API src

Found 43 results.

Similar terms

s/fallwild/Fallwind/gi

Föhnstudien im Rheintal in Österreich während MAP

Im Rahmen des 'Mesoscale Alpine Programme' (MAP), einer internationalen kooperativen Forschungsinitiative zahlreicher Institutionen europäischen und außereuropäischer Länder zum Studium intensiver Wettervorgänge im Alpenraum, ist die Erforschung des Föhns als ein Schwerpunkt festgelegt worden. Das Alpenrheintal von seinem Ursprung an den Pässen des Alpenhauptkamms bis zum Bodensee, einschließlich der Seitentäler, wurde von den internationalen MAP Gremien zum Zielgebiet ausgewählt. Diese Region wird in einer gemeinsamen Aktion im kommenden Jahr von einem dichten Beobachtungsnetz überzogen um den Atmosphärenzustand während interessanter meteorologischer Situationen zu erfassen. Der vorliegende Forschungsantrag soll einer der österreichischen Beiträge zu dieser internationalen Initiative werden. Er ist so angelegt, dass er einerseits die Messungen der zahlreichen anderen Forschergruppen durch zusätzliche Messungen ergänzt, anderseits werden eigene Forschungsziele verfolgt. Die entsprechenden Fragestellungen sollen dann anhand des gemeinsamen MAP Datensatzes studiert werden. Das vorliegende Projekt verfolgt zwei Hauptziele, nämlich (1) die Erfassung der kleinskaligen räumlich zeitlichen Variabilität und des Lebenszyklus von Föhnepisoden in Bodennähe, und (2) die Beobachtung der Struktur der Föhnströmung in der unteren und mittleren Troposphäre, wobei vor allem auf die Wechselwirkung zwischen den Strömungsprozessen in Tälern verschiedener Länge, Breite und Richtung eingegangen werden soll. Als weiteres Ziel ist die Qualitäts-Evaluierung der erhobenen Messdaten zu nennen, die mittels eines ausgeklügelten Verfahrens durchgeführt werden soll, welches in der jüngsten Zeit von den Antragstellern entwickelt wurde. Die qualitätsgeprüften Messungen sollen schließlich dem internationalen MAP Datenzentrum für die weitere Bearbeitung zur Verfügung gestellt werden, von wo die Antragsteller dann als Gegenleistung auch die Beobachtungsdaten der anderen beteiligten Forschergruppen beziehen können. Das Alpenrheingebiet wurde deshalb als Zielgebiet ausgewählt, weil dort klimatologisch eine der höchsten Wahrscheinlichkeiten für Föhn im Alpenraum vorliegt und die Länder Österreich, Schweiz und Deutschland betroffen sind. Außer an wenigen langjährigen Klimastationen ist bisher wenig über die kleinräumige Struktur von Föhn in dem von den Antragstellern ausgewählten Gebiet bekannt, nämlich dem Walgau von Bludenz bis Feldkirch und dem Brandner Tal, südlich von Bludenz. Eine bessere Kenntnis und vor allem eine besser Vorhersage von Föhn in diesem Gebiet ist von großem praktischem Wert, da immer wieder Schäden durch Föhn (z. B. Sturmschäden) auftreten und plötzlich und unerwartet auftretende Windböen und Turbulenz eine beträchtliche Gefahr für die Luftfahrt, insbesondere für motorlose Fluggeräte darstellt. usw.

Seichter Föhn

In den 30er Jahren entdeckt, danach nahezu ein halbes Jahrhundert wieder vergessen, jetzt immer noch nicht viel mehr bekannt als Beschreibungen - das ist der seichte Föhn. Im Gegensatz zum bekannten (hochreichenden) Föhn ist diese Föhnströmung auf den Bereich unterhalb des Alpenhauptkamms beschränkt. Luft fließt aus dem Süden über die niedrigen Alpenpasse in die Föhntaler (z.B. Wipptal). In einer Klimatologie über 10 Jahre sollen für das Wipptal die Häufigkeit des seichten Föhns, die Verhältnisse am Boden und im unteren Teil der Atmosphäre untersucht und mit hochreichendem Föhn verglichen werden. Mit Hilfe theoretischer Untersuchungen und idealisierter Computersimulationen werden die Bedingungen, die zu seichtem Föhn führen, und die für seichten Föhn entscheidenden physikalischen Mechanismen erforscht. Die Ergebnisse werden weiters mit Hilfe von Messdaten von kürzlich im Wipptal aufgestellten Instrumenten und weiterem im Rahmen des internationalen mesoskaligen alpinen Programms (MAP) aufgezeichneten Datenmaterials überprüft. Dieses Projekt ist ein Kernbestandteil von MAP, das sich ein besseres Verständnis von Strömungen durch Passe und von seichtem Föhn als eines der wissenschaftlichen v Ziele gesetzt hat. Im Herbst 1999 werden im Rahmen von MAP im Wipptal Föhnmessungen mit einer Vielzahl von Messinstrumenten und Flugzeugen durchgeführt.

Innsbrucker Föhnstudien V: GAP Flow

Die 'Innsbrucker Föhnstudien 1-4' am Anfang des 20. Jahrhunderts leisteten Pionierarbeit zum Verständnis von Föhn, eines starken, böigen und oft warmen und trockenen Windes im Lee von Gebirgen. Am Ende des 20. Jahrhunderts wurde im Rahmen des internationalen 'Mesokaligen Alpinen Programms' (MAP) Föhn in bisher unerreichtem Detail und Vollständigkeit vermessen. Daten aus MAP und aus einem kleineren Programm zur Untersuchung des Föhns (örtlicher Name: Bora) entlang der adriatischen Küste halfen unserem Projekt, den 'Innsbrucker Föhnstudien 5', herauszufinden, wie und warum Luft im Lee des Gebirges hinunter'fällt' und dabei immer schneller wird, wie häufig Föhn auftritt und wie gut er vorausgesagt werden kann. Unsere Forschungsarbeiten ergaben ein nahezu vollständiges Bild des Föhns, das wir aus Puzzleteilen früherer Föhnforschungen und von MAP zusammentrugen. Föhn läßt sich am besten mit Wasser vergleichen, das in einem Fluss oder einem See langsam auf ein Wehr zuströmt, dort immer schneller und gleichzeitig auch viel dünner (meist weniger als 1m) wird und hinunterstürzt. Luft verhält sich ähnlich, nur ist die Luftschicht, die als Fallwind hinter dem Gebirgskamm hinunterstürzt, typischerweise hunderte Meter dick. Während die Bauingeneure den Oberrand des Wehrs glatt bauen, sind Gebirge zerklüftet und voller Einschnitte. Luft wird natürlich zuerst durch solche Einschnitte und Pässe strömen, bevor sie über den Kamm fließt. Wir konnten zeigen, dass die berühmten Föhnorte unserer Erde alle im Lee von Gebirgeseinschnitten liegen. Auch für einen erfahrenen Meteorologen ist es nicht immer leicht, Föhn von einem nächtlichen Hangwind zu unterscheiden, der dadurch entsteht, dass die Luft durch Ausstrahlung schwerer wird. Ob Föhn blies, hatte man bisher immer subjektiv anhand des zeitlichen Verlaufs von Windgeschwindigkeit und -richtung, Temperatur und relativer Feuchte bestimmt. Das hatte 2 Nachteile: das Resultat hing davon ab, wer die Bestimmung vornahm, und außerdem war es zu zeitaufwendig, Jahrzehnte von Daten oder Daten von mehreren Föhnorten händisch zu klassifizieren. Wir entwickelten erstmals einen objektiven, zuverlässigen Computeralgorithmus zur Föhnbestimmung. Damit waren wir in der Lage, Föhnklimatologien auf beiden Seiten des Alpenhauptkamms zu erstellen. Im windigsten Ort (Ellbögen ca. 10 km südlich von Innsbruck) bläst der Föhn im Jahresschnitt während 20Prozent der Zeit. Auch die größten Computer sind nicht mächtig genug, alle Täler und Einschnitte der Gebirgszüge wiederzugeben und dort die Wetterdetails vorherzusagen. Föhn im Wipptal ist z.B. gar nicht direkt enthalten. Trotzdem finden sich Spuren, mittels derer wir wiederum objektiv die Wahrscheinlichkeit für Föhn voraussagen können. Auch 3 Tage in die Zukunft ist diese Föhnvorhersage praktisch gleich gut wie für den ersten Tag. Erst ab dem vierten Tag nimmt die Vorhersagegüte dann deutlich ab.

Mesoskalige Alpine Klimatologie mit VERA (VERACLIM)

Dieses Projekt hat sich zum Ziel gesetzt, eine Klimatologie für den Alpenraum zu erstellen, deren räumliche und zeitliche Auflösung bisherige klimatologische Untersuchungen im Alpenraum übertrifft. Im Vordergrund stand die Erforschung von Phänomenen wie z.B. Hitzetiefs und Kältehochs, starke Druckunterschiede über den Alpen während Föhnwetterlagen, Um- bzw. Überströmung der Alpen, die mittlere Verteilung der Temperatur zu jeder beliebigen Tages- und Jahreszeit, aber auch die mittleren Windverhältnisse im Bereich der Alpen. Die klimatologischen Untersuchungen basieren auf Temperatur-, Druck- und Windanalysen bei einer zeitlichen Auflösung von 3 Stunden, die für einen Zeitraum von 22 Jahren berechnet wurden. Das dabei verwendete Analysesystem wurde in den letzten Jahren am Institut für Meteorologie und Geophysik der Universität Wien entwickelt. Die Eingangsdaten stammen vom Europäischen Zentrum für mittelfristige Wettervorhersagen (EZMW). Im Laufe dieses Projekts konnte die typische Druckverteilung über den Alpen bei ausgeprägten Hitzetiefs bzw. Kältehochs bestimmt werden. Es zeigte sich auch, dass Nordstau-Situationen in den Alpen etwa zwei- bis dreimal häufiger vorkommen als Südstau-Situationen. Die mittlere Verteilung der Temperatur der Niederungen wurde für jeweils 10 Tage im Jahr berechnet und als Temperaturkarte dargestellt. Der so entstandene Kartensatz wurde als Klimaatlas veröffentlicht und eignet sich gut für Vergleiche der aktuellen Temperaturverteilung mit der mittleren Temperaturverteilung der Periode 1980-2001. Im Rahmen der Untersuchung von thermisch ausgelösten Luftströmungen im unmittelbaren Bereich der Alpen ('Alpine Pumping') konnte Intensität und der zeitliche Verlauf dargestellt werden. Es wurde auch für jeden der 2752 Gitterpunkte des untersuchten Gebietes eine klimatologische Untersuchung der Windstärken und Windrichtungen erstellt. Die Ergebnisse dieses Projekts sind nicht nur ein wertvoller Beitrag zur Erforschung des alpinen Klimas, sondern finden auch Anwendungsmöglichkeiten in Tourismus und Wirtschaft.

Föhnmessungen entlang der Brennersenke

Dieses Projekt ist Teil des internationalen Mesoscale Alpine Programme (MAP). Der Brennpunkt des Interesses ist auf die Föhnströmung im Wipptal nördlich der Brennersenke gerichtet. Mit Hilfe eines dichten Meßnetzes und der Entwicklung und des Einsatzes neuer Meßmethoden soll ein hochwertiger Datensatz im Rahmen der MAP-Feldmeßkampagne und ihrer Vorbereitung erstellt werden. Weiters werden mit eigens angepaßten effizienten Analysemethoden die selbst gemessenen und von anderen beteiligten Gruppen erstellten Daten gesammelt, aufgearbeitet und ausgewertet. Zur Bestimmung der Luftmasse auf der Südseite des Alpenhauptkamms werden während den extra ausgerufenen Intensivphasen (IOPs) Radiosondenaufstiege durchgeführt. Die Strömungsverhältnisse im Wipptal werden erfaßt durch Bodenstationen entlang von Hangprofilen, die auch Information über die vertikale Struktur der Atmosphäre im Wipptal bieten. Die vertikale Windverteilung wird zur Bestimmung des Volumenflusses direkt am Brennerpaß sowie stromabwärts bestimmt. Ergänzt wird das Programm durch mobile Messungen aus dem Auto, Pilotierungen im Wipptal und ein auf einer Seilbahngondel montiertes meteorologisches Meßsystem. Die Feldphase ist abgestimmt und eingebunden in Aktivitäten anderer Gruppen, einschließlich generell 3- bis 6-stündiger Radiosondenaufstiege im Alpenraum, Messungen aus Forschungsflugzeugen, Daten von Routineflügen und der speziellen Untersuchung der Föhnströmung beim Eindringen in das Inntal und der Wechselwirkung mit den Seitentälern des Wipptales. Ziel ist die Verbesserung der Wettervorhersage in Gebirgen bei Föhnsituationen.

Gewitteraktivität im alpinen Raum

Innerhalb des letzten Jahrzehnts gewannen Daten von Blitzortungssystemen (kurz: Blitzdaten) zunehmend an Bedeutung in der Meteorologie. Die Gründe sind: a) Es besteht eine hohe Korrelation zwischen Blitzraten und anderen physikalischen Eigenschaften des konvektiven Systems, b) Blitze sind die einzige Datenquelle, welche kontinuierlich erfassbar ist. Damit eignen sie sich ausgezeichnet zur Verwendung in Nowcasting - Bereich, c) bevorzugte Gebiete der Entstehung, der Zugbahn und der Auflösung von Gewittern können aus einem klimatologischen Satz von Blitzdaten abgeleitet werden. Die Untersuchung von orographisch induzierten Niederschlag unter Einbeziehung hochreichender Konvektion ist eines der primären wissenschaftlichen Ziele vom Mesoscale Alpine Programme (MAP). Dieser Projektantrag bezieht sich auf diese Fragestellung. Die Blitzdaten werden herangezogen a) zur Untersuchung der Korrelation zwischen Blitzdaten und anderen mikrophysikalischen Eigenschaften einer Gewitterwolke, b) zur Überprüfung der Verwendbarkeit von Blitzdaten für den Nowcasting-Bereich solcher Ereignisse und c) um einen möglichen Zusammenhang zwischen Blitzdaten und Orographie, orographisch beeinflussten Niederschlag und Föhn zu finden. Die Ziele a) - c) wurden bereits über flachen Terrain und den tropischen Ozeanen untersucht. Die gemeinsame internationale Bemühung die mikrophysikalischen, dynamischen und thermodynamischen Eigenschaften von konvektiven Systemen mit hochentwickelten Messsystemen zu untersuchen, wird zu einem tiefergehenden Verständnis der Prozesse auch im alpinen Gelände führen. Es ist jedoch zu berücksichtigen, daß die meisten Studien dieser Art in Mitteleuropa unter der Tatsache litten, dass die Blitzortungssysteme für nationale Zwecke entwickelt wurden. Es kann als weiteres Projektziel angeführt werden, daß für eine sogenannte Special Observing Period (SOP) im Rahmen des MAP Projektes, die in den einzelnen Ländern des Alpenraumes bereits vorhandenen Ortungssensoren zu einem großräumigen Ortungssystem, das den gesamten Alpenraum abdeckt, zusammengeschlossen werden. Eine direkte Zusammenführung der einzelnen nationalen Daten ist nicht möglich, da einerseits verschiedene Technologien bei den Sensoren verwendet werden und andererseits gerade der Alpenraum von den keinem der existierenden Systeme annähernd überdeckt wird.

Wäschetrockner

<p>Wäschetrockner: Bei Kauf und Nutzung auf Energieeffizienz achten</p><p>Wie Sie am besten umweltschonend Ihre Wäsche trocknen</p><p><ul><li>Kaufen Sie einen Wäscheständer oder eine Wäscheleine: Das ist die energieeffizienteste Form der Wäschetrocknung.</li><li>Bei einem elektrischen Wäschetrockner: Kaufen Sie ein Gerät mit niedrigem Stromverbrauch (A+++-Geräte).</li><li>Schleudern Sie die Wäsche mit möglichst hoher Drehzahl.</li><li>Entsorgen Sie Ihre Altgeräte sachgerecht bei der kommunalen Sammelstelle oder beim Neukauf über den Händler.</li></ul></p><p>Gewusst wie</p><p><strong>Sparsame Geräte:</strong>Bei Wäschetrocknern gibt es große Unterschiede im Energieverbrauch. Die Stromkosten summieren sich – je nach Modell und Nutzungshäufigkeit – auf über 1.000 Euro im Laufe von 15 Jahren. Die sparsamsten Geräte tragen aktuellhaben seit 2021 die Energieeffizienzklassen A++ oder A+++ (<strong>EU-Label</strong>). Es handelt sich dabei um elektrische Kondensationstrockner mit Wärmepumpentechnologie. Die sparsamen Geräte der besten Effizienzklasse sind in der Anschaffung zwar teurer, verbrauchen aber nur die Hälfte der Energie eines Geräts der Effizienzklasse B. Aber auch innerhalb der A-Kategorie gibt es noch große Unterschiede. Im günstigsten Fall spart das laut Stiftung Warentest nach zehn Betriebsjahren 570 Euro Stromkosten.</p><p><strong>Die richtigen Handgriffe:</strong>Wichtig ist, dass Sie die Wäsche möglichst trocken aus der Waschmaschine holen. Wählen Sie hierzu die höchstmögliche Schleuderdrehzahl Ihrer Waschmaschine (Richtwert: 1.400 Umdrehungen). Je höher die Schleuderdrehzahl, desto stärker wird die Wäsche entfeuchtet und desto weniger Energie benötigt der Trocknungsgang im Trockner. Der Energieverbrauch für die höhere Schleuderzahl ist dabei zu vernachlässigen.</p><p><strong>So lange wie möglich nutzen:</strong>Für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ und Haushaltskasse lohnt es sich, Wäschetrockner so lange wie möglich zu nutzen und bei Bedarf zu reparieren. Ausnahmen gelten nur für sehr intensiv genutzte Bestandsgeräte, die sehr viel Strom verbrauchen: Nur bei intensiv genutzte Ablufttrocknern der Effizienzklasse D (alte Klassen bis 2021) oder schlechter und Kondensationstrocknern mit elektrischer Widerstandsheizung der Effizienzklasse C oder schlechter lohnt sich der Austausch eines funktionierenden Gerätes. Das gilt für das Klima ebenso wie für die Haushaltskasse.</p><p>Auch die meisten Reparaturen lohnen sich finanziell und für das Klima. Bei einem defekten Wäschetrockner lohnt sich die Reparatur meist sowohl finanziell als auch ökologisch.</p><p>Für das Klima lohnt der Austausch nur bei einem intensiv genutzten Gerät der Effizienzklasse C oder schlechter, und für die Haushaltskasse nur bei einem intensiv genutzten Gerät der Effizienzklasse B oder schlechter (alte Klassen vor 2021) und wenn zudem die Reparatur mindestens 320 Euro kostet. Weitere Informationen finden Sie in der Abbildung.</p><p>Die Grafik zeigt, ob sich der Weiterbetrieb oder die Reparatur von Wäschetrocknern ökologisch und ökonomisch lohnt – betrachtet über 10 Jahre. Ein Austausch funktionierender Geräte lohnt meist nicht. Ausnahmen: intensiv genutzte Ablufttrockner (Effizienzklasse D oder schlechter) und Kondensationstrockner mit Widerstandsheizung (Klasse C oder schlechter; alte Klassen vor 2021) – hier lohnt der Austausch ökologisch und finanziell. Reparaturen lohnen meist. Ausnahmen: ökologisch bei intensiv genutzten Geräten ab Klasse C, ökonomisch ab Klasse B bei Reparaturkosten von mind. 320 €. Verglichen wird mit einem Gerät der Klasse A+++ (Preis: 1.033 €, Label bis Juli 2025). Intensive Nutzung = ab 705 kg/Jahr, normale = 407 kg/Jahr.</p><p><strong>Richtig entsorgen:</strong>Weitere Informationen zur richtigen Entsorgung Ihres Wäschetrockners und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA⁠-Umwelttipp<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/alte-elektrogeraete-richtig-entsorgen">"Alte Elektrogeräte richtig entsorgen"</a>.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p>Neue, effiziente Wäschetrockner haben stets eine Wärmepumpe, die die Luft zum Trocknen aufheizt. Die feuchte Luft kondensiert an der kalten Seite der Wärmepumpe. Ältere Geräte sind oft noch Ablufttrockner oder widerstandsbeheizte Kondensationstrockner. Bei Ablufttrocknern wird wird die feuchte Abluft über einen Schlauch nach außen – meist durch ein offenes Keller- oder Badezimmerfenster – an die Umwelt abgegeben. Dadurch wird auch Luft aus dem Haus nach außen befördert, so dass der Raum im Winter mehr geheizt werden muss. Bei Kondensationstrocknern wird wie bei modernen Wärmepumpentrocknern die Feuchtigkeit im Gerät kondensiert und in einem Behälter aufgefangen. Die Luft wird jedoch nicht mit einer Wärmepumpe, sondern wie ein Föhn mit einer Widerstandsheizung erwärmt.</p><p>Trockner mit Wärmepumpe verwenden als Kältemittel häufig teilfluorierte Kohlenwasserstoffe (HFKW) mit hohen Treibhauspotenzialen, z. B. R-134a oder R-407C. Durch illegal entsorgte Trockner können diese Stoffe unkontrolliert in die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ entweichen und zur weiteren Erwärmung der Erdatmosphäre beitragen. Die meisten aktuellen Geräte haben inzwischen halogenfreie Kältemitteln. Meistens ist dies Propan (R-290). Dieser halogenfreie Kohlenwasserstoff hat nur ein sehr geringes Treibhauspotenzial. Vor einigen Jahren gab es noch gasbeheizte Ablufttrockner, die inzwischen jedoch für den privaten Gebrauch nicht mehr angeboten werden.</p><p>Neben Wäschetrocknern gibt es noch Waschtrockner. Das ist eine Kombination aus Waschmaschine und Wäschetrockner in einem Gerät. Diese Kombinationsgeräte sind jedoch weniger effizient als die Waschmaschine und Wäschetrockner als Einzelgeräte.</p>

Sogenannte "Schutzprodukte gegen Elektrosmog" sind unnötig

Sogenannte "Schutzprodukte gegen Elektrosmog" sind unnötig Aus Sicht des Bundesamts für Strahlenschutz ( BfS ) sind sogenannte "Schutzprodukte gegen Elektrosmog" zum Schutz der Gesundheit unnötig oder ungeeignet. Die Hersteller verweisen häufig selbst im Kleingedruckten darauf, dass ihre Produkte keine wissenschaftlich nachgewiesenen Wirkungen haben. Im schlechtesten Fall erhöhen manche dieser Produkte die Stärke der Felder, denen man ausgesetzt ist. Die gesetzlichen Grenzwerte und Produktnormen bieten ausreichend Schutz vor elektromagnetischen Feldern. Manche Menschen führen Beschwerden wie Kopfschmerzen oder Schlafstörungen bis hin zu schwerwiegenden Erkrankungen wie Krebs auf elektrische, magnetische oder elektromagnetische Felder zurück. Diese werden umgangssprachlich Elektrosmog genannt. Diverse Hersteller bieten Produkte zum vermeintlichen Schutz vor diesen wissenschaftlich nicht nachgewiesenen Wirkungen an. Aus Sicht des Strahlenschutzes sind sie jedoch unnötig. Das Angebot ist groß. Es gibt Baldachine für das Bett, Abschirmmatten und -gardinen, Aufkleber, Wandfarbe, technisch anmutende Geräte wie Neutralisierer, Harmonisierer oder Energetisierer und vieles mehr. Schutzprodukte ohne und mit Wirkung sind unnötig Es gibt zwei Arten von Produkten: Es gibt einerseits Produkte, die keine spezifische wissenschaftlich nachweisbare Wirkung auf die Felder oder den Körper haben, da sie technisch funktionslos sind. Dazu zählen Anhänger, Ketten, Armbänder, Mineralien und Chipkarten, die elektromagnetische Felder harmonisieren oder energetisieren sollen. "Harmonisierung" und "Energetisierung" sind in diesem Zusammenhang Begriffe ohne wissenschaftliche Grundlage. Selbst zwischen den Anbietern gibt es unterschiedliche Meinungen, was diese Begriffe bedeuten sollen. Ebenso technisch nutzlos sind Netzstecker und andere Geräte, die angebliche Felder in Form einer "Schutzaura" oder zur " Absorption negativer Energien" generieren sollen. Weiterhin bestehen solche Produkte zumeist aus Materialien, die keinen spezifischen Einfluss auf die elektromagnetischen Felder zum Beispiel des Mobilfunks haben können. Oft betonen die Hersteller im Kleingedruckten, dass solche Produkte keine Auswirkungen auf das Mobilfunksignal haben. Andererseits gibt es Abschirmprodukte, die aus Materialien bestehen, die einen Effekt auf die Feldausbreitung haben können. Einen zusätzlichen Gesundheitsschutz erzielen sie aber auch nicht. Dazu zählen zum Beispiel Bekleidung, Bettwäsche, Abschirmmatten, Baldachine, Vorhänge und Farben aus bzw. mit entsprechenden Materialien wie Metallfäden. Ihre physikalischen Eigenschaften können unter Umständen einen messbaren Abschirmeffekt gegen äußere Felder erzeugen (Faraday-Käfig). Allerdings ist diese Wirkung aus Strahlenschutzsicht aufgrund geltender Grenzwerte und der Produktsicherheit unnötig. Was kann man tun, um die Feldstärke zu reduzieren? Wenn Sie möchten, dass Sie möglichst schwachen Feldern ausgesetzt sind, gibt es eine einfache und wirkungsvolle Möglichkeit: Erhöhen Sie den Abstand zum Gerät. Es genügen bereits wenige Zentimeter. Beim Handy erreichen Sie das mit einem Headset - oder Sie nutzen die Freisprechfunktion. Denn meistens sind die eigenen Endgeräte wie das Handy oder Haushaltsgeräte wie der Fön die vergleichsweise stärkste Quelle für elektromagnetische Felder, die den eigenen Körper erreichen. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 30.07.2025

Social Media und Netiquette

Social Media und Netiquette Das Bundesamt für Strahlenschutz in den sozialen Medien Sie wollen auf dem Laufenden bleiben? Das BfS informiert auch in den sozialen Netzwerken über aktuelle Entwicklungen im Strahlenschutz , über Forschungsergebnisse und Grundlagen sowie über Veranstaltungen und Neuigkeiten des Hauses und der Hausleitung. Das Social-Media-Team besteht aus Mitarbeiter*innen des Referats Presse- und Öffentlichkeitsarbeit. Quelle: Facebook Ireland Limited Instagram Wie schütze ich mich vor UV-Strahlung? Was hat mein Föhn mit Strahlenschutz zu tun? Auf Instagram informieren wir mit besonderem Fokus auf Gesundheits- und Verbraucherthemen rund um den Strahlenschutz. Strahlenschutz auf Instagram Quelle: LinkedIn LinkedIn Was tut das BfS? Woran forschen wir? Welche Stellenangebote haben wir? Auf LinkedIn kann man das BfS kennenlernen. Strahlenschutz auf LinkedIn Quelle: YouTube, LLC YouTube Erklärfilme, Einblicke in unsere Arbeit und Veranstaltungen: Auf dem YouTube-Kanal des BfS werden komplizierte Zusammenhänge verständlich erklärt. Bundesamt für Strahlenschutz auf YouTube Mastodon Datenschutzkonform und open source: Die wichtigsten Strahlenschutz-Themen gibt es immer aktuell auf Mastodon. Strahlenschutz auf Mastodon Quelle: X Corp. Twitter Das wichtigste zum Strahlenschutz auf 280 Zeichen. Auf @strahlenschutz posten wir nur noch gelegentlich. @strahlenschutz auf Twitter Netiquette Wir freuen uns auf einen angeregten und engagierten Dialog , an dem sich viele User mit Kommentaren und Beiträgen beteiligen. Wir bitten jedoch um die Einhaltung der folgenden Regeln: Ein guter Dialog beruht auf gegenseitigem Respekt. Behandeln Sie andere User bitte so, wie Sie selbst behandelt werden wollen. Beleidigungen, persönliche Schmähungen und Beschimpfungen, üble Nachreden und Verleumdungen – all dies ist fehl am Platz. Wir behalten uns das Recht vor, entsprechende Beiträge zu löschen. Wir bitten Sie zudem, sich an die jeweiligen Nutzungsbedingungen sowie -richtlinien des Social-Media-Kanals zu halten. Beiträge, die diskriminierend, rassistisch, gewaltverherrlichend oder sexistisch sind oder eine verfassungswidrige Meinung transportieren, gehören nicht auf diese Seiten. Wir behalten uns das Recht vor, entsprechende Beiträge zu löschen. Werden durch Posts Straftatbestände erfüllt, fordern wir zur Unterlassung auf und behalten uns vor, Anzeige zu erstatten. Unsere Social-Media-Kanäle bieten Informationen zu den Themen und Terminen des BfS . Daher sollten sich die Diskussionsbeiträge auch auf das Thema des jeweiligen Posts beziehen. Sollte dies nicht der Fall sein, behalten wir uns das Recht vor, Beiträge gegebenenfalls zu entfernen. Inhalte, die Persönlichkeitsrechte, Rechte Dritter oder Urheberrechte verletzen, sowie Beiträge, die als Werbung oder Spam einzustufen sind, werden entfernt. Achten Sie bitte auf Ihre Privatsphäre und veröffentlichen Sie keine personenbezogenen Daten auf der Chronik oder in Kommentaren. Verzichten Sie auf die Nennung von Kontaktadressen, Telefonnummern, E-Mail-Adressen, privaten Details oder sonstigen Daten, die einen Rückschluss auf Ihre Person zulassen. Auf Twitter besteht keine Klarnamenpflicht. Wir übernehmen keine Verantwortung für die Beiträge der Nutzerinnen und Nutzer. Alle Nutzerinnen und Nutzer sind für die von ihnen veröffentlichten Beiträge selbst verantwortlich. Die Verfasser der Beiträge geben dem BfS mit dem Einstellen seines Beitrages das Recht, ihre Beiträge dauerhaft auf dem jeweiligen Social-Media-Kanal vorzuhalten und ggf. zu zitieren. Nutzerinnen und Nutzer, die wiederholt gegen diese Bedingungen verstoßen, werden von der weiteren Nutzung der Seiten ausgeschlossen. Danke für Ihr Verständnis! Wir freuen uns auf eine spannende Diskussion und einen konstruktiven Austausch mit Ihnen. Das Social-Media-Team des BfS Gewinnspiele Für die Teilnahme an Gewinnspielen auf den Social Media Kanälen des BfS gelten folgende Teilnahmebedingungen: Eine Teilnahme am Gewinnspiel steht allen Nutzer*innen des entsprechenden Netzwerks offen, die ihren Wohnsitz in Deutschland haben Mitarbeiter*innen des BfS sind ausgeschlossen Ebenso ausgeschlossen sind Accounts, die nicht Einzelpersonen sondern Institutionen gehören Es dürfen keine neuen ( bzw. Fake-)Accounts für die Teilnahme angelegt werden. Rahmenbedingungen: Die Laufzeit der Gewinnspiele beträgt drei Tage Die Gewinner*innen werden per Zufallsgenerator aus allen Retweets bzw. Kommentaren ausgelost. Wir melden uns bei den Gewinner*innen per Direktnachricht und erfragen die Adresse für die Zusendung des Gewinns. Alle erhobenen Daten werden nach Ende der Aktion gelöscht Stand: 07.07.2025

Elektrische und magnetische Felder

Elektrische und magnetische Felder Elektrische Energie wird über Leitungen transportiert und durch Geräte genutzt. Elektrische Felder entstehen um Geräte und Leitungen, sobald eine elektrische Spannung anliegt. Magnetfelder entstehen um Geräte und Leitungen, sobald ein elektrischer Strom fließt. Im Alltag erzeugen elektrische Geräte und Leitungen elektrische und magnetische Felder. Mit zunehmendem Abstand werden die Felder schnell schwächer. Durch Ladungen hervorgerufenes elektrisches Feld Wenn Strom fließt, erzeugen elektrische Geräte und Leitungen zwei Arten von Feldern: elektrische und magnetische Felder. Ein elektrisches Feld entsteht, sobald an einem Gerät oder einer Stromleitung eine Spannung anliegt. Die Spannung ist die Voraussetzung dafür, dass elektrischer Strom fließen kann, wenn ein Gerät eingeschaltet wird. Wenn Strom fließt, entsteht zusätzlich ein Magnetfeld . Daher sind elektrische Geräte und Leitungen, in denen Strom fließt, von elektrischen und magnetischen Feldern umgeben. Niederfrequente elektrische und magnetische Felder Für die Stromversorgung wird in der Regel Wechselstrom verwendet. In Deutschland hat er eine Frequenz von 50 Hertz ( Hz ). Dies bedeutet, dass der Strom 100 Mal pro Sekunde seine Richtung ändert. Auch die elektrischen und magnetischen Felder ändern ihre Richtung genauso oft wie der Strom. Die Frequenz von 50 Hertz liegt im unteren Bereich des elektromagnetischen Spektrums. Deshalb heißen diese Felder "niederfrequent". Durch Strom hervorgerufenes magnetisches Feld Feldstärken und Maßeinheiten Die Stärke des elektrischen Feldes steigt mit der Spannung, die an der Leitung anliegt. Maßeinheit für die Spannung ist das Volt ( V ). Die elektrische Feldstärke wird in Volt pro Meter ( V/m ) angegeben. Die Stärke des Magnetfeldes um eine elektrische Leitung hängt davon ab, wie stark der Strom ist, der fließt. Die Stromstärke wird in Ampere (A) und die Magnetfeldstärke in Ampere pro Meter ( A/m ) gemessen. Für den Strahlenschutz ist die magnetische Flussdichte relevant. Das Erzeugen elektrischer Ströme in leitfähigen Körpern hängt direkt mit dieser Größe zusammen. Sie ist rechnerisch mit der Magnetfeldstärke verknüpft. Die Maßeinheit ist Tesla ( T ) beziehungsweise Mikrotesla ( µT ). Ein Mikrotesla ist ein Millionstel Tesla (0,000001 T ). Begriffe und Maßeinheiten Elektrische Feldstärke Magnetisches Feld Feldstärke Flussdichte Maßeinheit Volt pro Meter ( V/m ) Kilovolt pro Meter (kV/m), 1 kV/m = 1.000 V/m Ampere pro Meter ( A/m ) 1 Tesla = 1 Voltsekunde pro Quadratmeter (1 T = 1 Vs/m 2 ) Mikrotesla ( µT ), 1 µT = 0,000001 T Elektrische und magnetische Felder im Alltag In der Nähe von elektrischen Haushaltsgeräten und Leitungen sind die elektrischen Feldstärken und magnetischen Flussdichten meist gering. Bei manchen Geräten sind höhere magnetische Flussdichten möglich, allerdings meist nur sehr nahe an den Geräteoberflächen (zum Beispiel Geräte mit einer sehr hohen Stromaufnahme wie Staubsauger oder Föne). Je weiter man sich entfernt, desto schwächer werden die elektrischen und magnetischen Felder . Die Exposition der Bevölkerung mit niederfrequenten Feldern ist daher normalerweise niedrig. Dies gilt auch für Personen, die in der Nähe einer Hochspannungsleitung wohnen. Abstand und Abschirmung Grundsätzlich verringern sich die Feldstärken mit der Entfernung von den Feldquellen. Elektrische Felder werden darüber hinaus zum Beispiel durch übliche Baustoffe für Gebäude bereits gut abgeschirmt. Im Gegensatz dazu lassen sich Magnetfelder nur mit relativ großem Aufwand abschirmen. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 28.02.2025

1 2 3 4 5