API src

Found 7 results.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: LUP - Luftbild Umwelt Planung GmbH

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: LUP - Luftbild Umwelt Planung GmbH" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: LUP - Luftbild Umwelt Planung GmbH.Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Johann Heinrich von Thünen-Institut

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Johann Heinrich von Thünen-Institut" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei - Institut für Waldökosysteme.Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Landesbetrieb Wald und Holz Nordrhein-Westfalen

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Landesbetrieb Wald und Holz Nordrhein-Westfalen" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Landesbetrieb Wald und Holz Nordrhein-Westfalen.Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Nationalparkverwaltung Bayerischer Wald

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Nationalparkverwaltung Bayerischer Wald" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Nationalparkverwaltung Bayerischer Wald, Sachgebiet V - Besuchermanagement und Nationalparkmonitoring.Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Technische Universität Berlin

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Technische Universität Berlin" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Landschaftsarchitektur und Umwelplanung (ILaUP), Fachgebiet Geoinformation in der Umweltplanung.Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Landesforst Mecklenburg-Vorpommern Anstalt des öffentlichen Rechts

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Landesforst Mecklenburg-Vorpommern Anstalt des öffentlichen Rechts" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Landesforst Mecklenburg-Vorpommern Anstalt des öffentlichen Rechts.Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Waldbesitzerverband Niedersachsen e.V

Das Projekt "SaaS-Produktentwicklung zur skalenübergreifenden kontinuierlichen Vitalitäts- und Waldschadensanalyse mittels multisensoraler Fernerkundungsdaten und künstlicher Intelligenz; FirSt 2.0 - Forest damage inventory based on rapid satellite (Sentinel-2) technology, Teilvorhaben: Waldbesitzerverband Niedersachsen e.V" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: Waldbesitzerverband Niedersachsen e.V..Vor dem Hintergrund klimatischer Änderungen sowie zunehmendem, diversen Schädlingsbefall sollen im Rahmen des Projektes Softwareanwendungen entwickelt werden, die zur Überwachung und Prävention verschiedener Schadereignisse (Sturm, Kalamitäten, Trockenheit, Feuer) genutzt werden können. Durch die Zusammenstellung unterschiedlicher multisensoraler Fernerkundungsdaten (Radar-, Optischer-, Hyperspektral- und Thermaldaten) in Kombination mit Vor-Ort Messungen kann die Vitalität des Waldes kontinuierlich beobachtet sowie Schadenshotspots frühzeitig erkannt werden, um der Forstwirtschaft Möglichkeiten für schnelle Gegenmaßnahmen zu geben. Die Analyse der großen Datenmengen durch Cloud-Computing und Machine-Learning Algorithmen ermöglicht die Modellierung und Prognosen von Schadketten. Der vereinfachte Zugang zu umfangreichen Datenquellen bildet die Basis für ein optimiertes Waldmanagement sowie die Umsetzung lokaler Präventionsmaßnahmen. Darüber hinaus dient die Anwendung als Kommunikationsschnittstelle zwischen den forstlichen Akteuren und soll so Arbeits- und Entscheidungsprozesse unterstützen.

1