Ziele des Vorbundprojektes ist die Entwicklung und Adaption eines neuartigen Hochdrehzahl-Turboexpander-Generators mit zugehöriger Steuerungselektronik in einem Hybridfahrzeug mit Ottomotoren-Range-Extender sowie dessen Aufbau und der Nachweis der Funktionalität des Systems in einem Opel Ampera. Im Teilvorhaben soll die Integration des Hochdrehzahl-Turboexpander-Generators in den Versuchsträger mit Analyse und Optimierung der Gesamtwirkungsgradkette des Antriebsstrangs durchgeführt werden. In AP1 'ERMITTELUNG DER SYSTEMDATEN UND SYSTEMEIGENSCHAFTEN' werden die Systemdaten des Basissystems ermittelt um diese im weiteren Projektverlauf mit denen des modifizierten Antriebsstrangs in Relation zu setzen. Des Weiteren wird der Aufbau benötigt um die Randbedingungen für die Entwicklung der Turbine zu liefern und ein Gesamtmodell des Systems zu erstellen, an dem in AP2 'COMPUTERSIMULATION UND ANALYSE DER WIRKUNGSGRADKETTE DES GESAMTSYSTEMS (PARAMETERSTUDIEN)' Parametervariationen gerechnet werden um ein Wirkungsgradoptimum zu erreichen. Die Simulationen werden kontinuierlich am Prüfstand verifiziert. Darüber hinaus werden in AP2 Steuerungs- und Regelungsfunktionen zum Betrieb des Systems für ein Rapid-Prototyping Steuergerät entworfen, welche den Betrieb am Prüfstand und im Fahrzeug ermöglichen und optimieren. Die Ergebnisse von AP1 und gehen direkt in die anschließenden Entwicklungen der TU Kaiserslautern, der TTI GmbH und der KSB AG ein. In AP3 'INTEGRATION DES HDTGSYS PROTOTYPEN AM AMPERA-MOTOR' wird der Hochdrehzahl-Turboexpander-Generator am Motorprüfstand in der Ruhr-Universität aufgebaut und mit den Ergebnissen aus AP2 in Betrieb genommen. Nach Inbetriebnahme wird das Potential des Systems am Motorprüfstand bestimmt. In AP4 'FAHRZEUGINTEGRATION' wird das System in den in AP1 vermessenen Versuchsträger integriert und das Systempotential im Fahrzeug auf einem Rollenprüfstand und in realen Straßenzyklen bestimmt.
ARROWS proposes to adapt and develop low cost autonomous underwater vehicle technologies to significantly reduce the cost of archaeological operations, covering the full extent of archaeological campaign. Benefiting from the significant investments already made for military security and offshore oil and gas applications, the project aims to demonstrate an illustrative portfolio of mapping, diagnosis and excavation tasks. ARROWS approach is to identify the archaeologists requirements in all phases of the campaign, identify problems and propose technological solutions with the technological readiness levels that predict their maturation for exploitation within 3-5 years. The individual technologies are then developed during the course of the project using agile development method comprising rapid cycles of testing and comparison against the end user requirements. To ensure the wide exploitability of the results the requirements are defined and the solutions are tested in two historically significant but environmentally very different contexts, in The Mediterranean Sea and in The Baltic Sea. Both immediate, low risk and long term, high risk developments will be pursued. In particular: - Fast a low cost horizontal surveys of large areas using customised AUVs with multimodal sensing. - Fast and low cost semi-automated data analysing tools for site and object relocation - High quality maps from better image reconstruction methods and better localization abilities of AUVs. - Shipwreck penetration and internal mapping using small low cost vehicles localising using fixed pingers. - Soft excavation tool for diagnosis and excavation of fragile objects. - Mixed reality environments for virtual exploration of archaeological sites. - Monitoring of changes via back-to-the-site missions. The ARROWS consortium comprises expertise from underwater archaeology, underwater engineering, robotics, image processing and recognition from academia and industry.
The biochar technology has been recently proposed as one of the most promising technology to mitigate climate change as well as improve agricultural systems. It consists in producing a gas usable as energy and a specific char as by-product out of organic wastes. The char (named biochar) is known to improve soil fertility, retain nutrients and moisture and increase yield when applied to soil. In addition, biochar is rich in carbon (C) and resistant to degradation and thus sequester C in soil and reduce CO2 fluxes (greenhouse gas) to the atmosphere. Biochar technology is therefore considered carbon negative and cheap, and thus raises many expectations in terms of poverty reduction in smallscale farms. This is of particular interest in areas where agriculture is an important economic sector and agricultural and organic wastes are produced in abundance, for instance small scale farming practices in Indian villages. If the theory is well established, evidence that this system can be implemented successfully and is sustainable in reality are virtually absent. In particular, two questions that need attention before implementation of such technology are, 1. what are the physical factors one should considered before introducing this kind of technology in the field for instance, type of soil, climatic conditions and type of cultivation (physical geography aspects)? Which agricultural systems can take advantage from biochar application? 2. what are the social structures that would welcome favorably such kind of structures (human geography aspects)? This innopool proposal is a feasibility study which aims to select the right location from the physical and social point of view to start a large case study research project where a biochar production unit will be introduced in a village of India.
Eine an der TU Dresden entwickelte und patentierte Kombination von Expansions- und Kompressionsmaschine ist in der Lage, die bei der Entspannung gewonnene Arbeit in einer Kompressionsstufe direkt dem Prozess zurückzuführen. Durch diese Maßnahme ist es möglich, den Verbrauch der Anlage an Primärenergie deutlich zu reduzieren. Im Rahmen dieser Arbeit soll eine Schaltungsvarianten sowie ein Regelkonzept zur Einbindung der Expander / Kompressoreinheit in den Prozess gefunden werden.
Objective: Natural gas is piped into the glass works at an average of 50 bars. Pressure in the network is 3.2 bars absolute. Is was the aim of the project to transform the unused exergetic pressure gradient released during pressure reduction into useful energy. General Information: Natural gas is piped into the works at an average pressure of 50 bar. The pressure in the operating network is 3.2 bar. Two pressure reduction units, operating in parallel, were previously used, each with an average throughput of 7500 m3 STP/h. In order to transform the unused exergetic pressure gradient into useful energy a gas expansion motor was installed to drive a screw-type air compressor. This motor fulfills the function of the pressure reduction units which now serve only for reserve. The gas expansion motor, which has a nominal rating of 610 kW, is a four-cylinder double-acting double-expansion steam-piston machine manufactured by Spillingwerk, Hamburg. The screw-type air compressor is a series-production unit, fitted with a gear of appropriate ratio (air input of 6550 m3/h at 1 bar, 40 deg.C: output after cooler 3 bar at 60 deg.C). The total system includes a waste heat recovery system which consists of a closed water circuit with a freezing mixture heat exchanger (426kW, 30 deg.C) for the air suction cooling unit (in Summer), the compressed air cooler (426 kW, 82 deg.C), a steam/water heat exchanger (155 kW, 105 deg.C), and the high and medium pressure preheaters by which the gas streams entering the motor are heated up to 100 deg.C and the water cooled down to 25 deg.C. Achievements: The plant has run three years under load. During this period the average quantity of compressed air was 5 180 m3 STP/h with a required power of 440 kw. This gives an energy saving of 3.34x10.6 kwh/year as compared with an electric motor drive operating 8 000 hours per year. The plant availability is above 90 per cent. The capital payback period is 1,6 years. This type of plants can be recommended in the case of comparable preconditions. This means at continous natural gas supply at constant pressure.