Im Vergleich zu fossilen Energien greifen erneuerbare Energien wesentlich geringer in geologische und biologische Strukturen an Land und auf See ein, beanspruchen aber dezentral viel bzw. spezifisch geeignete Fläche. Da die zur Energieproduktion verfügbare Fläche qualitativ und quantitativ begrenzt ist, gehören zum künftigen Energiemix auch flächenextensive Technologien, die besonders wenig - etwa zur Nahrungsproduktion geeignete - Fläche beanspruchen, Teil einer Mehrfachnutzung sind oder für klassische Bauformen ungeeignete Standorte nutzen können. Eine dieser flächenextensiven und standortflexiblen Technologien ist die Airborne Wind Energie (AWE) - Höhenwindenergieanlagen. Als bislang im Raum weitgehend unbekannte Technologie stellt sich trotz, möglicherweise aber auch gerade wegen ihrer besonders extensiven Rauminanspruchnahme Fragen zur künftigen gesellschaftlichen Akzeptanz dieser Technologie. Dabei spielen, neben vermitteltem Wissen und rationalen Argumenten auch visuelle und akustische Wahrnehmungen, ästhetische Empfindungen und Beurteilungen sowie soziale Diskurse und Narrative eine akzeptanzbeeinflussende Rolle. In diesem Vorhaben werden für verschiedene Designvarianten der AWE Systeme, unter Berücksichtigung der optimalen Energieausbeute, die audiovisuellen Emissionen in Abhängigkeit der vielfältigen Design- und Umwelteinflüsse identifiziert und modelliert. Durch die Erweiterung bestehender Simulationsumgebungen für AWE Systeme mit diesen Emissionsmodellen wird eine ganzheitliche Analyse und Bewertung der Technologie hinsichtlich des potentiellen Beitrags zur Energiewende und gleichzeitig der, durch die lokalen Topographie- und Wetterbedingungen bedingten, Emissionswirkungen ermöglicht. Diese physikalische Simulation dient als Grundlage für die räumliche und energetische Bilanzierung von AWE Systemen, sowie für die mediale Visualisierungssimulation, welche ein Kernelement des Gesamtvorhabens darstellt und für die empirische Befragung genutzt werden soll.
Ziel des FuE-Vorhabens EnerWing xM ist es, eine neuartige, zuverlässige, systemdienliche und kostengünstige Stromversorgung mit erneuerbaren Energien mittels Flugwindkraftanlagen zu erreichen. Dabei sollen die Flexibilität des bedarfsgerechten Betriebs, die gute Transportabilität der Systeme und ein hoher Auslastungsgrad als Alleinstellungsmerkmale ausgeprägt werden. Ausgehend von einer konzeptionellen Vorentwicklung der kleinskalierten, teil-baren Flügelstruktur soll eine neuartige Werkzeugkette für die Auslegung von hoch-skalierbaren Flügelkomponente für Flugwindenergieanlagen von 500 kW und darüber hinaus bis 2.000 kW erzielt werden. EnerKíte, INVENT und Teut stellen sich mit den Forschungspartnern DLR und Technische Universität Berlin der Herausforderung der systemdienlichen und kostengünstigen Stromversorgung mit erneuerbaren Energien mittels sogenannter Flugwindkraftanlagen, einer Technologie, die bisher nur im kleinskalierten Maßstab demonstriert und bisher nicht kommerziell umgesetzt werden konnte. EnerKíte übernimmt die organisatorische Koordination des Gesamtprojektes und führt inhaltlich die Teilprojekte in einem Gesamtsystem zusammen. Die EnerKíte erstellt im Teilprojekt ein umfassendes Gesamtsystemmodell, das neben dem Flügel auch verbundene Subsysteme wie Generatorwinde, Steuerung, Start- und Landesystem sowie elektrisches System abbildet. Neben physikalischen und technischen Parametern berücksichtigt ein solches Modell auch wirtschaftliche Faktoren. Nur über eine solche Gesamtsystemsimulation können wichtige Designentscheidungen abgeprüft und somit zielführend beurteilt werden. Erstellt werden in Zusammenarbeit mit den Projektpartnern Auslegungsketten für aerodynamische und strukturelle Modellierungen des Flügelsystems, die in die Gesamtsystemmodellierung integriert werden.
Um Windenergieanlagen (WEA) zukünftig effizienter, zuverlässiger und wirtschaftlicher zu gestalten, sind derzeit verschiedene Verbesserungs- und Optimierungskonzepte Gegenstand aktueller Forschung und Entwicklung. Dazu gehören auch Aktivitäten der industriellen Forschung an Flugwindkraftanlagen. Wichtige Ziele sind dabei die Gewichtsreduktion von Flugwindkraftanlagen bei gleichzeitiger Optimierung der Größenskalierbarkeit und Robustheit, um zukünftig größere WEA mit höherer Energieausbeute zu errichten. Die Konzeption und Auslegung der Flügeltechnologie für systemdienliche Flugwindkraftanlagen der Megawatt-Klasse ist Kernthema des Gesamtverbundes, wobei sich das Teilvorhaben die Erforschung einer industrietauglichen Fertigungstechnologie für hochbelastbare, kostengünstige CFK-Strukturen zum Ziel gesetzt hat. Dazu werden Fertigungstechnologien aus der Luft- und Raumfahrt zu Grunde gelegt und für die Anwendung in WEA adaptiert, damit die neuartigen Fluggeräte unter industriellen Aspekten wirtschaftlich fertigbar sind. Teilziele sind dabei die Konzeption und Verifikation der Fertigungsverfahren, der Versuch und die Bewertung. Somit wird sichergestellt, dass die im Gesamtverbund erarbeiteten Flügelstrukturen auch industriell und effizient herstellbar sind.