Dieses Vorhaben ist Teil des Verbundprojekts Siemens Clean Energy Center 'Entwicklung von Verbrennungstechnologien für die klimaschonende Energieerzeugung'. Im Mittelpunkt des Projekts stehen Entwicklungswerkzeuge für die Simulation von Flüssigbrennstoffbrennern und deren Validierung, die für die Weiterentwicklung von Doppelbrennstoffinjektoren (gasförmig/flüssig) für erweiterte Brennstoffflexibilität genutzt werden. DLR VT wird mit Siemens zusammenarbeiten und das Verbrennungssystem im Labormaßstab charakterisieren und dabei umfangreiche Messdatensätze für Heizölflammen mit Wassereindüsung aufnehmen. Derartige Brennstoffdüsen ermöglichen die Zweibrennstofffähigkeit eines FLOX® basierten Brenners für Öl/Wasseremulsion und werden für Brennkammersysteme maximaler Effizienz eingesetzt. Auch mit dem Backup-Brennstoffinjektor sollen niedrige Schadstoffemissionen erzielt werden. Durch die damit erzielte Maximierung der Versorgungssicherheit der Gasturbinen der nächsten Generation wird ein weiteres, essentielles Kriterium durch diese neuartige Technologie erfüllt. Das Vorhaben hat zum Ziel, vorhandene Datensätze für Heizölflammen mit Wasser zu komplettieren und neue Datensätze zu erzeugen. Ein vorhandener Versuchsträger im Labormaßstab für generische 1-Düsenanordnungen für den Hochdruckprüfstand HBK-S des DLR Instituts für Verbrennungstechnik steht aus einem anderen Vorhaben zur Verfügung. Mit seiner Hilfe werden die Eindüsungskonzepte in den Tests untersucht und charakterisiert. Durch die Anwendung von laserdiagnostischen Messmethoden werden umfangreiche und detaillierte Valdierungsdatensätze gewonnen. Zum einen liegt der Fokus auf einer Temperaturmessung in den Flammen, zum anderen soll ein Verfahren zur Charakterisierung der Brennstoffverteilung am Ende des Mischrohrs entwickelt, erprobt und angewandt werden.
The project aims on developing new combustion technologies for bio-residues. Innovative combustion technologies like flameless oxidation (FLOX (R)) and continuous air staging (COSTAIR) will be enhanced by re-burning and co-firing in order to meet this goal. Two basic types of BIO-PRO burners will be developed to meet this goal: - A pilot burner for gas and liquid fuels; - A pilot burner for solid fuels applying a pre-gasification step for the solids without gas cooling. The technology to be developed shall be able to self adjust to different fuel qualities (fuel moisture 10-50 percent). For emissions of the investigated fuels the upper limit for CO will be 30 mg/m3 (currently 50 mg/m are typical) and NOx will be reduced by 50 percent (starting point for dry wood chips in available combustion systems = 210 mg/m ). The prototypes of the new burners will be brought to pre-commercialisation level (two pilot scale burners and operation guidelines). The accompanying socio-economic assessment will assess the economic viability of the new technology (live cycle assessment) on the one hand and will show promising markets for a subsequent dissemination of the technology on the other hand (dissemination strategy). A successful development and application of the technology is expected to have following impact: - Increased use of bio-residues, increasing the utilisation of biomass in Europe by up to 50 percent (basis 54.175 toe in 1998). This will reduce CO2 emissions by 46 Mio t/a (basis: energy consumption 1998); - Improved European competitiveness in the global market, accounting for up to 15,000 new jobs; - NOx emissions from biomass combustion systems will be reduced within 10 years by approx. 76,500 t/a (basis: biomass consumption 1998).
Im Abgas von wasserstoffbetriebenen Fahrzeugen verbleibt jeweils ein Rest Wasserstoff, der nicht reagiert hat. Dies kann zu Gefährdungen führen, zum Beispiel Explosionsgefahr in geschlossenen Räumen wie Garagen. Heute werden in wasserstoffbetriebenen Fahrzeugen in der Regel keine Systeme eingesetzt, die diese Rest-Gasgehalte abbauen. Ziel ist es daher, einen neuartigen, hocheffizienten und kleinen Katalysator zu entwickeln, der für den Einsatz in wasserstoffbetriebenen Fahrzeugen geeignet ist und die Restmengen an Wasserstoff im Abgas flammfrei verbrennen kann. Dadurch sollen eine hohe Umsatzeffizienz größer 99 Prozent der H2-Konzentration, geringe Arbeitstemperaturen (auch im Betrieb unter 500 Grad Celsius) und durch geringen Edelmetallbedarf eine günstige Kostenstruktur erreicht werden.
Dieses Vorhaben ist Teil des Verbundprojekts COOREFLEX-turbo (Turbomaschinen - Schlüsseltechnologien für flexible Kraftwerke und eine erfolgreiche Energiewende). Im Mittelpunkt des Projekts steht die Integration einer Flüssigbrennstoffstufe in das verbesserte, brennstoffflexible FLOX® Verbrennungssystem. DLR VT wird mit Siemens zusammenarbeiten und das Verbrennungssystem im Labormaßstab charakterisieren. Die Brennstoffdüsen sollen die Zweibrennstofffähigkeit eines FLOX® basierten Brenners für Öl/Wasseremulsion ermöglichen und für Brennkammersysteme maximaler Effizienz einsetzbar sein. Auch mit dem Backup-Brennstoffinjektor sollen niedrige Schadstoffemissionen erzielt werden. Durch die damit erzielte Maximierung der Versorgungssicherheit der Gasturbinen der nächsten Generation wird ein weiteres, essentielles Kriterium durch diese neuartige Technologie erfüllt. Zur Analyse unterschiedlicher Varianten der Flüssigbrennstoffeindüsung sollen Hochdruckexperimente durchgeführt werden Das Vorhaben stellt sich drei konkrete Arbeitsziele: Ein neuer Versuchsträgers im Labormaßstab für generische 1-Düsenanordnungen für den Hochdruckprüfstand HBK-S des DLR Instituts VT wird an die Flüssiginjektortechnologie angepasst (er steht aus einem anderen Vorhaben zur Verfügung). Mit seiner Hilfe werden die neuen Eindüsungskonzepte in den Tests untersucht und charakterisiert. Durch die Anwendung von laserdiagnostischen Messmethoden werden umfangreiche und detaillierte Validierungsdatensätze gewonnen.