<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>. </p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
<p>Schwefeldioxid-Emissionen </p><p>Schwefeldioxid entsteht hauptsächlich bei der Verbrennung schwefelhaltiger Brennstoffe. Seit 1990 sind die Emissionen um 96 Prozent gesunken, vor allem durch technische Maßnahmen sowie den Einsatz schwefelarmer Brennstoffe. Die Reduktionsziele sind damit alle erreicht worden.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 ist ein Rückgang der Schwefeldioxid-Emissionen (SO2) von 5,5 auf nur 0,22 Millionen Tonnen (Mio. t) oder gut 96 % zu verzeichnen (siehe Abb. „Schwefeldioxid-Emissionen nach Quellkategorien“). Die Gründe hierfür liegen vor allem in der Stilllegung bzw. technischen Nachrüstung von Betrieben in den neuen Bundesländern sowie der Einsatz von Brennstoffen mit geringerem Schwefelgehalt. Ab dem Jahr 2016 sanken die Schwefeldioxid-Emissionen nochmals deutlich. Grund dafür war die Verschärfung der Anforderungen an die Abgasreinigung bei Großfeuerungsanlagen durch die Neufassung der 13. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a> vom 02.05.2013. Die Jahre ab 2020 sind von Sondereffekten geprägt, der stetig fallende Trend ist erst einmal unterbrochen.</p><p>Hauptverursacher der Schwefeldioxid-Emissionen im Jahr 2023 waren die stationären Feuerungsanlagen der Kraft- und Fernheizwerke der Energiewirtschaft und die Industriefeuerungen des Verarbeitenden Gewerbes mit einem Anteil an den Gesamtemissionen von zusammen 64 %. Seit 1990 senkten diese Bereiche ihren Schwefeldioxid-Ausstoß um 3,9 Mio. t (-97 %).</p><p>Eine vergleichbare Entwicklung zeigt sich in den Bereichen Haushalte sowie Gewerbe, Handel und Dienstleistung (Rückgang um insgesamt ca. 1 Mio. t oder fast -99 %, Anteil im Jahr 2023: 6,1 %).</p><p>Die Emissionen der mengenmäßig weniger bedeutsamen Industrieprozesse sanken zwischen 1990 und 2023 um 0,1 Mio. t und verminderten sich dadurch um ca. 69 %. Ihr Anteil an den gesamten Schwefeldioxid-Emissionen stieg durch die überproportionalen Minderungen in den anderen Bereichen im gleichen Zeitraum von 3 % auf 26 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>-Luftreinhaltekonvention und in der <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a> (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen SO2-Emissionen ab 2020 um 21 % niedriger sein müssen als 2005. Dieses Ziel wird seit 2021 eingehalten. </p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 58 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p><p>Entstehung von Schwefeldioxid-Emissionen</p><p>Schwefeldioxid entsteht überwiegend bei Verbrennungsvorgängen durch Oxidation des im Brennstoff enthaltenen Schwefels. Die nahezu konstanten, jedoch relativ unbedeutenden prozessbedingten Emissionen treten vornehmlich in den Bereichen der industriellen Produktionsprozesse in der Chemischen Industrie, der Metallerzeugung und dem Sektor Steine und Erden sowie der Erdöl- und Erdgasaufbereitung auf.</p>
Auf Basis verschiedener absorptionsspektroskopischer Methoden werden neue, robuste, probennahmefreie in-situ-Messtechniken entwickelt, die unter den Bedingungen turbulenter Kohlestaubfeuerungen eine Bestimmung prozessrelevanter Gasspezies (H2O, CO, CO2, C2H2 oder HCl) sowie der Gastemperatur ermöglichen, um diese dann für die experimentelle Validierung von Verbrennungsmodellen sowie für die Regelung von Oxyfuel-Prozessen nutzbar zu machen. Hierzu werden an unterschiedlichen hierarchisch aufgebauten Brennerkonfigurationen unter zunehmend komplexeren, thermochemischen Randbedingungen (ein-/zweiphasig, nicht-reaktiv/chem.-reaktiv) Oxyfuel-Bedingungen untersucht und die Erkenntnisse sukzessive auf technische Feuerungsanlagen übertragen sowie für deren Prozessoptimierung nutzbar gemacht.
Ziel des Projektes 'HG eta Em-Prüfstand' ist die Untersuchung des Brennstoffeinflusses auf die Emissionen von Hackgut-Kleinfeuerungsanlagen unter stationären Prüfbedingungen am Prüfstand. Ergänzend zum Projekt 'PrüfReal- bench tests', bei dem der Schwerpunkt auf Brennstoffqualitäten von Holzpellets lag, soll im Zuge von 'HG eta Em-Prüfstand' erhoben werden, welche Auswirkungen Änderungen der chemischen Zusammensetzung des Brennstoffes Holzhackgut auf das Emissionsverhalten im Voll- und Teillastbetrieb haben. Zur Ermittlung der Daten sind Verbrennungsversuche am Kesselprüfstand der BLT Wieselburg mit unterschiedlichen Kesseltypen und unterschiedlichen Brennstoffqualitäten geplant. Die Variation der Brennstoffqualität bezieht sich im Wesentlichen auf die aerosolbildenden Bestandteile, den Aschegehalt aber auch auf den Wassergehalt und die Korngröße der Partikel. Dazu werden Verbrennungsversuche mit mind. 2 Feuerungsanlagen und mind. 3 unterschiedlichen Brennstoffen am Prüfstand gemäß den Anforderungen der 'ÖNORM EN 303-5:2012-10: Heizkessel - Teil 5: Heizkessel für feste Brennstoffe, manuell und automatisch beschickte Feuerungen, Nennwärmeleistung bis 500 kW - Begriffe, Anforderungen, Prüfungen und Kennzeichnung' durchgeführt. Neben dem Einfluss der Brennstoffqualität soll im Zuge des Projekts auch die Wirkung von Sekundärmaßnahmen zur Reduktion der Staubemissionen ermittelt werden. Dazu ist geplant die verwendeten Feuerungsanlagen mit unterschiedlichen Entstaubungstechnologien auszustatten und dessen Wirkung in Abhängigkeit der Brennstoffqualität messtechnisch zu erfassen. Weiteres Ziel des Projektes 'HG eta Em-Prüfstand' ist die theoretische Hochrechnung des Einsparungspotentiales von Staubemissionen durch die Optimierung der Hackgutqualität bzw. durch den Einsatz von Sekundärmaßnahmen zur Rauchgasreinigung. Durch unterschiedliche Szenarien soll unter Berücksichtigung der derzeit installierten Hackgutheizungen die theoretischen Einsparungspotentiale in Abhängigkeit der Brennstoffqualität dargestellt werden. Darüber hinaus sollen in einer wirtschaftlichen Betrachtung die Vor- und Nachteile von hoher und niedriger Brennstoffqualität bzw. Sekundärmaßnahmen gegenübergestellt werden. Bei den Hackgutfeuerungen, die im Rahmen des geplanten Projekts untersucht werden, wird normalerweise bei Einsatz eines Elektrofilters als Sekundärmaßnahme zur Partikelabscheidung diese Filterasche mit der Rostasche gemeinsam ausgetragen. Die Schwermetallgehalte der anfallenden Aschen werden im Rahmen des Projekts untersucht. Bei größeren Biomassefeuerungen wird die E-Filterasche, in der die Schwermetalle angereichert sind, getrennt entsorgt. Im Rahmen des Projekts werden folgende Punkte bearbeitet: - Kurzer Abriss der rechtlichen Situation - Interviews mit Betreibern bezüglich der anfallenden Menge dieser Filteraschefraktion - Gegebenenfalls Analysen der Schwermetallgehalte von Filteraschen.
Das Konzept des Projektes 'PrüfReal - Bench Tests' basiert auf der Erhebung grundlegender Aspekte der Emissionsbildung sowie die Auswirkung geringfügiger Änderung der Brennstoffqualität bzw. der Brennstoffzusammensetzung, die in der Vorprojektphase definiert wurden bzw. in der ersten Projektphase im Rahmen der Detailplanung definiert werden. Ziel ist es die Zusammenhänge zwischen Brennstoffzusammensetzung, insbesondere der aschebildenden Elementgehalte, deren kritische Konzentrationen sowie deren Auswirkung auf die Staub- und NOx-Emissionen unter Prüfstandsbedingungen herauszufinden. Mit Hilfe des Projektes soll erhoben werden, welche Auswirkungen Änderungen des Asche- bzw. Stickstoffgehaltes (ev. auch Kaliumgehalt) im Brennstoff auf das Emissionsverhalten im Voll- und Teillastbetrieb haben. Zur Ermittlung der Daten sind Verbrennungsversuche am Kesselprüfstand der BLT Wieselburg mit unterschiedlichen Kesseltypen und definierten Brennstoffqualitäten geplant. Die Variation der Brennstoffqualität bezieht sich auf die aerosolbildenden Elemente- und Stickstoffgehalte. Diese sollen innerhalb der in den aktuellen Brennstoffnormen geforderten Grenzwerte liegen. Für die Beurteilung von geringen Änderungen in der Brennstoffqualität und -zusammensetzung, existieren derzeit noch massive Kenntnisdefizite die mit Hilfe des Projektes 'PrüfReal - Bench Tests' beseitigt werden sollen. Zur Ermittlung der Daten sind Verbrennungsversuche am akkreditierten Kesselprüfstand der BLT Wieselburg mit mindestens 3 unterschiedlichen Kesseltypen und mindestens 3 unterschiedlichen definierten Brennstoffqualitäten (mit Variation des Asche- und Stickstoffgehaltes am unteren, mittleren und oberen Bereich der Grenzwerte) geplant. Die für die Verbrennungsversuche benötigten Feuerungsanlagen, sowie die personellen Ressourcen zur Installation, Wartung und für etwaige bauliche Veränderungen der Anlagen werden von den Firmenpartnern zur Verfügung gestellt. Ein weiteres Ziel des Projektes PrüfReal - Bench Tests ist die Untersuchung der Entstehung und Herkunft der NOx-Emissionen bei der Verbrennung von Holzbrennstoffen. Mittels Untersuchung der Stickstoffisotopie der Stickoxide soll der Einfluss des Luft- und Brennstoffstickstoffes auf die NOx-Emissionen bei der Holzverbrennung neu beleuchtet und bestehende Theorien zur Stickoxid-Entstehung überprüft werden. Die Ergebnisse des Projektes 'PrüfReal' werden in einem Bericht zusammengefasst und sollen den nationalen und internationalen Interessensvertretern der österreichischen Biomasseheizkesselhersteller als Diskussionsgrundlage für zukünftige Grenzwertdebatten und Normierungen dienen.
Zementwerke verfuegen ueber Produktionsanlagen (u.a. Drehrohroefen), deren Hauptzweck die Erzeugung von qualitativ hochwertigem Zement darstellt. Dabei handelt es sich um einen sehr energieintensiven Prozess, weshalb neben dem Primaerenergietraegereinsatz auch der Einsatz von ausgewaehlten Alternativbrennstoffen zur thermischen Verwertung in Oesterreich dem Stand der Technik entspricht. So werden beispielsweise derzeit bereits getrennt gesammelte und aufbereitete Kunststoffe sowie Kunststoff-Produktionsabfaelle in den Zementwerken Wietersdorf, Wopfing, Leube, Retznei und Mannersdorf sowie Altoele und halogenfreie Loesungsmittel in den Zementwerken Peggau und Gmunden eingesetzt. Im vorliegenden Pilotprojekt soll deshalb untersucht werden, welchen Beitrag die Firma Baufeld-Austria zu einer oekologisch vertretbaren und oekonomisch sinnvollen Loesung der Restabfallproblematik leisten kann. Insbesondere soll die Frage geklaert werden, ob der Einsatz von heizwertreichen Siebresten (SNr.: 91102 und 91103) aus der mechanisch-biologischen Restabfallbehandlung (MBR) bei der Klinkerproduktion technisch moeglich, umweltvertraeglich und oekonomisch sinnvoll ist. Folgende Arbeitsschwerpunkte wurden definiert: Materielle und chemische Charakterisierung der Siebreste aus der MBR Untersuchungen zur mechanischen Aufbereitung der Siebreste zu einem qualitativ hochwertigen Alternativbrennstoff mit definierten Eigenschaften Feststellung der Eignung der bestehenden Feuerungsanlage (Drehrohrofen zur Klinkererzeugung) fuer die thermische Verwertung von Siebresten aus der MBR Moegliche betriebswirtschaftliche Konsequenzen eines thermischen Verwertungskonzeptes Vorrangiges Ziel des Projektes ist die Beurteilung der Substitution von Primaerenergietraegern durch die Nutzung der Energieinhalte von Siebresten mit den damit verbundenen oekonomischen und oekologischen Vorteilen.
Non wood fuels for small-scale furnaces have attracted increasing interest in several European countries. New technological approaches are on the way, but the verification of any such developments is difficult and there is a large uncertainty about testing procedures and equipment. While for wood combustion standardized European measuring regulations are available and broadly applied, the testing of cereal fuel combustion is generally not following a commonly accepted procedure. Consequently the results of such measurements are not fully comparable. This applies particularly for the international level, which is here of particular relevance due to the fact that a combustion technology development for a niche application can only be economically viable if a sufficiently large marketing area can be taken into focus. The overall objective of the proposal is therefore to contribute through research to the development of uniform and comparable European procedures for testing of small-scale boilers up to a power out of 300 kW for solid biomass from agriculture like straw pellets and energy grain. The driving forces and barriers will be worked out; existing legal regulation for the installation (approval by the local authorities) in the participating countries will be collected. The state of the art of the non wood biomass boiler technology will be identified; the need for standardized tests for type approval tests and the measures to establish a European Standard will be shown. Measurement methods with special emphasis on efficiency and emissions will be worked out and the requirements and specifications of test fuels will be proposed. Test runs will be carried out following preliminary test procedures based on existing European standards for wood boilers. Based on the results of these test runs a draft for a Europe-wide uniform test procedure will be proposed. Preparatory work for a European standardization process including a round robin test will be done.
Die Firma MM Gernsbach GmbH, Obertsroter Strasse 9 in 76593 Gernsbach beantragt die immissionsschutzrechtliche Genehmigung zur wesentlichen Änderung der Anlage zur Herstellung von Karton und Nebenanlagen mit einer max. Produktionskapazität von 1.200 t/Tag. Die Firma plant, Änderungen des Betriebs der bestehenden bzw. im Jahr 2015 genehmigten Anlage vorzunehmen, so u. a.: Erhöhung der CSB-Bemessungsfracht im Zulauf zur Abwasserreinigungsanlage (ARA) durch neue Dimensionierung der genehmigten, jedoch nicht errichteten Anaerobanlage der ARA, Einspeisung des erzeugten Biogases in die Feuerungsanlagen des Kraftwerks, Anpassung des Verkehrskonzepts an das geänderte Verkehrsaufkommen, Überdachung des Altpapierlagerplatzes und Umbau des Regenüberlaufbeckens zu einem Regenrückhaltebecken.
Mit Ende des Jahres 2024 müssen nach den "Regelungen für Einzelraumfeuerungsanlagen unter Verwendung von Feststoffen" alte Einzelraumfeuerungsanlagen Außerbetrieb genommen bzw. nachgerüstet werden. Welche Einzelraumfeuerungsanlagen betroffen sind, wird nachfolgend beschrieben. Unter Einzelraumfeuerungsanlage versteht man eine Feuerungsanlage, die vorrangig zur Beheizung des Aufstellraumes verwendet wird. Dazu zählen: offene Kamine vor Ort gesetzte Grundöfen Herde und Backöfen, Küchenöfen Industriell gefertigte Speicheröfen, Specksteinöfen Kaminöfen Kamineinsätze, Kachelofeneinsätze oder vergleichbare Ofeneinsätze Pelletöfen Saunaöfen Als feste Brennstoffe dürfen folgende Regelbrennstoffe eingesetzt werden, sofern die Feuerungsanlage nach Angaben des Herstellers für deren Einsatz geeignet ist: Steinkohlen, nicht pechgebundene Steinkohlenbriketts, Steinkohlenkoks Braunkohlen, Braunkohlenbriketts, Braunkohlenkoks Brenntorf, Presslinge aus Brenntorf Grill-Holzkohle, Grill-Holzkohlebriketts nach DIN EN 1860, Ausgabe September 2005 naturbelassenes stückiges Holz einschließlich anhaftender Rinde, insbesondere in Form von Scheitholz und Hackschnitzeln, sowie Reisig und Zapfen naturbelassenes nicht stückiges Holz, insbesondere in Form von Sägemehl, Spänen und Schleifstaub, sowie Rinde Presslinge aus naturbelassenem Holz in Form von Holzbriketts nach DIN 51731, Ausgabe Oktober 1996, oder in Form von Holzpellets nach den brennstofftechnischen Anforderungen des DINplus-Zertifizierungsprogramms „Holzpellets zur Verwendung in Kleinfeuerstätten nach DIN 51731-HP 5“, Ausgabe August 2007, sowie andere Holzbriketts oder Holzpellets aus naturbelassenem Holz mit gleichwertiger Qualität Stroh und ähnliche pflanzliche Stoffe (nur in automatisch beschickten Feuerungsanlagen, die im Rahmen der Typprüfung mit den jeweiligen Brennstoffen geprüft wurden) Die rechtlichen Rahmenbedingungen (z.B. einzuhaltende Emissionsgrenzwerte, Überprüfung durch Schornsteinfeger, einzusetzende Brennstoffe) sind in der 1. BImSchV festgeschrieben (Verordnung über kleine und mittlere Feuerungsanlagen). Im Folgenden sind Informationen zu den geltenden Anforderungen der verschiedenen Feuerungsanlagen zusammengestellt. Ansprechpartner für den benötigten Nachweis sind die Schornsteinfegerinnen und Schornsteinfeger. Fachfragen beantworten auch die Umweltämter der Landkreise und der kreisfreien Städte. (Kontaktdaten rechts). Antike Öfen Errichtung oder Herstellung vor 01.01.1950 keine Nachrüst- oder Außerbetriebnahmeverpflichtung Offene Kamine dürfen nur gelegentlich betrieben werden (weniger als 30 Tage im Jahr) zugelassene Brennstoffe: naturbelassenes, stückiges Holz Holzbriketts nach DIN 51731 keine Nachrüst- oder Außerbetriebnahmeverpflichtung Grundöfen Grundöfen sind Wärmespeicheröfen aus mineralischen Speichermaterialien, die an Ort und Stelle handwerklich gesetzt werden. Errichtung bis einschließlich 31.12.2014 Keine Nachrüst- oder Außerbetriebnahmeverpflichtung Errichtung ab 01.01.2015 Ausstattung mit nachgeschalteter Einrichtung zur Staubminderung nach dem Stand der Technik, es sei denn, sie halten folgende Grenzwerte ein: Feuerstättenart CO [g/m³] Staub [g/m³] Grundöfen 1,25 0,04 Der Nachweis über die Einhaltung der Grenzwerte kann entweder durch eine Prüfstandsmessbescheinigung des Herstellers, oder durch eine Messung vor Ort durch einen Schornsteinfeger geführt werden. Herde, Backöfen, Küchenöfen, Heizungsherde Errichtung bis einschließlich 21.03.2010 bei nichtgewerblichem Gebrauch und einer Nennwärmeleistung unter 15 kW besteht keine Nachrüst- oder Außerbetriebnahmeverpflichtung Errichtung ab 22.03.2010 bis einschließlich 31.12.2024 Feuerstättenart CO [g/m³] Staub [g/m³] Herde 3,0 0,075 Heizungsherde 3,5 0,075 Errichtung ab 01.01.2025 Feuerstättenart CO [g/m³] Staub [g/m³] Herde 1,5 0,04 Heizungsherde 1,5 0,04 Sonstige Einzelraumfeuerungsanlagen Alle Feuerstättenarten, die in der Tabelle bislang nicht genannt wurden (z.B. Kamin- und Pelletöfen, Kachelofeneinsätze) unterliegen den folgenden Regelungen. Errichtung bis einschließlich 21.03.2010 Weiterbetrieb nur unter Einhaltung folgender Grenzwerte: Feuerstättenart CO [g/m³] Staub [g/m³] Einzelraumfeuerung 4,0 0,15 Der Nachweis über die Einhaltung der Grenzwerte kann entweder durch eine Prüfstandsmessbescheinigung des Herstellers, oder durch eine Messung vor Ort durch einen Schornsteinfeger geführt werden. Kann ein solcher Nachweis nicht geführt werden (Grenzwerte werden nicht eingehalten), sind die Feuerungsanlagen zu folgenden Zeitpunkten mit einer Einrichtung zur Reduzierung der Staubemissionen nach dem Stand der Technik nachzurüsten oder außer Betrieb zu nehmen. Datum auf Typenschild Zeitpunkt der Nachrüstung oder Außerbetriebnahme Bis einschließlich 31.12.1974 oder nicht mehr feststellbar 31.12.2014 01.01.1975 bis 31.12.1984 31.12.2017 01.01.1985 bis 31.12.1994 31.12.2020 01.01.1995 bis einschließlich 21.03.2010 31.12.2024 Errichtung ab 22.03.2010 bis einschließlich 31.12.2014 Einhaltung folgender Grenzwerte: Feuerstättenart CO [g/m³] Staub [g/m³] Mindestwirkungsgrad [%] Raumheizer mit Flachfeuerung 2,0 0,075 73 Raumheizer mit Füllfeuerung 2,5 0,075 70 Speicheröfen, Kamineinsätze 2,0 0,075 75 Kachelofeneinsätze mit Flachfeuerung 2,0 0,075 80 Kachelofeneinsätze mit Füllfeuerung 2,5 0,075 80 Pelletöfen ohne Wassertasche 0,40 0,05 85 Pelletöfen mit Wassertasche 0,40 0,03 90 Der Nachweis über die Einhaltung der Grenzwerte wird durch eine Prüfstandsmessbescheinigung des Herstellers (Typprüfung) geführt. Errichtung ab 01.01.2015 Einhaltung folgender Grenzwerte: Feuerstättenart CO [g/m³] Staub [g/m³] Mindestwirkungsgrad [%] Raumheizer mit Flachfeuerung 1,25 0,04 73 Raumheizer mit Füllfeuerung 1,25 0,04 70 Speicheröfen, Kamineinsätze 1,25 0,04 75 Kachelofeneinsätze mit Flachfeuerung 1,25 0,04 80 Kachelofeneinsätze mit Füllfeuerung 1,25 0,04 80 Pelletöfen ohne Wassertasche 0,25 0,03 85 Pelletöfen mit Wassertasche 0,25 0,02 90 Der Nachweis über die Einhaltung der Grenzwerte wird durch eine Prüfstandsmessbescheinigung des Herstellers (Typprüfung) geführt. Wie in der obenstehenden Tabelle dargestellt, müssen einige Feuerungsanlagen mit einer Staubminderungsanlage nach dem Stand der Technik (Staubabscheider) nachgerüstet werden, damit sie die geforderten (Staub-)Grenzwerte einhalten und weiter betrieben werden können. Ein Staubabscheider darf nur verwendet werden, wenn für ihn eine Bauartzulassung vorliegt. Die Bauartzulassung wird i.d.R. vom Deutschen Institut für Bautechnik (DIBt) erteilt, welches auch eine Liste an zugelassenen Staubabscheidern auf seiner Internetseite veröffentlicht ( Staubabscheider für Feuerungsanlagen | DIBt - Deutsches Institut für Bautechnik ). Um dem Stand der Technik zu entsprechen, muss der Staubabscheider einen Staubabscheidegrad von mindestens 50 % erreichen (VDI 3670:2016). Für Einzelraumfeuerungsanlagen werden in der Regel elektrostatische Abscheider oder filternde Abscheider genutzt. Der Einbau eines Staubabscheiders sollte frühzeitig mit dem zuständigen Schornsteinfeger abgestimmt und von einem Schornsteinbau- oder Ofenbaufachbetrieb durchgeführt werden, um sicher zu gehen, dass alle Anforderungen erfüllt sind. Neue Einzelraumfeuerungsanlagen werden sowohl als Kompaktanlagen mit integrierten Emissionseinrichtungen (Staubabscheider, Katalysator) als auch Öfen mit separatem Zubehör für die Rauchgasreinigung vertrieben. Auf dem deutschen Markt dürfen nur Einzelraumfeuerungsanlagen angeboten werden, die für das Gesamtsystem, das heißt Ofen gemeinsam mit Emissionsminderungseinrichtung, die Typprüfung nachweislich bestanden haben. Bei der Beschaffung (z. B. über den internationalen Online-Handel) ist darauf zu achten, dass eine Ofenanlage mit dem gegebenenfalls notwendigen Zubehör für die Rauchgasreinigung erworben wird.
Die Firma Feldmuehle GmbH in Pinnauallee 3, 25436 Uetersen, plant die wesentliche Änderung des Heizkraftwerkes in der Stadt 25436 Uetersen, Pinnauallee 3, Gemarkung: Uetersen (016582), Flur: 9; Flurstück: 68/21. Gegenstand des Genehmigungsantrages ist im Wesentlichen folgende Maßnahme: Umstellung der Feuerungsanlage der Dampfkesselanlage 2 von reinem Gasbetrieb auf zusätzlich möglichen Heizöl El Betrieb. Dabei wird die Gaszufuhr verriegelt, so dass durch die reduzierte Leistung der Kesselanlagen die Anlage unter die Ziffer 1.2.3.1 des Anhang I der 4. BImSchV (39,6 MW) fällt.
| Origin | Count |
|---|---|
| Bund | 328 |
| Kommune | 5 |
| Land | 173 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Daten und Messstellen | 11 |
| Ereignis | 3 |
| Förderprogramm | 265 |
| Gesetzestext | 2 |
| Text | 87 |
| Umweltprüfung | 79 |
| unbekannt | 49 |
| License | Count |
|---|---|
| geschlossen | 176 |
| offen | 312 |
| unbekannt | 8 |
| Language | Count |
|---|---|
| Deutsch | 478 |
| Englisch | 44 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Bild | 3 |
| Datei | 22 |
| Dokument | 123 |
| Keine | 238 |
| Unbekannt | 1 |
| Webdienst | 28 |
| Webseite | 157 |
| Topic | Count |
|---|---|
| Boden | 393 |
| Lebewesen und Lebensräume | 395 |
| Luft | 360 |
| Mensch und Umwelt | 496 |
| Wasser | 353 |
| Weitere | 454 |