Bei Freisetzung transgener Pflanzen (Mais, Raps, Zuckerrueben) wird die Problematik des Gentransfers bearbeitet. Im Vordergrund stehen dabei Untersuchungen zum Pollentransfer und zur Stabilitaet von DNA in Boeden.
Die wichtigsten Aufgabenfelder im Saatgut- und Sortenwesen umfassen: ° die Überwachung und Vollzug der Saatgutverkehrsregelungen sowie der EU-Pflanzengesundheitsverordnung und des Gentechnikrechts. - insbesondere sind das die Saatgutanerkennung (Feldbestands- und Beschaffenheitsprüfung von Saat- und Pflanzgut) - die Saatgutverkehrskontrolle - der Nachkontrollanbau zur Nachprüfung anerkannter Saat- und Pflanzgutpartien hinsichtlich Sortenreinheit, Sortenechtheit und Gesundheitszustand - die Probenahme und Untersuchung von Saatgut im Rahmen des GVO-Monitorings der Bundesländer auf gentechnisch veränderte Organismen ° die unabhängige Sortenprüfung in den vorliegenden Boden-Klimaräumen und Veröffentlichung der Ergebnisse. - Prüfung neu zugelassener Sorten unter den sächsischen Bedingungen (Landessortenversuche) - Ermittlung von Ertrags-, Qualitäts- und Anbaueigenschaften in Exaktversuchen - Verrechnung und Auswertung der Ergebnisse (im Ostdeutschen Länderverbund) - Veröffentlichung von Sortenempfehlungen und Sortenprüfberichten in digitaler und gedruckter Form sowie auf Fachveranstaltungen für das Bundessortenamt, Züchter und Landwirte (im konventionellen und ökologischen Anbau)
Die Daten enthalten die Anbauflächen im Land Brandenburg, auf denen kein Anbau von gentechnisch verändertem Mais erfolgen darf. Sie dienen lediglich der Übersicht und besitzen keine Rechtsverbindlichkeit. Für die Anforderung rechtsverbindlicher Angaben sind ggf. Angaben des Antragstellers einzelfallbezogen erforderlich. Die Anbauflächen von GVO werden in einem zentralen Melderegister vom Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) als deskriptiver Datenbestand erfasst. Dieser Datenbestand lässt derzeit eine Visualisierung der Anbauflächen über ein GIS nicht zu. Das Bundesland Brandenburg beabsichtigt im Rahmen der Pflichten u.a. des Umweltinformationsgesetzes (UIG) diesen Datenbestand den Bürgern zugänglich zu machen. Des Weiteren soll ein auswertbarer geographischer Grundlagendatenbestand angelegt werden, der z.B. für Wirkungsabschätzungen (z.B. Umweltverträglichkeitsprüfungen) auf Schutzgebiete des Europäischen Schutzgebietssystems Natura 2000 vorbereitet. Die Daten enthalten die Anbauflächen im Land Brandenburg, auf denen kein Anbau von gentechnisch verändertem Mais erfolgen darf. Sie dienen lediglich der Übersicht und besitzen keine Rechtsverbindlichkeit. Für die Anforderung rechtsverbindlicher Angaben sind ggf. Angaben des Antragstellers einzelfallbezogen erforderlich. Die Anbauflächen von GVO werden in einem zentralen Melderegister vom Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) als deskriptiver Datenbestand erfasst. Dieser Datenbestand lässt derzeit eine Visualisierung der Anbauflächen über ein GIS nicht zu. Das Bundesland Brandenburg beabsichtigt im Rahmen der Pflichten u.a. des Umweltinformationsgesetzes (UIG) diesen Datenbestand den Bürgern zugänglich zu machen. Des Weiteren soll ein auswertbarer geographischer Grundlagendatenbestand angelegt werden, der z.B. für Wirkungsabschätzungen (z.B. Umweltverträglichkeitsprüfungen) auf Schutzgebiete des Europäischen Schutzgebietssystems Natura 2000 vorbereitet.
Das Projekt führt die Begleitforschung zu einem Freisetzungsexperiment mit transgenem Raps (BASTA-Gen) durch.
Das Ziel des Projektes Vorfahrt ist es, Technologien für am Markt konkurrenzfähige PV-Module auf der Basis von III-V Tandemsolarzellen für terrestrische Anwendungen zu entwickeln. Als signifikante Meilensteine der Zelltechnologie sind die Herstellung von III-V Mehrfachsolarzellen mit reduziertem Germaniumbedarf und sogar Solarzellen gänzlich ohne Germanium zu nennen. Zusätzlich sollen Technologien für eine automatisierbare Verschaltung und Einkapselung der III-V Solarzellen entwickelt werden. Um das Potential der Technologie zu zeigen, soll ein Weltrekord-Modul mit einer Effizienz = 33,3 % (AM1,5g) bei einer Fläche = 800 cm² hergestellt werden. Die entwickelten Technologien sollen in einem ersten Anwendungsfeld, der Luftfahrt, anhand eines Elektroflugzeuges evaluiert werden. Zusätzlich soll ein III-V PV Autodach als Demonstrator hergestellt werden und Konzepte zur weiteren Kostensenkung für den Fahrzeugmarkt identifiziert werden. Somit reicht das Projekt von der Forschung und Entwicklung neuer Solarzellen- und Modultechnologien bis hin zur Erprobung und Demonstration in naheliegenden Anwendungsfeldern.
Zuckerrüben sind zweijährige Pflanzen, die nach einer längeren Phase niedriger Temperaturen mit dem Schossen beginnen. Damit sind sie für eine Aussaat vor dem Winter ungeeignet. Schossresistente Winterrüben haben theoretisch ein deutlich höheres Ertragspotenzial und könnten so zu einer interessanten Alternative für die Rübenproduktion werden. Neulich wurden von uns zwei wesentliche Schossregulatoren identifiziert (BTC1 und BvBBX19). Vermutlich regulieren beide gemeinsam die Expression der stromabwärts gelegenen Blühgene BvFT1 und BvFT2. In diesem Projekt werden diese Schossregulatoren in Zusammenarbeit mit Projektpartnern im SPP1530 sowohl in Zuckerrübe als auch in transgenen Arabidopsis-Pflanzen funktionell analysiert. Während BTC1-überexprimierende Zuckerrüben mit einer Transgen-Kopie nach Winter schossen, ist in transgenen Pflanzen mit größer als 1 Kopie die BTC1-Expression nahezu vollständig herunterreguliert, so dass diese auch nach Winter nicht schossen. Als Grund vermuten wir Cosuppression des nativen Gens durch die neu hinzugefügten Kopien. Diese Ergebnisse stellen eine gute Grundlage für die Züchtung von Winterzuckerrüben dar. Innerhalb dieses Projektes werden Hybriden erzeugt, die über zwei BTC1- Transgene verfügen und in denen durch Cosuppression die Expression aller BTC1-Kopien stark herunter reguliert wird. Im Folgenden werden diese Hybriden in der Klimakammer, im halboffenen Gazehaus sowie unter Feldbedingungen über Winter angebaut. Parallel dazu werden in einem zweiten Experiment doppelt rezessive btc1 und Bvbbx19 Zuckerrüben mit einer deutlich ausgeprägten Schossverzögerung nach Winter erzeugt. Da diese Pflanzen nicht transgen sind, können sie ohne weiteres von Züchtern genutzt werden. Darüber hinaus ziehen wir Zuckerrüben unter standardisierten Bedingungen in einer Klimakammer an, um aus den Sproßmeristemen RNA zu isolieren. Diese Arbeiten sind Grundlage für ein Phylotranskriptom-Experiment, welches von dem Partner Prof. I. Grosse im Rahmen des SPP 1530 koordiniert wird.
Das Ziel des Projektes Vorfahrt ist es, Technologien für am Markt konkurrenzfähige PV-Module auf der Basis von III-V Tandemsolarzellen für terrestrische Anwendungen zu entwickeln. Als signifikante Meilensteine der Zelltechnologie sind die Herstellung von III-V Mehrfachsolarzellen mit reduziertem Germaniumbedarf und sogar Solarzellen gänzlich ohne Germanium zu nennen. Zusätzlich sollen Technologien für eine automatisierbare Verschaltung und Einkapselung der III-V Solarzellen entwickelt werden. Um das Potential der Technologie zu zeigen, soll ein Weltrekord-Modul mit einer Effizienz = 33,3 % (AM1,5g) bei einer Fläche = 800 cm² hergestellt werden. Die entwickelten Technologien sollen in einem ersten Anwendungsfeld, der Luftfahrt, anhand eines Elektroflugzeuges evaluiert werden. Zusätzlich soll ein III-V PV Autodach als Demonstrator hergestellt werden und Konzepte zur weiteren Kostensenkung für den Fahrzeugmarkt identifiziert werden. Somit reicht das Projekt von der Forschung und Entwicklung neuer Solarzellen- und Modultechnologien bis hin zur Erprobung und Demonstration in naheliegenden Anwendungsfeldern.
Eine Infektion mit Krankheitserregern oder eine Behandlung mit bestimmten Chemikalien (z.B. Salicylsäure) induziert in Pflanzen einen physiologischen Zustand, der 'Priming' genannt wird. Im 'geprimten' Zustand können Pflanzen ihre Abwehrreaktionen bei einer Folgeattacke schneller aktivieren. Dadurch kommt es oft zur Krankheitsresistenz. Erst kürzlich haben wir gefunden, dass die Mitogen-aktivierten Proteinkinasen MPK3 und MPK6 und die Proteine CALRETICULIN 3 (CRT), LUMINAL BINDING PROTEIN 2 (BIP) und SHEPHERD (SHD) beim 'Priming' in der Modellpflanze Arabidopsis thaliana eine wichtige Rolle spielen. Das Protein EDR1 dagegen unterdrückt das 'Priming'. Um diese Ergebnisse aus der Grundlagenforschung in der Praxis anzuwenden, werden wir mit der BASF Plant Science GmbH Gene für MPK3, MPK6, CRT3, BIP2 und SHD in der wichtigen Kulturpflanze Sojabohne überexprimieren und die Expression des EDR1-Gens gezielt ausschalten. Dadurch sollen Sojapflanzen entwickelt werden, die eine erhöhte Krankheitsresistenz besitzen und damit zur Steigerung der globalen Sojaproduktion beitragen. Das Vorhaben soll auch auf die Grundlagenforschung zurückwirken. Dies indem wir Sojapflanzen bereitstellen, in denen die Substrate von Mitogen-aktivierten Proteinkinasen und ihren Kinase-Kinasen identifiziert werden können.
Wir möchten grundlegende Mechanismen der quantitativen Resistenz und Anfälligkeit gegen den Echten Gerstenmehltau aufklären. Wir werden die Daten aus unseren vorläufigen und geplanten Transkriptomanalysen nutzen, um die Funktion von Genen zu analysieren, die in Elternpflanzen und RACB-transgenen Pflanzen mit entweder erhöhter oder erniedrigter Anfälligkeit differenziell experimiert sind. Die Modifikation der Zellwand und der Zellzyklus stehen dabei bereits jetzt im Fokus unseres Interesses. Um ein tiefgehendes Verständnis der Transkriptionsmuster zu erlangen, nutzen wir Ansätze der reversen Genetik, Metabolismusstudien und Zellbiologie in unterschiedlichen Gerstengenotypen.
Biosynthetische Polymere werden in zunehmender Zahl und Menge eingesetzt und sind aus vielen Bereichen des Alltags nicht mehr wegzudenken. Waren es frueher vorwiegend von hoeheren Lebewesen synthetisierte Polymere, so gewinnen nun von Mikroorganismen synthetisierte Polymere als Werkstoffe sowie als Hilfs- und Nebenstoffe an Bedeutung. Mikroorganismen synthetisieren in vielfaeltiger Form Polymere fuer technische Anwendungen. Die meisten technisch genutzten mikrobiellen Polymere werden heute als Hilfs- und Nebenstoffe eingesetzt, einige auch direkt zu Werkstoffen verarbeitet. Mikrobielle Polymere werden als Rohstoffe zu anderen Werkstoffen oder Hilfs- und Nebenstoffen verarbeitet oder dienen als Ausgangsmittel fuer weitere chemische Synthesen. Der Einsatz von Mikroorganismen bei der biotechnologischen Produktion von Polymeren ermoeglicht haeufig die Nutzung nachwachsender Rohstoffe als Substrate und Kohlenstoffquelle fuer die Produktion wie zB die Nutzung pflanzlicher Photosynthetate, die von der Land- und Forstwirtschaft in grossen Mengen bereitgestellt werden koennen. Die Kenntnis der Biosynthesewege fuer Polymere in Bakterien in Verbund mit der Gentechnik ermoeglicht zudem die Erzeugung transgener Pflanzen, die zur Produktion neuer Polymere anstelle von Bakterien herangezogen werden koennen. 1) Biosynthese von Polyestern: Mikrobielle, aus Hydroxyfettsaeuren aufgebaute Polyester (PHF) machen seit einigen Jahren als neue biologische abbaubare Werkstoffe von sich reden. Neben 3-Hydroxybuttersaeure sind mittlerweile mehr als 100 verschiedene Hydroxyfettsaeuren als Bausteine von PHF bekannt. Seit ca 10 Jahren wird in der Arbeitsgruppe die Biosynthese dieser wasserunloeslichen Polyester untersucht. Als Modellorganismen dienten zunaechst Alcaligenes eutrophus und Pseudomonas aeruginosa; Rhodococcus ruber und zahlreiche anoxygene phototrophe Bakterien wie zB Chromatium vinosum wurden spaeter ebenfalls untersucht. Diese Untersuchungen haben zur Aufklaerung von Biosynthesewegen der PHF und zur Entdeckung neuer Bausteine von PHF sowie zur Klonierung und Ermittlung der Primaerstrukturen des Schluesselenzyms PHF-Synthase aus ca 20 Bakterien beigetragen. Durch Screening nach neuen Wildtypen, durch Verwendung von Mutanten und mit gentechnischen Methoden gelang es, Polyester mit ungewoehnlichen Hydroxyfettsaeuren aus einfachen Kohlenstoffquellen verfuegbar zu machen. In Zusammenarbeit mit Industriepartnern und gefoerdert durch das BMBF und das BML sollen Reststoffe, Kohlen und nachwachsende Rohstoffe fuer die Produktion dieser Polyester erschlossen werden. Ein Biotechnikum mit Bioreaktoren von 1 bis 20 l Nutzvolumen, welches demnaechst durch einen Anbau und einen Bioreaktor von 450 L Nutzvolumen erweitert wird, erlaubt die Herstellung von Polymermustern zur Ermittlung der Materialeigenschaften durch hieran interessierte Kooperationspartner. Ferner kommt der Zusammenarbeit mit Pflanzengenetikern, die Gene fuer PHF Biosynthese aus Bakterien in Pflanzen ...
Origin | Count |
---|---|
Bund | 1185 |
Kommune | 2 |
Land | 51 |
Wirtschaft | 2 |
Wissenschaft | 45 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 12 |
Ereignis | 13 |
Förderprogramm | 1085 |
Gesetzestext | 3 |
Messwerte | 11 |
Strukturierter Datensatz | 11 |
Text | 74 |
Umweltprüfung | 3 |
unbekannt | 68 |
License | Count |
---|---|
geschlossen | 78 |
offen | 1127 |
unbekannt | 65 |
Language | Count |
---|---|
Deutsch | 1159 |
Englisch | 232 |
Resource type | Count |
---|---|
Archiv | 38 |
Bild | 1 |
Datei | 57 |
Dokument | 52 |
Keine | 800 |
Unbekannt | 3 |
Webseite | 414 |
Topic | Count |
---|---|
Boden | 796 |
Lebewesen & Lebensräume | 1159 |
Luft | 575 |
Mensch & Umwelt | 1262 |
Wasser | 529 |
Weitere | 1227 |