlicher Verdampfung in einem porösen Medium (Verdampfer-Vlies) untersucht werden, was dem Prinzip der Brennstoffaufbereitung bei typischen Fahrzeugstandheizungen entspricht. Als Randbedingungen werden z.B. die Temperatur, die Brennstoffzusammensetzung oder die Eigenschaften des porösen Mediums variiert. Ziel ist die bestmögliche Auslegung von Verdampferbrennern, besonders für zukünftige, höhere Zumischquoten von Bio-Kraftstoffen im nationalen und internationalen Markt. Speziell für Diesel-Kraftstoffe wird ferner der Einfluss von biogenen Bestandteilen auf die Funktion der bei mobilen Heizgeräten häufig eingesetzten Hubkolben-Dosierpumpen in entsprechenden Dauerlauf-Tests untersucht. Damit soll die Funktionssicherheit dieser Fördereinrichtung auch bei kritischen Kraftstoffen bzgl. Ablagerungsbildung und Bauteilverschleiß nachgewiesen werden. Zudem wird an einem entsprechenden Prüfstand (Heatflux-Methode) die Beeinflussung der laminaren Brenngeschwindigkeit durch Alkohol-Beimischungen, wie Ethanol oder Butanol in Ottokraftstoffen bestimmt. Diese Ergebnisse sind ebenfalls wesentlich für die Auslegung der Brennraumgeometrie für entsprechende Brennstoffe, unter anderem um einen minimalen Schadstoffausstoß sicherzustellen.

COOREFLEX-Turbo, Nr. 4.3.6 Thermisches und mechanisches Verhalten von Turbinengehäusen

Auf Grund ihrer modularen Bauweise weisen Industriedampfturbinen zwischen ihren Leitgitterträgern und dem Außengehäuse dampfgefüllte Seitenräume auf. Das Fluid in diesen Umfangskavitäten mit T- oder L-förmigen Querschnitt wird durch die äußere Hauptströmung (Ringspaltströmung) angetrieben. Die sich ausbildenden mehrdimensionalen Wirbelstrukturen, die durch mögliche Dampfanzapfungen, -entnahmen oder -einkopplungen noch zusätzlich beeinflusst werden können, bestimmen das Wärmeübergangsverhalten zwischen Fluid und Außenwand. Mischkonvektion führt in diesen Bereichen zur ungleichmäßigen Aufheizung des Außengehäuses. Vor allem im instationären sowie im Teillastbetrieb haben die damit verbunden thermischen Gehäuseverformungen starken Einfluss auf die Teilfugendichtheit sowie auf die Radialspiele zwischen Rotor und Stator. Um das thermomechanische Verhalten des Gehäuses bereits im Auslegungsprozess für verschiedene Lastfälle zuverlässig und effektiv mittels Finite-Elemente-Methode (FEM) vorherzusagen und entsprechend zu optimieren, reicht der Wissensstand zum Wärmeübergang in den Seitenräumen nicht aus. Aus diesem Grund wird in Zusammenarbeit mit der Siemens AG ein druckluftbetriebener, skalierter Versuchsstand entwickelt und am Zentrum für Energietechnik der TU Dresden errichtet. Mit der modularen, größenverstellbaren Versuchsanordnung sind systematische Untersuchungen zum Wärmeübergang in repräsentativen Seitenräumen in Abhängigkeit von deren Geometrie und von den Strömungsverhältnissen (Reynolds-Zahl, Drall) in der Hauptströmung möglich. Für die Messung der lokalen Wärmeübergangskoeffizienten entlang der Innenoberfläche der Seitenraumaußenwand kommen gleichzeitig zwei verschiedene, rückwirkungsarme Messverfahren mit nur sehr geringem Wärmeeintrag in das System zur Anwendung: die stationäre inverse Methode sowie die lokale Übertemperaturmethode. Parallel erfolgt die Nachrechnung ausgewählter Fälle mittels numerischer Strömungssimulation (CFD), mit der die experimentellen Ergebnisse verglichen werden. Neben der weiteren Qualifikation der verwendeten Messmethoden zur Bestimmung von Wärmeübergangkoeffizienten für ähnliche Aufgabenstellungen sowie für industrierelevante Anwendungen besteht das Ziel der Untersuchungen in der Entwicklung allgemein gültiger Ansätze (Aufstellen von NUSSELT-Korrelationen) und damit in der Erweiterung des Wissensstandes für den Wärmeübergang in Seitenräumen von Dampfturbinengehäusen sowie in Kavitäten allgemein. Durch Einpflegen der Ergebnisse als thermische Randbedingungen in die FEM-Berechnung werden die Vorhersagequalität des thermomechanischen Verhaltens im instationären Betrieb und damit die Lastflexibilität von Industriedampfturbinen verbessert und Optimierungspotentiale bei der Gehäusegestaltung aufgezeigt.

Elemental, biochemical, and fatty acid contents for the copepod Temora longicornis (and its diets) fed under laboratory conditions with different nutrient regimes

The two experiments for which data is presented in this record were conducted in the context of RMFS' PhD work. The objective of the experiments was to quantify and qualify the effects of diet quality, herein manipulated in terms of different species (the diatom Conticribra weissflogii and the dinoflagellate Oxyrrhis marina) grown under different nutrient regimes (nutrient replete and Nitrogen-depleted), on the fatty acid (FA) assimilation and turnover of the copepod Temora longicornis. Experiments used field-collected copepods; sampling for experiments I and II took place on May 17th and 30th, 2016, respectively, with a 500 µm mesh-size CalCOFI net which was towed horizontally for 15 minutes at 5 m depth off the German island of Helgoland (54o11'N, 07o54'E), in the southern North Sea. Samples were immediately taken to the laboratory, where intact and active adult females were sorted under an Olympus SZX16 stereoscopic microscope. A total of 1260 females were sorted for each date, 1080 for the feeding experiment and 180 for the determination of in situ elemental and biochemical compositions. This study was conducted concomitantly with that from Franco-Santos et al. (2018). The feeding experiment was initiated after sorting, and lasted for five days. Females were distributed between triplicate 3L plastic beakers (75 females L-1), which were fitted with a 300 µm meshed-bottom cylinder, and kept in a dark, temperature-controlled room (10 ± 0.3oC, a temperature similar to that recorded in the surface water during sampling). Batch cultures of C. weissflogii were started on a daily basis (prior to starting the experiment) for five consecutive days; a stock solution was diluted with fresh f/2 medium (with and without nitrate additions, modified from Guillard, 1975), which contained 13C-enriched sodium bicarbonate (NaH13CO3, 4 mg L-1), and was grown for five days before being used to feed copepods (details in Franco-Santos et al., 2018). The same protocol was followed to culture the cryptophycean Rhodomonas salina, but bicarbonate was added to a concentration of 12 mg L-1. The algae were then used to feed the cultures of O. marina and, thus, create its different nutrient treatments. The dinoflagellate batches were cultured with the same protocol as the diatoms, except that the stock solution was diluted on a daily basis with labelled food (i.e., R. salina) rather than once at the start of the culture with isotopically-enriched medium. Cryptophycean cell quantities given to dinoflagellates were adjusted so that the former was depleted from the cultures on day 5. Diatom and dinoflagellate diets were provided for copepods ad libitum (> 350 µg C L-1; 8 and 2 * 103 cells mL-1, respectively) on a daily basis for five days. Cell density in the cultures was determined with a BD Accuri C6 Flow Cytometer. Beakers were gently stirred three times a day in order to resuspend dietary cells. Immediately before feeding copepods, a partial (approx. 65%) water exchange was conducted, which removed most of the food from the previous day. Copepods were sampled on days 1 (in situ composition, t0h), 3 (t48h), and 6 (t120h) of the experiment. Females were pooled into 10 and 50 individuals per replicate for elemental (body carbon (C) and nitrogen (N) contents and molar C:N ratio) and biochemical (total FA content and profile, and FA-specific content and 13C isotopic signal) analyses. Sampled copepods were gently washed in distilled water, then placed into pre-weighed tin capsules (5x9 mm, IVA Analysentechnik) or pre-combusted lipid vials (for elemental and FA analyses, respectively). Cultures were sampled daily during the experiment (after food was provided to copepods) for determination of cell elemental (C and N contents and molar C:N ratio) and biochemical (total FA content and profile, and FA-specific content and 13C isotopic enrichment) compositions. Subsamples of 5.2 and 0.4 *106 cells (for diatoms and dinoflagellates, respectively) were filtered through pre-combusted (500oC for 24h) Whatman GF/F filters (0.7 µm pore size, 25 mm diameter). Tin capsules and filters with samples for elemental analysis were dried at 60oC for 48 h; filters were folded inside tin foil, and both capsules and foil were stored in a desiccator until analysis. Filters with samples for FA analyses were placed into pre-combusted lipid vials, and vails containing both copepods and filters were stored at -80oC until analyses. The dry mass (DM) and C and N contents of samples were obtained as per Franco Santos et al. (2018). Lipid extraction (modified after Folch et al., 1957) and subsequent fatty acid methyl ester (FAME) quantification were performed as described in Franco-Santos et al. (2019) (and references therein). Temora longicornis does not have significant energy reserves and exhibits triacylglycerols (TAGs) as its primary neutral lipids (Fraser et al., 1989; Peters et al., 2013). Lipid classes were not separated in this study, and it was assumed that FAMEs were composed of TAGs. The FA-specific 13C isotopic composition of FAMEs was measured according to Boissonnot et al. (2016). Lipid C assimilation and turnover were calculated according to the equations used by Boissonnot et al. (2016) and Franco-Santos et al. (2019). Lipid C assimilation efficiency (AE), the percentage of (isotopically-enriched) dietary content ingested by copepods that was assimilated into FAs, was also calculated for (a) TFA, (b) saturation-specific sums of FAs (saturated, monounsaturated, and polyunsaturated FAs), and (c) each individual FA that was both available from the diet and assimilated by copepods (> 1% TFA in copepods). All the equations necessary for these calculations are described in the data sets contained in this bundled publication.

1 2 3 4 510 11 12