Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Das Hauptziel des Projekts ist die Untersuchung und die Entwicklung von Methoden nicht nur zur punktuellen, sondern auch zur flächenhaften Bestimmung der Bodenfeuchte. Zur Anwendung sollen Geländetechniken wie Time-Domain Reflectrometry (TDR), Georadar (GPR), Elektrische Widerstand (ER), Elektromagnetische Induktion (EMI) sowie GNSS Scatterometry kommen. Eine der methodischen Hauptfragen ist die Nutzung der GNSS Scatterometry zur Ermittlung der Bodenfeuchte im Feldmaßstab. Eine weitere grundlegende Forschungsfrage wird die weitere Entwicklung der elektrischen und elektromagnetischen geophysikalischen Techniken für bodenkundliche Anwendungen sein.
Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.
Methan ist ein bedeutendes Treibhausgas, das einen starken Einfluss auf die Klimaentwicklung der Erde nimmt. Zurzeit sind das Wissen um die verschiedenen Methanquellen und deren atmosphärischer Einfluss noch äußerst lückenhaft. Eine Quelle, die hier von besonderer Wichtigkeit sein könnte, ist die mikrobielle Methanproduktion innerhalb des Darms bestimmter Zooplanktonorganismen bzw. der von ihnen ausgeschiedenen Kotpillen. Diese Quelle ist hauptsächlich in der oberen sauerstoffhaltigen Wassersäule angesiedelt und kann somit einen unmittelbaren Einfluss auf den Methanfluss zwischen Ozean und Atmosphäre nehmen. In unserem Projekt stellen wir die Hypothese auf, dass in hochproduktive Regionen, wie z.B. in Randmeeren, diese Zooplankton-basierte Methanproduktion besonders stark ausgeprägt ist. Des Weiteren vermuten wir, dass die zeitweise in der Ostsee beobachtete subthermokline Methananomalie durch diese Methanquelle hervorgerufen wird. Im ZooM-Projekt werden wir deshalb die Zooplankton-assoziierte Methanproduktion im Modellgebiet Ostsee mit Hilfe eines multidisziplinären Ansatzes untersuchen, indem wir die Fachgebiete Methanchemie, Mikrobiologie und Zooplanktologie konzertiert einsetzen. Im Detail wollen wir die folgenden Schlüsselfragen beantworten: (1) Ist die subthermokline Methananomalie ein verbreitetes Phänomen in der Ostsee und können wir saisonale und regionale Unterschiede in ihrer Ausprägung identifizieren? (2) Besitzt die Zooplankton-assoziierte Methanproduktion das Potential die beobachtete Methananomalie auszubilden und wie beeinflussen Copepodenarten und Umweltbedingungen (wie die Nahrungszusammensetzung) die Methanproduktion? (3) Welche methanogenen Mikroorganismen sind in die subthermokline Methanproduktion im Copepoden-Darm und ihren Kotpillen involviert und lassen sich Unterschiede der beteiligten methanogenen Gemeinschaften und deren Aktivität ausmachen?
Die fortschreitende Entwaldung in den Tropen erfordert die Erforschung von Landnutzungskonzepten, welche die Entwaldung reduzieren, die Wiederherstellung von Waldflächen fördern und gleichzeitig die Sicherung des Lebensunterhaltes für die Bevölkerung gewährleisten. Aufforstungen mit schnell wachsenden Wertholzarten können einen solchen Ansatz darstellen. Das größte Hindernis für deren Umsetzung stellt jedoch der lange Zeitraum bis zur Erwirtschaftung erster Rückflüsse dar. Ziel des vorliegenden Projektes ist es, mit Hilfe der Einbringung landwirtschaftlicher Nutzpflanzen in Holzplantagen einen früheren Cash-flow zu ermöglichen und somit Aufforstungen finanziell attraktiver zu gestalten. Zur Überprüfung dieses agroforstlichen Ansatzes sollen beispielhaft für tropische Gebiete Versuchspflanzungen in Panama angelegt werden. Das Versuchsdesign ermöglicht den Vergleich unterschiedlicher Wertholz- Feldfrucht-Kombinationen sowie die Untersuchung der Interaktionen zwischen den beteiligten Arten in Abhängigkeit von verschiedenen Steuergrößen, wie z.B. dem Pflanzabstand. Ziel ist eine Bewertung der ökologischen und sozioökonomischen Eignung der untersuchten Systeme als nachhaltiges Landnutzungskonzept.
Das ionosphärische Plasma reagiert auf Änderungen der ionosphärischen EUV und UV-Strahlung auf der Zeitskala der solaren Rotation mit einer Verzögerung von 1-2 Tagen. Es wird angenommen, dass diese Verzögerung auf Transportprozesse von der unteren Ionosphäre in die F-Region zurück zu führen ist, doch wurden bislang nur begrenzte Modelluntersuchungen durchgeführt, um diesen Zusammenhang zu belegen. Innerhalb von DRIVAR sollen die Prozesse, die für die ionosphärische Verzögerung verantwortlich sind, durch umfassende Datenanalyse und Modellierung untersucht werden. Verschiedene solare Proxies sowie spektral aufgelöste EUV- und UV-Flüsse aus Satellitenmessungen werden verwendet und zusammen mit ionosphärischen Parametern analysiert, welche aus GPS-Radiookkultationsmessungen, Ionosondenmessungen und GPS-Gesamtelektronenmessungen stammen. Letztere haben sowohl den Vorteil einer globalen Abdeckung als auch einer z.T. räumlich hoher Auflösung. Die ionosphärsche Verzögerung wird auf verschiedenen Zeitskalen ionosphärischer Variation (Tage, solare Rotation, saisonal) untersucht, und regionale Abhängigkeiten werden analysiert.Wegen des komplexen Charakters der involvierten Prozesse in der Thermosphäre und Ionosphäre werden Experimente mit numerischen Modellen benötigt, um die der Verzögerung zugrundeliegenden Prozesse physikalisch zu untersuchen. Wir verwenden das Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe), um die Verzögerung zu simulieren und führen Sensitivitätsstudien durch um die zur ionosphärischen Verzögerung führenden Prozesse im Detail zu analysieren. Zusätzliche Experimente werden mit dem Upper Atmosphere Model (UAM) durchgeführt.Die Ergebnisse von DRIVAR werden zu einem verbesserten Verständnis ionosphärischer Prozesse führen und werden insbesondere in der Vorhersage ionosphärischer Variabilität Anwendung finden, z.B. bei der Analyse und Vorhersage von GNSS- Positionsfehlern.
The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.
Hydrologische Fließwege bilden die kritische Verbindung zwischen der Quelle der P Mobilisierung und des P Exports zu den Flüssen. Die Prozesse der P Mobilisierung auf der Standortskale ist vergleichsweise gut verstanden, jedoch ist die Kenntnis des P Transportes in Hängen und Einzugsgebieten durch die Komplexität der Transport-Skalen und Fließprozesse begrenzt. In Hängen können große P Flüsse zum dynamischen P Export beitragen, da P oft in schnellen Fließwegen transportiert wird, insbesondere in bewaldeten Systemen wo präferentielle Fließwege häufig auftreten. Ein adäquates Prozesswissen der Hanghydrologischen Dynamik ist daher wichtig um die P Transport Dynamik zu beurteilen und vorherzusagen. Jedoch wurden bisher solche Studien fast ausschließlich in Einzugsgebieten mit landwirtschaftlicher Nutzung durchgeführt. In dieser experimentellen und modellierungs-basierten Studie über hanghydrologische Prozesse und Phosphortransport werden wir die Auswirkungen der Abflussprozesse auf den P-Transport in bewaldeten Hängen entlang des grundlegenden Hypothesen des SPP untersuchen. Wir werden die Auswirkungen unterschiedlicher Fließwege und Verweilzeiten auf den P Transport und den damit verbundenen hydrologischen Bedingungen untersuchen. Die Hypothese wird getestet, dass die P-Signaturen im Abfluss im Zusammenhang stehen mit den bodenökologischen P-Gradienten und dass die P-Signaturen durch die Verweilzeiten des Wassers im Hang bestimmt werden, die insbesondere durch präferentielle Fließwege bei Niederschlagsereignissen dominiert werden. Diese Hypothesen werden an den vier SPP Standorte im Gebirge mit einem innovativen, kontinuierliche Monitoring-System für unterirdische Hangabflüsse und P-Transport bei hoher zeitlicher Auflösung untersucht. Event-basierte und kontinuierliche Probenahmen für die verschiedenen P Spezies, stabile Wasserisotope und andere geogene Tracer in Niederschlag, Abfluss und Grundwasser werden es uns ermöglichen, Verweilzeiten von Wasser mit den P Flüsse und P Transportprozessen zu verknüpften. Schließlich werden wir ein prozessorientierten hydrologischen Hang-Modell weiterentwickeln um die verschiedenen Fließ-und Transportwege zu simulieren, um die Dynamik von Abfluss und P Transport zwischen der Hang- und Einzugsgebietsskala zu verknüpfen. Die Modellierung wird sich darauf fokussieren die Altersverteilung von Wasser und die bevorzugte Fließwege die durch 'hot spots' bei der Infiltration und P Mobilisierung entstehen in bewaldeten Hängen adäquat darzustellen.
Das Wattenmeer, das sich von Den Helder in den Niederlanden bis nach Skallingen in Dänemark erstreckt, ist ein Prototyp für eine durch den Meeresspiegelanstieg bedrohte Küstenregion. Über 50% des Wattenmeeres besteht aus Wattflächen, die nur während eines Teils des Gezeitenzyklus von Wasser bedeckt sind. Dadurch wird das einzigartige Küsten-Ökosystem des Wattenmeeres geformt, das aufgrund von Akkumulation von Sediment aus der Nordsee den Meeresspiegelanstieg der letzten Jahrhunderte überleben konnte. Angesichts der beobachteten Beschleunigung des Meeresspiegelanstieges stellt sich die Schlüsselfrage, bis zu welcher Rate des Meeresspiegelanstieges diese Sedimentakkumulation für das Überleben des ausreicht. Diese Frage ist hochkomplex, da die Sedimentflüsse in das Wattenmeer selbst von der Rate des Meeresspiegelanstieges sowie von anderen klimatischen Einflüssen und von der Sedimentverfügbarkeit in nicht-linearer Weise abhängen. Es ist bekannt, dass Netto-Sedimentflüsse durch von nicht-linearen Flachwassergezeiten und horizontalen Dichtegradienten (aufgrund von Niederschlag, Süßwasserabfluss und Oberflächen-Wärmeflüssen) bedingten Gezeitenasymmetrien angetrieben werden. Die Nichtlinearität der Gezeiten wiederum hängt vom Meeresspiegelanstieg selbst ab und die horizontalen Dichtegradienten variieren mit klimabedingten Änderungen von Verdunstung/Niederschlag und Abkühlung/Erwärmung. Weiterhin hängen Sedimentflüsse vom Windantrieb ab, der ebenfalls mit dem Klima variiert. Obwohl ein fundiertes Verständnis der zugrundeliegenden Sedimenttransportprozesse im Wattenmeer vorliegt, werden für Projektionen von morphologischen Veränderungen weiterhin einfache vertikal integrierte Modelle verwendet. Die Erkenntnisse, die aus solchen Modellen gewonnen werden, sind daher sehr eingeschränkt. Das wichtigste Ziel dieses Projektes ist daher, mögliche morphologische Reaktionen des Wattenmeeres auf einen beschleunigten Meeresspiegelanstieg und andere Aspekte des Klimawandels sowie Einflüsse von Sedimentverfügbarkeit mit Hilfe eines prozess-basierten Modells zu untersuchen. Dabei werden die wichtigsten Antriebe für Sedimenttransportprozesse in das Wattenmeer berücksichtigt. Zunächst sollen diese Modellsimulationen in systematischer Weise unter Nutzung verschiedener idealisierter Bathymetern durchgeführt werden, um die kritischsten Prozesse morphodynamischer Veränderungen zu erkennen. Mit Hilfe dieser Bathymeter können die Einflüsse des Meeresspiegelanstieges in Kombination mit anderen Einflussfaktoren (Niederschlag/Verdunstung, Abkühlung/Erwärmung, Wind-Wellenantrieb) untersucht werden. In einer zweiten Phase des SPP, unter der Annahme, dass die verfügbaren Computer Ressourcen weiter anwachsen, sollen solche Simulationen für realistische und komplexere Gezeitenbecken im Wattenmeer durchgeführt werden. In beiden Phasen des SPP soll die Dynamik von Salzwiesen explizit mit untersucht werden.
| Origin | Count |
|---|---|
| Bund | 501 |
| Type | Count |
|---|---|
| Förderprogramm | 500 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 500 |
| Language | Count |
|---|---|
| Deutsch | 229 |
| Englisch | 369 |
| Resource type | Count |
|---|---|
| Keine | 291 |
| Webseite | 210 |
| Topic | Count |
|---|---|
| Boden | 431 |
| Lebewesen und Lebensräume | 416 |
| Luft | 359 |
| Mensch und Umwelt | 499 |
| Wasser | 411 |
| Weitere | 501 |