Für die Herstellung von digitalen Orthophotos (DOP) erfolgte bis 2019 im 3-Jahres-Rhythmus ein gesonderter Farbbildflug bei voller Belaubung im Sommer für die Fläche der gesamten Stadt Hamburg (ausgeschlossen sind die Wattenmeerinseln). 2022 wurde das Digitale Orthophoto aus einer Satellitenszene abgeleitet. Bodenauflösung: 0,5m Aufnahmedatum: 03. Juni 2022 [Pléiades 1A/B "© CNES (2022), Distribution Airbus DS"] Die Daten aus dem Jahrgang 2022 werden aufgrund von Lizenzbedingungen nicht öffentlich bereitgestellt.
Aktuelle Information: Im Jahr 2023 fand keine Luftbildbefliegung statt. Das Digitale Orthophoto 2023 wurde daher aus mehreren Satellitenszenen abgeleitet. Satellitensystem: WorldView-3 Aufnahmezeitpunkte: 02/23; HH Altengamme: 09/23 GSD: 0,30 m prozessiert auf 0,15 m Das Digitale Orthophoto 2023 unterliegt Lizenzbedingungen und steht nicht zum Download zur Verfügung. [Maxar Products. Dynamic Product © 2023 Maxar Technologies.] DOP Erläuterung: Aus den Luftbildern werden mosaikierte und georeferenzierte, farbige digitale Orthophotos (RGBI) mit unterschiedlichen Auflösungen und Kachelgrößen hergestellt. Orthophotos sind auf Grundlage eines digitalen Geländemodells geometrisch entzerrte Aufnahmen, die das Aussehen eines Luftbildes mit den geometrischen Eigenschaften einer Karte vereinen. Weil sie auch in digitaler Form vorliegen, können sie in unterschiedlichen Maßstäben ausgegeben und wie eine Karte benutzt werden. Objekte, die sich unmittelbar auf der Erdoberfläche befinden, werden lagerichtig dargestellt. Objekte, die über das Niveau der Erdoberfläche hinausragen werden bedingt durch das Herstellungsverfahrens für digitale Orthophotos mitunter nicht lagerichtig wieder gegeben. Besonders geeignet als räumlich exakte, bildhafte Bezugsgrundlage für den Aufbau von Geoinformationssystemen und zur Verknüpfung mit oder als Hintergrundinformation für raumbezogene fachspezifische Daten für Fachinformationssysteme sowie für Raumplanungen aller Art. Anwendungsgebiete sind alle Aufgabenbereiche, für deren Fragestellungen ein Raumbezug erforderlich ist, unter anderem Energie-, Forst- und Landwirtschaft, Verwaltung, Demographie, Wohnungswesen, Landnutzungs-, Regional- und Streckenplanung, Straßenbau und -bewirtschaftung, Facility Management, Verkehrsnavigation und Flottenmanagement, Transport, Bergbau, Gewässerkunde und Wasserwirtschaft, Ökologie, Umweltschutz, Militär, Geologie und Geodäsie, aber auch Kultur, Erholung und Freizeit sowie Kommunikation. RGB (Red Green Blue): Die Bandkombination aus Rot, Grün und Blau bildet die menschliche Farbwahrnehmung nach. Gesunde Vegetation wird grün, urbane Flächen werden weiß / grau und Wasserflächen werden, abhängig der Trübung, blau dargestellt. CIR (Color Infrared): Die Bandkombination aus nahem Infrarot, Rot und Grün hebt die Vegetation hervor. Diese reflektiert aufgrund des Chlorophyllgehalts der Pflanzen im nahen Infrarotbereich besonders stark und wird rötlich dargestellt. Urbane Flächen erscheinen cyan-blau / grau und Wasserflächen dunkelblau.
Schrägluftbilder: 2018 wurde erstmals für ganz Hamburg ein Bildflug durchgeführt, bei dem hochaufgelöste Oblique-Luftbilder entstanden. Die eingesetzte Kamera nimmt zeitgleich sowohl Senkrechtbilder als auch Schrägbilder nach allen 4 Seiten auf. Der aktuelle Datensatz ist aus dem Frühjahr 2022 (März). Die Schrägbilder dienen als Quelle für die Analyse von städtebaulichen Situationen innerhalb des gesamten Stadtgebietes. Sie werden als Dienst in den Geoportalen im LGV bereitgestellt.
Die Luftbilder werden auf Grundlage des bildbasierten Digitalen Oberflächenmodells (bDOM) entzerrt. Auf diese Weise wird nicht nur das Gelände, sondern auch jedes Objekt oberhalb des Geländes entzerrt und lagerichtig dargestellt. Verkippungen insbesondere bei der Darstellung der Gebäude werden eliminiert. Sichttote Bereiche im Orthophoto werden erheblich reduziert und der Informationsgehalt gesteigert.
Das Projekt "Staub - Spiegel der Umwelt - Eine Public Science Ausstellung im Wissenschaftszentrum Umwelt" wird/wurde ausgeführt durch: Universität Augsburg - Wissenschaftszentrum Umwelt (WZU).Täglich sammeln wir Staub - wenn wir uns in einem Raum aufhalten, wenn wir durch eine Wiese oder über eine Straße gehen oder auch in einem Buch lesen - und täglich versuchen wir, ihn wieder loszuwerden. Unser Drang nach Reinheit hat eine ganze Industrie entstehen lassen, die von Staubsaugern bis zu High-Tech-Filtern alle Arten von kleinen und größeren Hilfsmitteln anbietet. Für die Wissenschaft ist Staub kein Dreck. Was für den Alltagsmenschen ein Symbol der Zerstörung ist, birgt für den Forscher viele wichtige Informationen. Denn aus einer Analyse des Staubes lässt sich vieles über unsere gegenwärtige und sogar über vergangene Umwelten lernen. Zum anderen erobert die Wissenschaft mit Mikro- und Nanotechnologien die Welt des Winzigen. Denn das sehr Kleine eröffnet besondere technische Chancen. Auch diese aktuellen Entwicklungen und die damit verbundenen Chancen und Risiken soll die Ausstellung aufzeigen. Die Ausstellung wurde von November 2004 bis Oktober 2005 im Wissenschaftszentrum Umwelt der Universität Augsburg gezeigt werden. Sie umfasst 30-40 Exponate, darunter mehrere Hands-on-Exponate. Leihgeber für spezielle Objekte sind das Bundeskriminalamt, das Landesamt für Umweltschutz in Bayern, das Umweltbundesamt, der Deutsche Wetterdienst und weitere Institutionen. Ein ausstellungsbegleitendes Buch wird beim Oekom Verlag in München erscheinen. Im Anschluss an die Augsburger Station ging die Ausstellung auf Wanderschaft und wurde inzwischen an sechs weiteren Stationen gezeigt. Die Zahl der Besucher liegt bereits weit über 100.000.
Das Projekt "Untersuchung der Bedingungen zum Auftreten von Blitzen während vulkanischer Eruptionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität München, Department für Geo- und Umweltwissenschaften - Sektion Mineralogie, Petrologie & Geochemie.Vulkanische Eruptionen faszinieren die Menschen seit jeher, insbesondere wenn sie mit spektakulären Blitzen in Eruptionswolken einhergehen. Dieses Phänomen wurde erstmals durch Plinius den Jüngeren bei der 79 AD Eruption des Vesuvs beschrieben und heutzutage gibt es zahlreiche ausgezeichnete Fotos von Blitzen während vulkanischer Eruptionen. Das verstärkte wissenschaftliche Interesse beruht darauf, dass Blitze relativ einfach mittels Antennen zu registrieren sind und so u.U. als Mitigationswerkzeug und zur Abschätzung der Eruptionsgröße genutzt werden könnten. Zudem legen die Miller-Ureys Experimente nahe, dass Blitze in Vulkaneruptionen die Transformation der aus vulkanischen Gasen bestehenden primordialen Atmosphäre in komplexe organische Verbindungen begünstigt haben können.Bisher sind dedizierte Modelle zur Erklärung der Blitze in vulkanischen Eruptionen jedoch nach wie vor selten. Verschiedene elektrostatische Prozesse wie Triboelektrifikation und bruchinduzierte Ladungstrennung wurden zwar schon genauer untersucht, aber in vielen Modellen wird die Eruptionswolke hinsichtlich der Blitzentstehung immer noch mit einer dreckigen Gewitterwolke verglichen, obwohl die Gemeinsamkeiten beider Wolken eher klein sind. Mittels dieses Antrags soll die Entstehung von Blitzen in Eruptionswolken durch eine neuartige Kombination von Geländemessungen, Laborexperimenten und begleitenden numerischen Modellen untersucht werden. Bei den Geländemessungen kommen Doppler Radar, Hochgeschwindigkeitsvideos, Messungen des elektrischen Feldes sowie seismische und akustische Messungen zum Einsatz, um die auftretenden Blitze eindeutig physikalischen Bedingungen in der Eruptionswolke zuzuordnen. Diese Messungen sollen am Vulkan Sakurajima in Japan durchgeführt werden, der für seine häufigen vulkanischen Eruptionen sowie das Auftreten von Blitzen bekannt ist. Die Geländedaten dokumentieren die prä-eruptiven Bedingungen, die Eruptionsgeschwindigkeiten vor und während der Blitze, die Positionen der Blitze und dazugehörige elektrische Felder, sowie Korngrößenverteilungen der Asche. Diese Daten werden durch detaillierte Laborversuche in sog. Shock tubes ergänzt, in denen sowohl natürlich als auch synthetisch hergestellte Asche verwendet wird. Untersucht werden u.a. die elektrischen Eigenschaften der Asche und der Zusammenhang zwischen den Versuchsbedingungen und dem Auftreten von Blitzen. Letztlich werden wir ein bestehendes Eruptionssäulenmodell um die Berücksichtigung der elektrischen Eigenschaften der Aschepartikel erweitern. Hiermit sollen unsere Modellvorstellungen zur Entstehung von Blitzen untersucht werden, insbesondere warum einige Eruptionen keine Blitze aufweisen während sich andere durch heftige Blitztätigkeit auszeichnen. Unsere Gelände- und Labordaten zusammen mit den numerischen Modellen werden die Bedingungen zum Auftreten vulkanischer Blitze klar eingrenzen und somit wird sich auch abschätzen lassen, inwieweit Blitze als Warnsystem genutzt werden können.
Das Projekt "Der Einfluss der SML auf die Spurengasbiogeochemie und den Ozean-Atmosphäre-Gasaustausch" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie.Labor- und Feldstudien zeigen, dass die Oberflächengrenzschicht des Ozeans (â€Ìsurface microlayerâ€Ì, kurz SML) die biogeochemischen Kreisläufe von klimaaktiven und atmosphärisch wichtigen Spurengasen wie Kohlenstoffdioxid (CO2), Kohlenstoffmonoxid (CO), Methan (CH4), Lachgas (N2O) und Dimethylsulfid (DMS) stark beeinflusst: (i) Jüngste Studien aus den PASSME- und SOPRAN-Projekten haben hervorgehoben, dass Anreicherungen von oberflächenaktiven Substanzen (d.h. Tensiden) einen starken (dämpfenden) Effekt sowohl auf die CO2- als auch auf die N2O-Flüsse über die SML/Atmosphären-Grenzfläche hinweg haben und (ii) Spurengase können durch (mikro)biologische oder (photo)chemische Prozesse in der SML produziert und verbraucht werden. Daher kann der oberste Teil des Ozeans, einschließlich der SML, verglichen mit dem Wasser, das in der Mischungsschicht unterhalb der SML zu finden ist, eine bedeutende Quelle oder Senke für diese Gase sein, was von sehr großer Relevanz für die Forschungseinheit BASS ist. Die Konzentrationen von CO2, N2O und anderen gelösten Gasen in der SML (oder den oberen Zentimetern des Ozeans) unterscheiden sich nachweislich von ihren Konzentrationen unterhalb der SML. Typischerweise werden die Nettoquellen und -senken wichtiger atmosphärischer Spurengase mit Konzentrationen berechnet, die in der Mischungsschicht gemessen wurden und mit Gasaustauschgeschwindigkeiten, die die SML nicht berücksichtigen. Diese Diskrepanzen führen zu falsch berechneten Austauschflüssen, die in der Folge zu großen Unsicherheiten in den Berechnungen der Klima-Antrieben und der Luftqualität in Erdsystemmodellen führen können. Durch die Verknüpfung unserer Spurengasmessungen mit Messungen von (i) der Dynamik und den molekularen Eigenschaften der organischen Materie und speziell des organischen Kohlenstoffs (SP1.1; SP1.5), (ii) der biologischen Diversität und der Stoffwechselaktivität (SP1.2), (iii) den optischen Eigenschaften der organischen Materie (SP1.3), (iv) der photochemischen Umwandlung der organischen Materie (SP1.4) und (v) den physikalischen Transportprozessen (SP2.3) werden wir ein umfassendes Verständnis darüber erlangen, wie die SML die Variabilität der Spurengasflüsse beeinflusst.
Das Projekt "Fotowettbewerb: Nationalparke in Deutschland" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Naturschutzbund Deutschland e.V..
Das Projekt "Solarthermische Demonstrationsanlage Evangelische Kirchengemeinde Guben" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Evangelische Kirchengemeinde Guben.Gebäudecharakteristik und Konzeption der Anlagentechnik: Kollektorfläche: 10,2 m2; Kollektor: Indach; WW-Anlage; Speicher: 1 Stck. Solarspeicher 500 l; Dachneigung: 30 Grad; Ausrichtung: Süden. Geplante Maßnahmen zur Verbreitung: - Begleitung des Einbaus der Solaranlage durch Abkündigungen, Erwähnungen in den Predigten und Fürbitten in den Gottesdiensten. Hinweis im Gemeindeblatt, Ähnliches gilt für die Gemeindekreise; - Spezieller thematischer Gottesdienst zum Thema 'Bewahrung der Schöpfung'; - Festhalten der einzelnen Bauphasen durch Foto und Video; - Veröffentlichungen, Texte, Fotos in der lokalen Presse und in Kirchenzeitungen; - Veröffentlichungen im Rundfunk; - Zusammenarbeit in dem Hornocamp; - Einbeziehung von Parteien und Vereinen vor Ort einschl. Frau Schneider von 'pro Guben'; - Während der Bauzeit ist ein entsprechendes Bauschild anzubringen; - Nach Abschluss der Arbeiten ist ein Schild am Gebäude anzubringen, dass auf die Solaranlage hinweist; - Einladungen zu Gemeindeausflügen nach Guben aussprechen; - Vorstellung des Projektes in und gegenüber Kirchengemeinden des KK Cottbus, Partnergemeinden, Gemeinden der Ökumene vor Ort; - Einladung des Pfarrkonventes des KK Cottbus in unser Haus; - Literatur zur Solartechnik wird auf dem Büchertisch der Gemeinde vertrieben; - Berücksichtigung des Projektes in der Christenlehre, im Konfirmandenunterricht und in der Jungen Gemeinde; - Begleitung durch den Bauausschuss, den Rechtsausschuss, den Finanzausschuss, den Kindergartenausschuss und den Öffentlichkeitsausschuss der Gemeinde; - Ausstellung zum Projekt im Gemeindehaus und in der Klosterkirche; - Besichtigung der Anlage durch Parteien und interessierte Gruppen; - Erhalt des Umweltpreises durch den Verein für Energie und Umwelt e. von Pro Guben unter Schirmherrschaft des Bürgermeisters der Stadt Guben. Fazit: Als Fazit kann man sagen, dass der Einbau der Solaranlage für das Objekt neben der hohen Akzeptanz auch Bewunderung für die Bereitschaft zur Erhaltung der Schöpfung hervorgerufen hat. Durch die großzügige Förderung durch die Bundesstiftung Umwelt konnte der stark strapazierte Haushalt der Gemeinde geschont werden. Dafür war jeder Beteiligte bereit, einiges für die Öffentlichkeitsarbeit zu leisten. Ferner muss gesagt werden, dass die Bearbeitung der Förderanträge sehr unbürokratisch durchgeführt wurde. Diese Maßnahme als Ganzes kann jederzeit weiterempfohlen werden.
Das Projekt "Erosionsprozesse in degradierten Arganbeständen in Südmarokko" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Frankfurt am Main, Institut für Physische Geographie, Abteilung Fernerkundung und Geoinformation.Boden und Vegetation endemischer Arganbestände in Marokko werden durch Expansion und Intensivierung der Agrarwirtschaft sowie Überweidung zunehmend degradiert. Überschirmte Flächen nehmen ab, unbedeckte Flächenanteile zwischen den Arganien nehmen zu. Infolge verminderter Infiltration steigen Oberflächenabfluss- und Bodenabtragsraten stark an. Auf den degradierten Böden kann sich nur lückenhafter Unterwuchs (Krautige und Gras) und kein Jungwuchs mehr ausbilden. Durch Untersuchungen verschieden stark degradierter Arganbestände werden in diesem Vorhaben Grenzwerte herausgearbeitet, ab denen bodenerodierende Prozesse initiiert werden, sowie solche, ab denen von einer Dynamisierung der Prozesse, insbesondere Rinnen- und Gully-Erosion, auszugehen ist. Dazu werden in drei Testgebieten im Hohen und Anti-Atlas eingezäunte Aufforstungsflächen mit ungeschützten Flächen auf verschiedenen Hangneigungen verglichen. Die Entwicklung der Bestandsdichten wird mit hochauflösenden CORONA-Satellitenbildern aus dem Jahr 1968 und großmaßstäbigen Luftbildern von 2017/18 quantifiziert, welche mit unbemannten Fluggeräten (UAVs) aufgenommen werden. Die Wuchsform der Bäume wird mit Structure from Motion (SfM)-Verfahren (3D-Modelle aus Multikopter-Aufnahmen) dokumentiert und klassifiziert. Untersuchungen zur Korngrößenverteilung, Aggregatstabilität, organischen Bodensubstanz und Bodennährstoffen sollen hypothesengeleitet den - mit steigendem Abstand der Bäume - sinkenden Einfluss der baumüberschirmten Fläche auf die erweiterten Zwischenbaumflächen aufzeigen. Mit Beregnungsversuchen und Infiltrationsmessungen werden Erodibilität und Infiltrationsvermögen der Zwischenbaumflächen in verschiedenen Degradationsstadien untersucht. Der Sedimentaustrag aus linearen Erosionsformen wird durch ein SfM-Monitoring mittels 3D-Modellen quantifiziert. Steinbedeckung und Viehwege lassen sich aus den selbst erstellten Luftbildern ermitteln. Viehzählungen und Interviews mit Schlüsselinformanten ergänzen die Kenntnisse über den Beweidungsdruck durch Schafe und Ziegen auf die Arganbestände. Anhand der Untersuchungen zur Degradation von Bestandsdichten, Zwischenbaum- und baumüberschirmten Flächen können die Arganbestände in mit Werten unterfütterte Stabilitätsklassen unterteilt werden. Die durch das Multi-Methoden-Konzept erarbeiteten Grenzwerte zeigen die Dynamisierung der Bodenerosionsprozesse unter Arganbeständen und belegen, dass bestimmte Erosionsprozesse verschiedenen Degradationszuständen der Fläche sowie unterschiedlichen Bestandsdichten zugeordnet werden können. Dies ist eine notwendige Voraussetzung für die nachhaltige Bewirtschaftung der Arganbestandsflächen.
Origin | Count |
---|---|
Bund | 130 |
Land | 33 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 125 |
unbekannt | 34 |
License | Count |
---|---|
offen | 152 |
unbekannt | 7 |
Language | Count |
---|---|
Deutsch | 134 |
Englisch | 43 |
Resource type | Count |
---|---|
Archiv | 2 |
Dokument | 2 |
Keine | 106 |
Webdienst | 7 |
Webseite | 52 |
Topic | Count |
---|---|
Boden | 121 |
Lebewesen & Lebensräume | 131 |
Luft | 71 |
Mensch & Umwelt | 159 |
Wasser | 76 |
Weitere | 159 |