API src

Found 26 results.

Advanced turbulence simulation for aerodynamic application challenges (ATAAC)

The ATAAC project aims at improvements to Computational Fluid Dynamics (CFD) methods for aerodynamic flows used in today's aeronautical industry. The accuracy of these is limited by insufficient capabilities of the turbulence modelling / simulation approaches available, especially at the high Reynolds numbers typical of real-life flows. As LES will not be affordable for such flows in the next 4 decades, ATAAC focuses on approaches below the LES level, namely Differential Reynolds Stress Models (DRSM), advanced Unsteady RANS models (URANS), including Scale-Adaptive Simulation (SAS), Wall-Modelled LES, and different hybrid RANS-LES coupling schemes, including the latest versions of DES and Embedded LES. The resources of the project will be concentrated exclusively on flows for which the current models fail to provide sufficient accuracy, e.g. in stalled flows, high lift applications, swirling flows (delta wings, trailing vortices), buffet etc. The assessment and improvement process will follow thoroughly conceived roadmaps linking practical goals with corresponding industrial application challenges and with modelling/simulation issues through stepping stones represented by appropriate generic test cases. The final goals of ATAAC are: - to recommend one or at most two best DRSM for conventional RANS and URANS- to provide a small set of hybrid RANS-LES and SAS methods that can be used as reference turbulence-resolving approaches in future CFD design tools - to formulate clear indications of areas of applicability and uncertainty of the proposed approaches for aerodynamic applications in industrial CFD - Contributing to reliable industrial CFD tools, ATAAC will have a direct impact on the predictive capabilities in design and optimisation, and directly contribute to the development of Greener Aircraft.

Fuel Injector Research for Sustainable Transport (FIRST)

FIRST will deliver key enabling technologies for combustion emission reduction by developing improved design tools and techniques for modelling and controlling fuel sprays and soot. Aviation's environmental impact must be reduced to allow sustainable growth to benefit European industry and society. This is captured in ACARE's 2020 goals of reducing CO2 by 50Prozent, NOx by 80Prozent and in SRA1/2 proposed reductions in soot and development of alternative fuels. CFD tools are essential to design combustors for emissions, soot, thermo-acoustic noise, flame stability, cooling and the outlet temperature profile. The two most significant gaps in today's CFD capability are fuel injector spray and soot modelling. The fuel injector is critical to the design of low emission combustors. By understanding and controlling the complex physics of fuel atomisation and mixing, the emissions performance can be directly improved. CFD simulations have for many years relied upon over-simplistic definition of the fuel spray. The availability of methods developed in the automotive industry and faster computers make their application to aero-engines timely. The FIRST project will deliver a step change in the detail and accuracy of the fuel spray boundary conditions; through novel physics based modelling techniques, advanced diagnostic measurements and the derivation of sophisticated correlations. CFD computations of the combustion system also provide the information needed to allow soot emissions to be controlled and minimised. These calculations require the improved fuel spray boundary condition described but also need higher fidelity physical and chemical models describing the soot production and consumption processes. FIRST will deliver improved CFD soot models, enabling the reduction of soot in aero-engine combustors. The design of future alternative fuels will be enhanced by FIRST by performing predictions and measurements of both fuel sprays and soot across a number of alternative fuels.

Low Emissions Core-Engine Technologies (LEMCOTEC)

The main objective of the LEMCOTEC project will be the improvement of core-engine thermal efficiency by increasing the overall pressure ratio (OPR) to up to 70 leading to a further reduction of CO2. Since NOx increases with OPR, combustion technologies have to be further developed, at the same time, to at least compensate for this effect. The project will attain and exceed the ACARE targets for 2020 and will be going beyond the CO2 reductions to be achieved by on-going FP6 and FP7 programmes including Clean Sky: - CO2: minus 50Prozent per passenger kilometre by 2020, with an engine contribution of 15 to 20Prozent, 2.) NOx: minus - 80Prozent by 2020 and 3.) Reduce other emissions: soot, CO, UHC, SOx, particulates. - The major technical subjects to be addressed by the project are: Innovative compressor for the ultra-high pressure ratio cycle (OPR 70) and associated thermal management technologies, 2.) Combustor-turbine interaction for higher turbine efficiency & ultra-high OPR cycles, 3.) Low NOx combustion systems for ultra-high OPR cycles, 4.) Advanced structures to enable high OPR engines & integration with heat exchangers, 5.) Reduced cooling requirements and stiffer structures for turbo-machinery efficiency, 6.) HP/IP compressor stability control. - The first four subjects will enable the engine industry to extend their design space beyond the overall pressure ratio of 50, which is the practical limit in the latest engines. Rig testing is required to validate the respective designs as well as the simulation tools to be developed. - The last two subjects have already been researched on the last two subjects by NEWAC. The technology developed in NEWAC (mainly component and / or breadboard validation in a laboratory environment) will be driven further in LEMCOTEC for UHPR core engines. These technologies will be validated at a higher readiness level of up to TRL 5 (component and / or breadboard validation in a relevant environment) for ultra-high OPR core-engines.

FP7-TRANSPORT, Transport Innovation Deployment for Europe (TIDE)

The mission of the TIDE project will be to enhance the broad transfer and take-up of 15 innovative urban transport and mobility concepts throughout Europe and to make a visible contribution to establish them as mainstream measures. The TIDE partners will make a range of new and feasible solutions easily accessible to address key challenges of urban transport such as energy efficiency, decarbonisation, demographic change, safety, access for all and new economic and financial conditions. TIDE will focus on 15 innovative concepts in five thematic clusters: financing models and pricing measures (1), non-motorised transport (2), network and traffic management to support traveller information (3), electric vehicles (4) and public transport organisation (5). Sustainable Urban Mobility Plans will be a horizontal topic to integrate the cluster activities. The project will provide a strong approach in methodology, content and outreach. The needs of practitioners in European cities and regions will be a guiding principle. A particular focus will also be on providing guidance for finding cost-efficient solutions (cost-benefit analysis). The project will refine existing and well proven transferability methodologies and integrate them into an easy to apply handbook. Face-to-Face training and exchange events as well as guidelines and e-learning on how to successfully implement innovative solutions will be the key tools to effectively support a wide range of take-up candidates in overcoming real or perceived barriers to implementation. A broad portfolio of dissemination activities will ensure a high visibility of the project. TIDE will actively support 15 committed cities in developing implementation scenarios. They will demonstrate how to successfully prepare implementation of innovative solutions and provide examples to a wider group of cities. An experienced and committed consortium will ensure that the advanced project approach will achieve a well visible impact.

Adaptive and smart materials and structures for more efficient vessels (ADAM4EVE)

Materials and structures are called adaptive if they can change certain properties in a predictable manner due to the forces acting on them (passive) or by means of built in actuators (active). Those materials and structures are referred to as smart if they provide best performance when operation circumstances change. The project ADAM4EVE focuses on the development and assessment of applications of such materials and structures in the shipbuilding industry. The types of materials and structures are: - adaptable ship hull structures for optimised hydrodynamic properties depending on varying cruise speed, - adaptive materials for noise and vibration damping of ship engines to avoid induction of vibrations into the ship hull and - adaptive outfitting materials that improve ships' serviceability and safety. Technical developments in the project are structured in three groups: - Materials and structures development: Based on available research results and known applications from other industries, adaptive and smart materials and structures will be adopted and further developed in order to make them applicable in the maritime industry. - Solution development: Driven by different shipyards, several application case studies will be performed, in order to achieve customised solutions for particular vessel types and their individual requirements; classification societies will assure that the solutions comply with existing rules and regulations. - Enabling and assessment of technologies: This group of activities provides support to the other ones on the field of testing, assessment of safety as well as economical and ecological impact, and advice for production, operation and dismantling. Due to the novelty of the solutions to be pursued, further development of the required validation methods and tools is intended, as well as suggestions for standardisation.

Wireless charging for Electic Vehicles (UNPLUGGED)

UNPLUGGED project aims to investigate how the use of inductive charging of Electric Vehicles (EV) in urban environments improves the convenience and sustainability of car-based mobility. In particular, it will be investigated how smart inductive charging infrastructure can facilitate full EV integration in the urban road systems while improving customer acceptance and perceived practicality. UNPLUGGED will achieve these goals by examining in detail the technical feasibility, practical issues, interoperability, user perception and socio-economic impacts of inductive charging. As one special variant, inductive en-route charging will be investigated thoroughly.

Coordination Action on PPP Implementation for Road-Transport Electrification (CAPIRE )

Objective: The Coordination Action CAPIRE will prepare and support the realization of a Public Private Partnership (PPP) sustaining and putting into practice the European Green Cars Initiative. Its activities will be focussed on two major fields: a careful consideration of options for the aims, shape, and implementation paths a PPP, and the identification of technology roadblocks and the respective research needs within FP7. Major outcomes will be an appropriate and proven PPP implementation model and a dedicated roadmap based on an elaborated and deep analysis of R&D needs, respective milestones and supporting measures. The goal is to increase by a joint approach of the involved economic sectors and the public authorities the competitiveness of global European Automotive Industry in the domain of energy efficient, safe, non-polluting and CO2-free vehicles. To be broad enough, this strategy has to be based on the three following technology pillars: - Passenger cars and LCV: to reduce local pollution, emission of green house gases, and noise by accelerating electrification of vehicles and provision of a dedicated infrastructure for the connection to CO2-free energy sources - Trucks and Buses: to improve overall efficiency of transport of people and goods by accelerating the improvement of ICE technologies and their potential partial electrification. - Logistics: to increase the efficiency of goods transport by optimizing loading rate of trucks and mixing different energy saving transport vectors as rail transport and road transport. The results of CAPIRE shall serve as a guideline for automotive R&D and European road transport policy related to the Green Cars topic. Their deployment will require a strong cooperation between OEMs, automotive & technology suppliers, road and traffic operators, energy and service providers, Universities and public authorities to reach the ambitious target related to key technologies in a medium and long term perspective. Prime Contractor: Renault SAS Prepresented by Gie Regienov; Boulogne-Billancourt; France.

The sustainable freight railway: Designing the freight vehicle track system for higher delivered tonnage with improved availability at reduced cost (SUSTRAIL)

A sustainable and efficient freight transport in Europe plays a vital role in having a successful and competitive economy. Freight transport is expected to grow by some 50 % (in tonne-kilometres) by 2020. However rail has, in many areas, been displaced from a dominant position as road transport services have grown and developed in capability and levels of sophistication that have not been matched by rail service providers. SUSTRAIL aims to contribute to the rail freight system to allow it to regain position and market and the proposed solution is based on a combined improvement in both freight vehicle and track components in a holistic approach aimed at achieving a higher reliability and increased performance of the rail freight system as a whole and profitability for all the stakeholders. The SUSTRAIL integrated approach is based on innovations in rolling stock and freight vehicles (with a targeted increased in speed and axle-load) combined with innovations in the track components (for higher reliability and reduced maintenance), whose benefits to freight and passenger users (since mixed routes are considered) are quantified through the development of an appropriate business case with estimation of cost savings on a life cycle basis. In fact, a holistic approach to vehicle and track sustainability has to be taken, since improvements in track design and materials alone are not enough as demands on the rail system increase. Contributions from the different topic areas (vehicles, track, operations) will be demonstrated on real routes, offering geographic dispersion as well as differences in type, speed, and frequency of traffic. A strong multidisciplinary consortium committed to concrete actions aligned toward a common outcome has been grouped for the achievement of the challenging objectives of the project with a balanced combination of Infrastructure managers, freight operators and Industry, including Large and Small enterprises, with support from Academia.

Arctic Climate Change, Economy and Society (ACCESS)

ACCESS is a European Project supported within the Ocean of Tomorrow call of the European Commission Seventh Framework Programme. Its main objective is to assess climatic change impacts on marine transportation (including tourism), fisheries, marine mammals and the extraction of oil and gas in the Arctic Ocean. ACCESS is also focusing on Arctic governance and strategic policy options. Arctic climate change will have significant impacts on both marine ecosystems and human activities in the Arctic, which in turn will have important socio-economic implications for Europe. ACCESS will evaluate Arctic climate change scenarios and their impact on specific economic sectors and human activities over the next decades. Particular attention will be given to environmental sensitivities and sustainability in the Arctic domain. ACCESS will also engage in close cooperation with indigenous people and other key stakeholders by means of a Stakeholders/End-users Forum and an Advisory Board. HSVA is involved in two out of fife work packages. The one deals with the Study of the opening to marine transportation of the northern passages, north of Europe and Siberia (North-East passage) and through the Canadian Archipelago (North-West passage) as well as the impact of these transportation activities on marine ecosystems and society. The other one deals with how the extraction of offshore oil and gas might be influenced and affected by climatic change, taking into account associated risks.

Full Aero-Thermal Combustor-Turbine Interaction Research (FACTOR)

To achieve lower Specific Fuel Consumption (SFC) and CO2/NOx emissions, modern turbomachineries operate at high velocities and high temperature conditions. The lack of confidence in the prediction of combustor-turbine interactions leads to apply extra safety margins on components design. Therefore, the understanding of combustor-turbine flow field interactions is mandatory to preserve High Pressure Turbine (HPT) life and performance when optimising the design of new HPT. The FACTOR objective is to optimise the combustor-turbine interactions design to develop low-cost turbines and reduce SFC by 2Prozent, HPT weight by 1.5Prozent and accordingly engine cost by 3Prozent compared to the results from the TATEF2 and AITEB2 projects. To achieve this objective, FACTOR will develop and exploit an innovative test infrastructure coupling a combustor simulator with a HPT for aerodynamic and aero-thermal measurements. The infrastructure will improve the knowledge of aero-thermal external flows since the inlet profile of the turbine and the secondary flows will be modelled and optimised together in the same facility, under engine representative conditions. Collected data will be fed into the design techniques and simulation software used to optimise HPT components. In parallel, the use of advanced CFD (e.g. LES or DES) will provide new knowledge on wall temperature and heat transfer predictions. This will be particularly important to design future combustor-turbine systems in an integrated manner, especially for the next generation of lean burn combustion systems having complex and severe flow constraints. By optimising the combustor-HPT interaction, FACTOR project will contribute to achieving the 50Prozent CO2 and 80Prozent NOx reductions ACARE 2020 environmental objectives. FACTOR will also strengthen the competitiveness of the European aero-engine industry by making available a new test infrastructure with experimental abilities beyond those of the US. Prime Contractor: Snecma SA; Paris; France.

1 2 3