Mehr als ein Vierteljahrhundert nach einer 1996 veröffentlichten „Provisorischen Roten Liste der phytoparasitischen Pilze Deutschlands“ von Oliver Foitzik (†) ist das hier vorgelegte Werk die erste umfassende Überarbeitung dieser Organismengruppe mit einer detaillierten Analyse der Gefährdungssituation. Es werden die vier Großgruppen Brandpilze, Rostpilze, Echte Mehltaupilze und Falsche Mehltaue einschließlich der Weißroste in ihrer traditionellen Umgrenzung behandelt. Für das Gebiet wurden 1.445 Taxa betrachtet, von denen 1.196 etabliert und Indigene oder Archäobiota sind. Von diesen stehen 619 Taxa auf der Roten Liste. 125 Taxa sind ausgestorben oder verschollen, weitere 408 Taxa sind bestandsgefährdet (Rote-Liste-Kategorien 1, 2, 3 und G). Für die weltweite Erhaltung von 13 Taxa hat Deutschland eine erhöhte Verantwortlichkeit. Als obligate Parasiten und wichtige funktionelle Glieder von terrestrischen Ökosystemen sind die hier behandelten Pilze auf das Engste mit ihren Wirtspflanzen verbunden, sie sind erhaltenswert und schutzbedürftig. Ihr Überleben ist nur gemeinsam mit den Wirtspflanzen möglich. Wesentliche Gefährdungsfaktoren der phytoparasitischen Kleinpilze sind die Nutzungsintensivierung in der Land- und Forstwirtschaft, die Anwendung von Fungiziden, das Aufgeben der Nutzung von ertrags- und nährstoffarmen Standorten, die Entwässerung von Feuchtgebieten, die Unterbindung einer natürlichen Lebensraumdynamik, z. B. in Wäldern und an Fließgewässern, sowie die zunehmende Inanspruchnahme offener Flächen durch Baumaßnahmen.
Im Zuge der industriellen Entwicklung hat die Einleitung von Schadstoffen in die Gewässer immens zugenommen. Neben ihrem Vorkommen im Wasser findet eine fortwährende Anreicherung der Gewässerböden mit Schadstoffen, wie z.B. Schwermetallen und Chlorierten Kohlenwasserstoffen, statt. Ablagerung im Sediment Im Stoffkreislauf eines Gewässers bilden die Sedimente ein natürliches Puffer- und Filtersystem, das durch Strömung, Stoffeintrag/-transport und Sedimentation starken Veränderungen unterliegt. Die im Ballungsraum Berlin vielfältigen Einleitungen, häusliche und industrielle Abwässer, Regenwasser u.a. fließen über die innerstädtischen Wasserwege letztlich vorwiegend in die Unterhavel. Die seenartig erweiterte Unterhavel mit ihrer niedrigen Fließgeschwindigkeit bietet ideale Voraussetzungen dafür, daß sich die im Wasser befindlichen Schwebstoffe hier auf dem Gewässergrund absetzen (sedimentieren). Für die Beurteilung der Qualität des gesamten Ökosystems eines Gewässers kommt daher zu den bereits seit Jahren analysierten Wasserproben immer stärker auch der Analyse der Sedimente besondere Bedeutung zu. Sedimentuntersuchungen spiegeln gegenüber Wasseruntersuchungen unabhängig von aktuellen Einträgen die langfristige Gütesituation wider und stellen damit eine wesentlich bessere Vergleichsgrundlage mit anderen Fließgewässern dar. Während bei Wasseruntersuchungen eine klare Abgrenzung zwischen dem echten Schwebstoffgehalt und einem zeitweiligen Auftreten von Schwebstoffen durch aufgewirbelte Sedimentanteile nicht möglich ist, bieten sich Sedimente als nicht oder nur gering durch unerwünschte Einflüsse beeinträchtigtes Untersuchungsmedium an. Die im Gewässer befindlichen Schweb- und Sinkstoffe mineralischer und organischer Art sind in der Lage, Schadstoffpartikel anzulagern (Adsorption). Die auf dem Grund eines Gewässers abgelagerten Schweb- und Sinkstoffe, die Sedimente, bilden somit das Reservoir für viele schwerlösliche und schwerabbaubare Schad- und Spurenstoffe. (Schad-)Stoffe werden im Sediment entsprechend ihrer chemischen Persistenz und den physikalisch-chemischen und biochemischen Eigenschaften der Substrate über lange Zeit konserviert. Die Analysen der Sedimentproben aus unterschiedlichen Schichttiefen liefern eine chronologische Aufzeichnung des Eintrages in Gewässer, die u. a. auch Rückschlüsse auf Kontaminationsquellen erlauben. Nach der Sedimentation kann ein Teil der fixierten Stoffe u. a. durch Desorption, Freisetzung nach Mineralisierung von organischem Material, Aufwirbelung, Verwitterung und schließlich durch physikalische und physiologische Aktivitäten benthischer (bodenorientierter) Organismen wieder remobilisiert und in den Stoffkreislauf eines Gewässers zurückgeführt werden. Schwermetalle Schwermetalle können auf natürlichem Weg, z. B. durch Erosion und Auswaschungsprozesse, in die Gewässer gelangen; durch die oben erwähnten Einleitungen wurde ihr Gehalt in den Gewässern ständig erhöht. Sie kommen in Gewässern nur in geringem Maße in gelöster Form vor, da Schwermetallverbindungen schwer löslich sind und daher ausfallen. Mineralische Schweb- und Sinkstoffe sind in der Lage, Schwermetallionen an der Grenzflächenschicht anzulagern. Sie können ferner in Wasserorganismen gebunden sein. Über die Nahrungskette werden die Schwermetalle dann von höheren Organismen aufgenommen oder sinken entsprechend der Fließgeschwindigkeit eines Gewässers als Ablagerung (Sediment) auf den Gewässergrund ab. Einige Schwermetalle sind in geringen Mengen (Spurenelemente wie z.B. Kupfer, Zink, Mangan) lebensnotwendig, können jedoch in höheren Konzentrationen ebenso wie die ausgesprochen toxischen Schwermetalle (z. B. Blei und Cadmium) Schadwirkungen bei Mensch, Tier und Pflanze hervorrufen. Die in den Berliner Gewässersedimenten am häufigsten erhöhte Meßwerte aufweisenden Schwermetalle werden nachstehend kurz beschrieben. Kupfer ist ein Halbedelmetall und wird u.a. häufig in der Elektroindustrie verwendet. Die toxische Wirkung der Kupferverbindungen wird in der Anwendung von Algiziden und Fungiziden genutzt. Kupfer ist für alle Wasserorganismen (Bakterien, Algen, Fischnährtiere, Fische) schon in geringen Konzentrationen toxisch und kann sich daher negativ auf die Besiedlung und Selbstreinigung eines Gewässers auswirken. Als wichtigstes Spurenelement ist Kupfer für den menschlichen Stoffwechsel von Bedeutung; es führt jedoch bei erhöhten Konzentrationen zu Schädigungen der Gesundheit, die in der Regel nur vorübergehend und nicht chronisch sind. Wie Kupfer ist Zink in geringen Mengen ein lebenswichtiges Element für den Menschen. Zink wird u.a. häufig zur Oberflächenbehandlung von Rohren und Blechen sowie zu deren Produktion verwendet. Ähnlich wie Kupfer haben erhöhte Zinkkonzentrationen toxische Wirkung auf Wasserorganismen; vor allem in Weichtieren (Schnecken, Muscheln) reichert sich Zink an. Blei gehört neben Cadmium und Quecksilber zu den stark toxischen Schwermetallen, die für den menschlichen Stoffwechsel nicht essentiell sind. Bleiverbindungen werden z. B. bei der Produktion von Farben und Rostschutzmitteln sowie Akkumulatoren eingesetzt. Teilweise befinden sich in Altbauten auch noch Wasserleitungen aus Blei. Der größte Bleiemittent ist – trotz starkem Rückgang des Verbrauchs von verbleitem Benzin – immer noch der Kraftfahrzeugverkehr. Die ständige Aufnahme von Blei kann zu schweren gesundheitlichen Schädigungen des Nervensystems und zur Inaktivierung verschiedener Enzyme führen. Cadmium wird bei der Produktion von Batterien, als Stabilisator bei der PVC-Herstellung, als Pigment für Kunststoffe und Lacke sowie in der Galvanotechnik verwendet. Die toxische Wirkung von Cadmium bei bereits geringen Konzentrationen ist bekannt, wobei das Metall vor allem von Leber, Niere, Milz und Schilddrüse aufgenommen wird und zu schweren Schädigungen dieser Organe führen kann. Pestzide, PCB und deren Aufnahme durch Aale Chlorierte Kohlenwasserstoffe (CKW) haben an ihrem Kohlenstoffgerüst Chlor gebunden. Innerhalb der Gruppe der halogenierten Kohlenwasserstoffe finden sie die bei weitem meiste Herstellung, Anwendung und Verbreitung. Chlorierte Kohlenwasserstoffe sind wegen ihrer vielfältigen Verbindungen sehr zahlreich. Viele organische Chlorverbindungen, wie z.B. DDT und insbesondere die polychlorierten Biphenyle (PCB), weisen eine hohe Persistenz auf. Viele Verbindungen der Chlorierten Kohlenwasserstoffe sind im Wasser löslich, andere, wie z. B. DDT und PCB, sind dagegen fettlöslich und reichern sich im Fettgewebe von Organismen an. Verschiedene Pestizide und PCB haben – vor allem mit abnehmender Wasserlöslichkeit – die Eigenschaft, sich adsorbtiv an Schwebstoffen oder auch an Pflanzenorganismen anzulagern. In strömungsarmen Bereichen des Gewässers sinken die Schwebstoffe ab und gelangen mit den Schadstoffen auch in das Sediment. Die hier lebenden Organismen sind eine wichtige Nahrungsgrundlage für Fische. Vorwiegend die benthisch lebenden Fische vermögen daher hohe Schadstoffkonzentrationen im Fettgewebe aufzunehmen. Vor allem die fettreich werdenden Aale fressen Bodenorganismen und graben sich im Sediment ein. Diese Lebensweise führt dazu, Pestizide und PCB nicht nur über die Nahrung, sondern auch über die Haut aufzunehmen und im Körperfett zu speichern. DDT, Dichlor-Diphenyl-Trichlorethan, ist ein schwer abbaubarer Chlorierter Kohlenwasserstoff, der zu den bekanntesten Schädlingsbekämpfungsmitteln gehört und früher weltweit eingesetzt wurde. Aufgrund der fettlöslichen Eigenschaften und der äußerst hohen Persistenz wird DDT vornehmlich in den Körperfetten nahezu aller Organismen gespeichert. Die globale Anwendung von DDT hat so zu einer Belastung der gesamten Umwelt geführt. Inzwischen ist die DDT-Anwendung von fast allen Ländern gesetzlich verboten. DDT ist mutagen (erbschädigend) und steht in Verdacht, krebserregend zu sein. Lindan wird vor allem als Kontakt- und Fraßgift zur Schädlingsbekämpfung von Bodeninsekten und als Mittel zur Saatgutbehandlung verwendet. Lindan ist bei Temperaturen bis 30° C nicht flüchtig und weist eine geringe chronische Toxizität auf – ist dafür aber akut toxisch. Vergiftungserscheinungen können z. B. beim Menschen zu Übelkeit, Kopfschmerzen, Erbrechen Krampfanfällen, Atemlähmung bis hin zu Leber- und Nierenschäden führen. Zudem besitzt Lindan eine hohe Giftigkeit für Fische; es wird aber relativ schnell wieder ausgeschieden und abgebaut. PCB, polychlorierte Biphenyle, sind schwer abbaubare Chlorierte Kohlenwasserstoffe, die mit zu den stabilsten chemischen Verbindungen gehören. Wegen ihrer guten Isoliereigenschaften und der schlechten Brennbarkeit werden sie in Kondensatoren oder Hochspannungstransformatoren verwendet. Weitere Verwendung finden PCB bei Schmier-, Imprägnier- und Flammschutzmitteln. Verursacher des PCB-Eintrages in die Berliner Gewässer sind im wesentlichen der KFZ-Verkehr, die durch KFZ belastete Regenentwässerung sowie die KFZ- und Schrott-Entsorgung. In hohen Konzentrationen verursachen PCB Leber-, Milz- und Nierenschäden. Bei schweren Vergiftungen kommt es zu Organschäden und zu Krebs. Einige PCB-Vertreter unterliegen im Rahmen der gesetzlichen Regelungen seit 1989 Einschränkungen bei der Herstellung bzw. Verwendung (PCB-, PCT-, VC-Verbotsverordnung vom 18.7.89). Neben dem Nachweis erhöhter Werte im Wasser und in Sedimenten Berliner Gewässer wurden in den 80er Jahren bei Fischuntersuchungen lebensmittelrechtlich äußerst bedenkliche Konzentrationen von CKW, wie z. B. PCB und die Pestizide DDT und Lindan nachgewiesen. Dies führte im Westteil von Berlin nach Inkrafttreten der Schadstoff-Höchstmengenverordnung (SHmV vom 23. 3. 1988) zum Vermarktungsverbot für aus Berliner Gewässern gefangene Fische. Die seit dieser Zeit gefangenen Fische wurden der Sondermüllentsorgung zugeführt. Die Berufsfischerei führte im Auftrag des Fischereiamtes Berlin aufgrund eines Senatsbeschlusses Befischungsmaßnahmen durch, die durch gezielte Beeinflussung der Alterszusammensetzung eine Reduzierung der Schadstoffbelastung der Berliner Fischbestände bewirken sollten. Die intensive Befischung der Überständler hatte einen jüngeren, fett- und damit schadstoffärmeren Bestand zum Ziel; jüngere, fettärmere Fische enthalten weniger Anteile der lipophilen (fettliebenden) CKW, wie PCB, DDT, Lindan u.a. Infolge verschärfter Genehmigungsverfahren für potentielle Schadstoffeinleiter sowie insbesondere aufgrund des derzeitig verjüngten Fischbestandes konnte das Vermarktungsverbot im Mai 1992 aufgehoben werden.
Organozinnverbindungen werden als Biozide, Kunststoffadditive und Katalysatoren eingesetzt. Vor allem Tributylzinn- (TBT) und Triphenylzinnverbindungen (TPT) haben als Bestandteil von Antifouling-Anstrichen von Schiffen zu Problemen in Gewässerökosystemen geführt. Beide Stoffe sind hoch toxisch und endokrin wirksam. Nach dem teilweisen Verbot von TBT in Schiffanstrichen 1989 und dem EU-Verbot aller Organozinnverbindungen für diese Anwendung im Jahr 2003 sanken die Belastungen von Brassen aus deutschen Fließgewässern und von Miesmuscheln und Aalmuttern aus Nord- und Ostsee. Abbauprodukte von TBT und TPT (die entsprechenden di- und mono-substituierten Verbindungen) wurden meist nur in geringen Konzentrationen nachgewiesen, obwohl sie teilweise auch für andere Zwecke industriell genutzt werden, beispielsweise als Katalysatoren. Wegen seiner hohen Toxizität und endokrinen Wirksamkeit auf Muscheln und Schnecken wurde TBT 1989 in Deutschland und 1990 EU-weit in Antifoulinganstrichen von Schiffen unter einer Länge von 25 m verboten. Seit 2003 wurde das Verbot auf Organozinnverbindungen in Antifouling-Anstrichen für alle Schiffstypen ausgedehnt. TPT wurde schon seit etwa Mitte der 1980er-Jahre nicht mehr für diesen Zweck eingesetzt. Um die Wirkung der Stoffverbote zu überprüfen und die Belastung von wasserlebenden Organismen zu erfassen, wurden Brassen aus fünf deutschen Fließgewässern und Miesmuscheln und Aalmuttern aus der Nordsee und Ostsee im Rahmen eines retrospektiven Monitorings untersucht. Zwischen 1993 und 2003 weisen Muskulaturen von Brassen aus der Unterelbe (Blankenese) mit 185 bis 481 ng TBT/g Frischgewicht (FG) und 8 bis 253 ng TPT/g FG die höchsten Belastungen auf. Dies dürfte darauf zurückzuführen sein, dass die Probenahmefläche Blankenese stark durch den Hamburger Hafen und die mit den Docks verbundenen Arbeiten beeinflusst ist. Als Folge des Verbots nahm die TBT-Belastung von Brassen zwischen 1993 und 2003 an allen Probenahmeflächen in Deutschland um 50 bis 90% ab. Auch die TPT-Konzentrationen in Brassen sanken, wobei die Konzentrationen jedoch nur zum Teil mit der Verwendung in Schiffsanstrichen korrelieren (Blankenese). An anderen Standorten scheinen die TPT-Gehalte eher mit dessen Anwendung in Fungiziden zusammenzuhängen. Die TBT-Belastung von Miesmuscheln und Aalmutter aus Nord- und Ostsee blieb bis Ende der 1990er Jahre unverändert. Da in Meeresregionen der Verkehr großer Schiffe dominiert, zeigte das seit 1989/1990 geltende Verbot von TBT in Antifouling-Anstrichen von Schiffen unter einer Länge von 25 Metern hier offenbar keine Wirkung. Erst nachdem 2003 das generelle Verbot von Organozinnverbindungen in Kraft trat, nahmen die TBT-Gehalte in Miesmuscheln und Aalmuttern deutlich ab. Die Untersuchungen belegen den Erfolg der regulatorischen Maßnahmen zur Reduzierung der Organozinn-Einträge in die aquatische Umwelt. Eine Umrechnung der Gewebekonzentrationen auf Wasserkonzentrationen zeigt jedoch, dass Organozinnverbindungen nach wie vor die im Rahmen der Wasserrahmenrichtlinie abgeleitete Umweltqualitätsnorm von 0,2 ng/L überschreiten und somit eine weitere Überwachung notwendig ist. Aktualisiert am: 12.01.2022 Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche Datenrecherche
Mosel-Apollofalter: Weinbau und Artenschutz zusammenbringen In aktuellen Genehmigungsverfahren für 16 Fungizide zum Ausbringen per Luftfahrzeug in Weinbausteillagen hat sich das UBA für Auflagen ausgesprochen, um eine vom Aussterben bedrohte Schmetterlingsart zu schützen. Es sind aber bereits viele Mittel ohne Auflagen genehmigt. Wichtig für den Erhalt der Falterart ist die Wiederherstellung seiner Lebensräume. Das soll die Auflagen mittelfristig ablösen. Update vom 12.03.2024: Das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) hat am 11.03.2024 in einer Fachmeldung bekannt gegeben, dass es die aktuellen Genehmigungen für die Anwendung von Fungiziden mit Luftfahrzeugen in Weinbausteillagen ohne Anwendungsbestimmungen zum Schutz des vom Aussterben bedrohten Mosel-Apollofalters erteilt hat. Damit wurde eine Entscheidung gegen das hier dargelegte Votum des Umweltbundesamtes getroffen. Aktuell ist das UBA in 26 Genehmigungsverfahren zur Ausbringung von Pflanzenschutzmitteln mit Luftfahrzeugen in deutschen Weinbausteillagen eingebunden. Eine spezifische Bewertung der Risiken für den weltweit nur noch im Weinbaugebiet des unteren Moseltals vorkommenden Mosel-Apollofalter ergab für 16 der Mittel eine so hohe Toxizität, dass eine Anwendung nur mit einem Sicherheitsabstand von – je nach Mittel – 5 bis 30 Metern zu Vorkommen des Schmetterlings vertretbar ist. Die letztendliche Entscheidung, ob die Mittel für die Anwendung mit Luftfahrzeugen genehmigt werden und ob die vom UBA vorgeschlagenen Auflagen übernommen werden, trifft das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL). Das UBA kann in Anbetracht der aktuellen Datenlage zum dramatischen Bestandsrückgang des Falters bei der Beurteilung der neuen Anträge nicht mehr auf die Forderung nach Mindestabständen verzichten. Alle bisher genehmigten Pflanzenschutzmittel zur Anwendung mit Luftfahrzeugen haben solche Auflagen nicht. Denn zum Zeitpunkt der Entscheidung über die Genehmigung dieser Mittel schienen diese nicht nötig zu sein. Die bereits genehmigten Mittel sind also vorerst weiter für die Anwendung an Weinbausteilhängen verfügbar. Wenn für die Ausbringung der Pflanzenschutzmittel Drohnen statt Hubschrauber verwendet werden, verringert sich das Risiko für den Apollofalter. Die genehmigten Drohnentypen können tiefer als Hubschrauber über die Reben fliegen. Dadurch werden die Mittel zielgenauer und mit weniger Abdrift auf angrenzende Flächen ausgebracht. Die notwendigen Mindestabstände zu angrenzenden Flächen sind deshalb für die Drohne geringer als für den Hubschrauber. Ein vollständiger Umstieg auf Drohnen ist jedoch nicht kurzfristig möglich. Es müssen zum Beispiel erst Genehmigungen eingeholt, Geräteführer angelernt und Landeplätze eingerichtet werden. Der hohe Aufwand erfordert langfristige Planungssicherheit für die Anwender. Der erste Einsatz von Drohnen auf einer kleinen Fläche im Moseltal ist für das Frühjahr 2024 geplant. Die wichtigste Maßnahme für das Überleben des Mosel-Apollofalters ist jedoch die Wiederherstellung seines ursprünglichen Lebensraums in den Flächen, welche an die Rebzeilen angrenzen. Dieser Lebensraum ist seit Beginn des 20. Jahrhunderts um die Hälfte geschrumpft. Solche Flächen können durch entsprechende Pflegemaßnahmen (z.B. Mahd, Beweidung) geschaffen werden. Hier sind regionale Akteure und die zuständigen Behörden des Bundeslandes gefragt. Auf kleinen Flächen wurden solche Schutzmaßnahmen bereits durchgeführt. Sobald wieder ausreichend Raum für den Arterhalt des Mosel-Apollofalters zur Verfügung steht, kann sich die Population erholen und wäre damit widerstandsfähiger gegen die Auswirkungen des Pflanzenschutzes. Dann könnte von den Auflagen zur Einhaltung von Mindestabständen beim Ausbringen von Pflanzenschutzmitteln voraussichtlich abgesehen werden. Auch eine Übertragung der Auflagen auf die schon früher genehmigten Mittel wäre dann nicht nötig. Die Ausbringung von Pflanzenschutzmitteln mit Luftfahrzeugen ist in Deutschland aufgrund der sehr hohen Abdrift in umliegende Flächen grundsätzlich verboten. Für den Anbau in Weinbausteillagen gelten jedoch Ausnahmeregelungen. Fungizide (Pflanzenschutzmittel gegen Pilzkrankheiten) dürfen hier mit Hubschraubern oder Drohnen ausgebracht werden. Im Jahr 2023 wurden die Rebflächen im Moseltal durchschnittlich acht Mal mit Fungiziden aus Luftfahrzeugen behandelt. Werden bei der Risikobeurteilung bestimmte Werte überschritten, kann ein Mittel nicht oder nur mit Auflagen zugelassen werden. Solche Auflagen können beispielsweise Mindestabstände zum Schutz angrenzender Naturräume sein. Die zu behandelnden Rebflächen an Steilhängen sind jedoch sehr schmal und die Übergänge zu den angrenzenden Naturräumen verlaufen nicht geradlinig. Bei Einhaltung der Mindestabstände unter solchen Gegebenheiten kann demnach ein großer Teil der Rebflächen, auf oder neben denen der Apollofalter vorkommt, nicht behandelt werden. Mehrjährige Untersuchungen in Rheinland-Pfalz zeigten in der Vergangenheit, dass, trotz der langjährigen Pflanzenschutzpraxis, die Bestände ausgewählter Tierarten in den Weinhängen stabil waren. Aufgrund dieser Tatsache hat das UBA bisher auf Abstandsauflagen verzichtet. Doch mit dem Bekanntwerden der drastischen Bestandseinbrüche des Apollofalters musste die bisherige Genehmigungspraxis in Frage gestellt werden. Weinbau an der Mosel (Rheinland-Pfalz, Saarland) hat etwas Besonderes. Es ist das weltweit größte Anbaugebiet, in dem Wein in extrem steilen Hanglagen kultiviert wird. Der Einsatz von Traktoren und anderer Technik ist in solchen Steillagen nicht möglich. Pflegearbeiten und Traubenernte sind mühsam und arbeitsaufwendig. Solche Produktionsbedingungen sind oft nicht mehr wirtschaftlich, deshalb wurden viele dieser Weinhänge aufgegeben. Doch gerade diese Hänge, mit ihren nach Süden ausgerichteten Trockenmauern und den freiliegenden Felsen, sind besonders wertvolle Lebensräume für wärmeliebende Tier- und Pflanzenarten. An solchen Steilhängen lebt auch der Mosel-Apollofalter ( Parnassius apollo vinningensis ), eine Unterart des Apollofalters. Der schöne Falter, 2024 zum Schmetterling des Jahres gekürt, ist endemisch. Das heißt, sein Vorkommen im unteren Moseltal ist weltweit das Einzige und Deutschland hat somit eine besondere Verantwortung für den Erhalt dieser Unterart. Deren Vorkommen beschränkt sich auf eine Fläche von ungefähr 400 Hektar. Davon werden 80 Hektar weinbaulich genutzt, das sind etwa ein Prozent der Weinbaufläche an der Mosel. Zum Überleben ist der Falter auf ganz bestimmte Pflanzen angewiesen. An den Felsen und auf den Trockenmauern findet er die wichtigste Futterpflanze für seine Raupen, die Weiße Fetthenne (Sedum album, auch Weißer Mauerpfeffer genannt). Der Falter ist in der europäischen Fauna-Flora-Habitat-Richtlinie (FFH-RL) im Anhang IV gelistet und somit „streng geschützt“. Laut Bundesnaturschutzgesetz § 44 Absatz 4 darf sich der Zustand der in Anhang IV gelisteten Arten durch eine Bewirtschaftung der Flächen nicht verschlechtern. Trotzdem gehen die Bestände des Mosel-Apollofalters stark zurück, an manchen Orten um bis zu 90 Prozent im Zeitraum von 1981 bis 2020. Insbesondere seit 2012 sinken die Bestände fortwährend dramatisch. Der Schmetterling ist auf der Roten Liste Deutschlands als „stark gefährdet” und auf der Roten Liste von Rheinland-Pfalz als „extrem selten“ eingestuft. Der Rückgang des Mosel-Apollofalters hat mehrere Ursachen, welche in ihrer Summe zum baldigen Aussterben dieser Unterart führen könnten. Eine Ursache ist der Verlust der Lebensräume des Falters. Wenn Weinbau in den Steillagen aufgegeben wird und die Flächen nicht durch Pflegemaßnahmen offengehalten werden, verbuschen diese und gehen dadurch als Lebensraum verloren. Als eine weitere Ursache wird der Klimawandel vermutet. Ist der Herbst zu warm, kann das zu einem früheren Schlupf der Raupen im Frühling führen. Ist der Frühling dann wiederum zu kalt, überleben das viele Raupen nicht. Zusätzlich wird der Apollofalter durch den Einsatz von Pflanzenschutzmitteln gefährdet. Im Weinbau führen insbesondere Pilzkrankheiten, wie zum Beispiel der Falsche Mehltau, zu hohen Ertragsverlusten. Deshalb werden die meisten Behandlungen mit Fungiziden durchgeführt. Einige der Mittel sind giftig für Arthropoden (das sind z.B. Käfer, Schmetterlinge, Spinnen) und damit auch für den Apollofalter. Würde man jedoch auf Fungizide verzichten, wäre der Weinbau aufgrund der geringen Erträge nur noch dann wirtschaftlich, wenn Verbraucher*innen den so angebauten Wein mit einem höheren Preis honorieren würden. Andernfalls wird die Bewirtschaftung der Flächen aufgegeben. Perspektivisch wäre der Umstieg auf neue pilzwiderstandsfähige Sorten (sogenannte PIWIs) eine Alternative. Eine solche Umstellung durch Neuanpflanzungen braucht jedoch Zeit. Der Mosel-Apollofalter profitiert also vom Offenhalten der Flächen durch den Weinbau, und der Weinbau braucht Fungizide, um wirtschaftlich produzieren zu können. Die Ausbringung von Fungiziden gefährdet aber, zusammen mit den anderen genannten Faktoren, die Bestände des streng geschützten Falters. Der Weinbau hat also gleichzeitig positive und negative Auswirkungen auf den Mosel-Apollofalter. Die Wiederherstellung der Lebensräume durch Biotoppflegemaßnahmen würde die Population des Mosel-Apollofalters widerstandfähiger gegen die Auswirkungen der Pflanzenschutzmittel machen. Zusammen mit einem Umstieg auf Drohnen bei der Ausbringung wäre zukünftig eine Verringerung beziehungsweise sogar ein Aussetzen der Mindestabstände möglich. Um gemeinsam tragfähige Lösungen zu erarbeiten, ist ein weiterer Dialog zwischen allen Akteuren, den Behörden von Bund und Ländern sowie den Winzer- und Naturschutzverbänden notwendig. So kann es gelingen, Weinbau und Artenschutz miteinander zu vereinbaren.
2-Mercaptobenzothiazol (2-MBT, CAS-Nr. 149-30-4) wird hauptsächlich als Vulkanisationsbeschleuniger in der Gummiherstellung eingesetzt. Darüber hinaus wird diese Substanz auch als Fungizid in Farben, Fasern oder zur äußeren Anwendung bei Tieren verwendet. Aufgrund des vielfältigen Einsatzes von 2-MBT in Verbraucherprodukten, darunter auch Babyschnuller, kommt es zur Exposition der Allgemeinbevölkerung. Zur toxikologischen Einschätzung einer möglichen körperlichen Belastung hat die HBM-Kommission HBM-Werte für 2-MBT im Urin von Kindern und Erwachsenen abgeleitet. Als Ausgangspunkt (point of departure, POD) für die HBM-Wert-Ableitung wurde der No Observed Adverse Effect Level (NOAEL) von 94 mg/kg KG/Tag aus einer subchronischen Studie an Mäusen nach oraler Gabe von 2-MBT herangezogen. Unter Berücksichtigung eines Gesamt-Assessmentfaktors von 350 ergibt sich für den Menschen ein Wert von 0,3 mg/kg Kg/Tag für die täglich tolerierbare Aufnahme. Unter der aus Tierversuchen hergeleiteten Annahme, dass neben 2-MBT ein erheblicher Anteil des aufgenommenen 2-MBT als Glucuronid im Urin ausgeschieden wird, sowie der Berücksichtigung der körpergewichtsproportionalen Urinmenge ergibt sich ein HBM-I-Wert für 2-MBT im Urin von Kindern von 4,5 mg/L und ein HBM-I-Wert für 2-MBT im Urin von Erwachsenen von 7 mg/L.Quelle: http://link.springer.com
Der Projekttyp enthält die Anlage und den Betrieb von Holz-Lagerplätzen, d. h. unbefestigten Flächen für die Zwischenlagerung bei der Holzernte und dem -verkauf. Sie werden nach logistischen Gesichtspunkten an Wirtschaftswegen angelegt. Hierzu gehören auch die zumeist flächenintensiven Lagerplätze außerhalb von Wäldern. Das Stammholz (Kurz- oder Langholz) wird nach dem Holzeinschlag oder der Fällung vom Hiebsort zum Aufbereitungs- und Lagerplatz gebracht. Die Holzbringung kann mit Rückefahrzeugen, Forwardern oder durch Treiben, Triften, Tragen, mit Rückegespannen, per Seilkran, Seilbahn oder Hubschrauber erfolgen. Die aufgearbeiteten Stammteile und -sortimente werden zumeist sortiert und auf Unterlagen in Holzstößen/Poltern aufgesetzt. Einschichtige Stammlagerung bei Wertholzverkäufen können vielfach größere Flächen in Anspruch nehmen als mehrschichtige Lagerung. Auch die Holzaufnahme erfolgt ggf. am Lagerplatz. Schließlich erfolgt die Verladung auf Zugmaschinen oder Abfuhrfahrzeugen für den Transport zum Abnehmer. Bei einem Erfordernis zu länger andauernder Holzlagerung können Maßnahmen zum Holzschutz erforderlich werden, wie z. B. - Nasslagerung, bei einer Berieselung mit Wasser, das z. B. aus einem unweit verfügbaren Gewässer entnommen und dorthin zurückgeführt wird oder - Polterspritzungen unter Anwendung von Holzschutzmitteln (Insektizide, Fungizide). Zur Vorbereitung der Flächen können die Flächenberäumung, ggf. Baumfällungen, Gewässer- oder Uferbaumaßnahmen und ggf. in hängiger Lage das Abschieben oder Planieren der oberen Bodenschicht gehören.
Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von proPlant Gesellschaft für Agrar- und Umweltinformatik mbH durchgeführt.
Das Projekt "Partner D" wird vom Umweltbundesamt gefördert und von Institut für Innovation, Transfer und Beratung gGmbH durchgeführt. Das Ziel des Projektes ist die Analyse und Bewertung unterschiedlicher Winterweizenanbausysteme (Ertrag, Resistenz) und Fungizidstrategien, basierend auf bestehende Daten und Feldexperimente unter besonderer Berücksichtigung ökonomischer, ökologischer und gesamtgesellschaftlicher Aspekte. Evaluierung bestehender Datenpools für Fungizidversuche an Winterweizen. Vergleich unterschiedlicher Züchtungsziele für Winterweizen in Freilandversuchen. Bestimmung von Qualitätsparametern und Rückstandsanalysen für PSM in Winterweizen. Erfassung der Kosten und Darstellung des Nutzens unterschiedlicher Anbausysteme und Fungizidstrategien auf betriebswirtschaftlicher und gesamtgesellschaftlicher Ebene.
Das Projekt "Einfluss der Fungizide auf die Dynamik von Epidemien" wird vom Umweltbundesamt gefördert und von Universität Gießen, Phytopathologie und Angewandte Entomologie in den Tropen und Subtropen durchgeführt. Der Einfluss der vier Fungizide Bayleton und Baytan sowie Calixin und Milstem auf Gerstenmehltauepidemien wird anhand der folgenden Zusammenhaenge ueberprueft: 1. Veraenderung der Alterszusammensetzung von Mehltaukolonien. 2. Klaerung der Frage, ob nach laengerer Anwendung unterschiedlich konzentrierter Fungizide (Fungizidstress) die Fitness der Konidien von Erysiphe graminis f.sp. hordei erhoeht oder vermindert wird - Durchfuehrung von Generationsversuchen. 3. Reaktionen der Erregerfitness nach einem ploetzlichen Absetzen der Fungizide - Generationsversuche. Auswertung anhand von Technicollabdruecken. 4.Ueberpruefung, wann mit oder ohne Fungizidwirkung der 'take off-level' der Epidemie stattfindet. Alle Klimaschrank- und Feldversuche werden an der mehltauanfaelligen So-Gerste CARINA bzw. ARAMIR durchgefuehrt.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Technik im Pflanzenbau durchgeführt. Ziel des Projektes ist die Entwicklung eines sensorbasierten Verfahrens zur zielflächenorientierten bedarfsgerechten Applikation von Fungiziden in Getreide. Unterschiedliche Bodenbedingungen innerhalb eines Feldes bedingen ein unterschiedliches Pflanzenwachstum. Bei der zielflächenorientierten Fungizidapplikation wird die Applikationsmenge entsprechend der Pflanzenoberfläche (Zielfläche für die Spritzbrühe) bzw. Biomasse bei konstanter Konzentration der Flüssigkeit im Spritzbehälter entsprechend den Vorgaben eines Kamerasensors während der Überfahrt variiert. Pflanzenoberfläche (Leaf Area Index, LAI) und oberirdische Biomasse sind für den zielflächenorientierten Pflanzenschutz wichtige Parameter, die positionsbezogen (GPS) mit Hilfe von Sensoren erfasst werden müssen. In den ersten beiden Vegetationsjahren 2013 und 2014 wurden Exaktversuche in Winterweizen zur Untersuchung der Korrelation des Merkmals Deckungsgrad der grünen Biomasse , der von einer 3-Chip-CCD-Multispektralkamera gemessen wurde, zum LAI und zur Biomasse durchgeführt. Mit Hilfe einer kameragesteuerten Feldspritze erfolgte auf Grund dieser Korrelation eine lineare Anpassung der Spritzmenge an den Sensorwert. Die durch den Kamerasensor gesteuerte Pflanzenschutzspritze wurde zur Fungizidapplikation in Winterweizen in der Saison 2014 und 2015 in Praxisversuchen getestet. Gegenüber einer praxisüblichen flächeneinheitlichen Fungizidapplikation beliefen sich die Fungizideinsparungen auf 8 % (2014) und 44 %, 45 % sowie 1 % in den drei durchgeführten Versuchen 2015. Es konnte kein erhöhtes Krankheitsauftreten in den mit dem Sensor gespritzten Varianten beobachtet werden. Die Praxisversuche werden im Jahr 2016 fortgesetzt. Bei dieser kleinräumigen Optimierung des Fungizideinsatzes in Getreide werden im Vergleich zu einer betriebsüblichen einheitlichen Applikation Pflanzenschutzmittel eingespart. Mit einer Tankfüllung der Feldspritze kann außerdem mehr Fläche behandelt werden. Damit wird eine Minderung der Maschinenkosten erreicht. Der Verbrauch von Kraftstoff wird gesenkt, da weniger Befüllfahrten notwendig sind. Die CO2-Bilanz des landwirtschaftlichen Produktionsprozesses wird verbessert.
Origin | Count |
---|---|
Bund | 59 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 54 |
Text | 4 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 4 |
offen | 55 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 60 |
Englisch | 10 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 2 |
Keine | 39 |
Webseite | 20 |
Topic | Count |
---|---|
Boden | 41 |
Lebewesen & Lebensräume | 60 |
Luft | 44 |
Mensch & Umwelt | 60 |
Wasser | 36 |
Weitere | 58 |