<p>Was kann ich selbst für den Klimaschutz tun? Der CO₂-Rechner liefert Antworten auf diese Frage, indem er die Möglichkeit bietet, den eigenen CO₂-Fußabdruck zu berechnen und so mögliche Einsparpotenziale zu erkennen. Im März 2024 wurde die Berechnung für das Heizen mit Holz im Rechner angepasst. Im Folgenden beantwortet das Umweltbundesamt (UBA) die am häufigsten hierzu gestellten Fragen.</p><p>1 Holzenergie im UBA-CO₂-Rechner</p><p>1.1 Warum wurde die Berechnung für Holzbrennstoffe im CO₂-Rechner angepasst?</p><p>Holz ist ein wertvoller, nachwachsender und begrenzt verfügbarer Rohstoff, der vielfältige Eigenschaften und Anwendungsfelder hat. Wälder und Holz sind wichtige Speicher für CO2. Zudem konkurrieren zahlreiche Anwendungen um die Nutzung von Holz, z. B. der Bau, die Möbel- und Papierherstellung, Anwendungen in der Industrie und schließlich die Heizenergiegewinnung.</p><p>Auch durch den schrittweisen Ausstieg aus der Verbrennung von Kohle, Öl und Gas steigt der Bedarf nach Holz weltweit an, während der Waldbestand weiter zurückgeht. Mit dem CO2-Rechner möchte das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> Transparenz für Verbraucherinnen und Verbraucher schaffen, indem Umweltauswirkungen und mögliche Preisrisiken der Nutzung von Holz als Brennstoff gemäß wissenschaftlicher Erkenntnisse sichtbar gemacht werden.</p><p>1.2 Wie wird die Höhe des CO₂-Ausstoßes für Holzenergie durch das UBA ermittelt und festgelegt?</p><p>Die Emissionsfaktoren für Holzbrennstoffe setzen sich wie folgt zusammen: Erstens aus den Treibhausgasemissionen, die durch den Energieeinsatz für Ernte und Transport des Holzes sowie für weitere Herstellungsschritte entstehen (indirekte Emissionen). Diese Berechnung erfolgt auf der Basis durchschnittlicher Wegelängen und üblicherweise genutzter Technik und Verfahren. Zweitens aus Treibhausgasemissionen, die direkt bei der Verbrennung entstehen (direkte Emissionen). Diese ergeben sich aus dem Kohlenstoffgehalt des Holzes und schwanken geringfügig nach Art des Holzes.</p><p>Für Holz aus Garten- und Landschaftspflege werden die direkten CO2-Emissionen aus der Verbrennung mit null angesetzt, weil davon ausgegangen wird, dass dieses Holz zeitnah verrotten und somit das CO2 auch ohne weitere Nutzung freigesetzt werden würde. Vor dem Hintergrund steigender Bedarfe im Gartenbau (z. B. als Torfersatz) sowie absehbar neuer Nutzungspfade (z. B. als Rohstoff in sogenannten Bioraffinerien oder für die Pflanzenkohlenherstellung) wird allerdings diese Annahme in Zukunft kritisch zu diskutieren sein.</p><p>1.3 Mit welchen Werten rechnet der CO₂-Rechner beim Heizen mit Holzbrennstoffen und mit welchen Werten bei anderen Brennstoffen wie Erdgas oder Erdöl?</p><p>Beim CO2-Rechner werden grundsätzlich sowohl die direkten Emissionen von Brennstoffen als auch die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Vorkette#alphabar">Vorkette</a> (Herstellung, Transport) betrachtet. Zudem werden neben CO2 auch weitere Treibhausgase wie Methan und Lachgas berücksichtigt. Die einzelnen Emissionsfaktoren lassen sich direkt im <a href="https://uba.co2-rechner.de/de_DE/">UBA-CO2-Rechner</a> durch die Eingabe der Verbräuche herauslesen. Normiert auf die Einheit kWh ergeben sich die in der Tabelle aufgeführten Werte für die unterschiedlichen Brennstoffe.</p><p><strong>Wichtig zu beachten:</strong> Die hohen Werte für Holzbrennstoffe dürfen nicht darüber hinwegtäuschen, dass Öl- und Gasheizungen keine Alternative für Holzheizungen sind. Ein Ausstieg aus Öl und Gas ist zur Erreichung der Klimaneutralitätsziele unabdingbar und dementsprechend auch im <a href="https://www.umweltbundesamt.de/bild/das-gebaeudeenergiegesetz-ihr-weg-zu-einer-heizung/">Gebäudeenergiegesetz (GEG)</a> verankert. Laut dem GEG gibt es ein Betriebsverbot für Heizkessel mit fossilen Brennstoffen ab dem 1. Januar 2045. Ab Mitte 2026 bzw. Mitte 2028 sind Heizkessel mit fossilen Brennstoffen nur noch in Kombination mit mindestens 65 Prozent erneuerbaren Energien oder, unter bestimmten Umständen, als Übergangslösung zulässig. Bereits heute neu installierte Gas- oder Ölkessel müssen ab 2029 einen steigenden Anteil erneuerbarer Energien im Brennstoff nachweisen.</p><p>Das UBA sieht in Wärmepumpen und Wärmenetzen die vielversprechendsten Heiztechniken. Viele nützliche Hinweise und Empfehlungen zur Wahl der für Ihr Haus passenden Heiztechnik finden Sie in unserem Umwelttipp „<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/heizungstausch">Heizungstausch</a>“.</p><p>1.4 Ist eine Holzheizung klimafreundlich, wenn man sie mit Holz vom eigenen Grundstück betreibt (etwa aus Pflegeschnitten oder von abgestorbenen Bäumen)?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-CO2-Rechner bietet für Holz aus Garten- und Landschaftspflege eine eigene Kategorie zur Auswahl an. Hierbei werden die direkten CO2-Emissionen aus der Verbrennung weiterhin mit null angesetzt, da davon ausgegangen wird, dass es für dieses Holz keine andere wirtschaftliche Verwertung gibt und die CO2-Emissionen ansonsten durch Verrottung zeitnah freigesetzt würden.</p><p>Umwelttipps zum Heizen mit und zu Luft- und Gesundheitsbelastungen finden Sie auch in den UBA-Umwelttipps unter der Rubrik <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen">Heizen & Bauen</a> nützliche Hinweise zum Betrieb von Holzheizungen: <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/pelletkessel">Pelletkessel</a>, <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/pelletofen">Pelletofen</a> und <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/kaminofen/">Kaminofen</a>. Infos finden Sie auch in unserem Ratgeber „<a href="https://www.umweltbundesamt.de/publikationen/heizen-holz/">Heizen mit Holz</a>“ oder in unserem Flyer „<a href="https://www.umweltbundesamt.de/publikationen/heizen-holz-wenn-dann-richtig/">Heizen mit Holz: Wenn, dann richtig!</a>“.</p><p>Die Nutzung von <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Totholz#alphabar">Totholz</a> aus dem Wald wird übrigens nicht empfohlen. Insbesondere stehendes Totholz ist für ein gesundes Wald-<a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kosystem#alphabar">Ökosystem</a> besonders wichtig. Daher sollten einzelne abgestorbene Waldbäume nur im Notfall (z. B. zur Schadabwehr) gefällt werden.</p><p>1.5 Werden für die Produktion von Pellets weitgehend Sägeabfälle aus der Holzindustrie benutzt, die sonst verrotten und das gespeicherte CO₂ freisetzen würden? </p><p>Sägenebenprodukte wie Holzspäne finden Verwendung u. a. in Spanplatten, in der Zellstoffherstellung, im Gartenbau oder eben auch in der Pelletherstellung. Es handelt sich demnach nicht um Abfälle, die sonst ungenutzt verrotten würden, sondern um Rohstoffe mit einem wirtschaftlichen Wert für verschiedene Anwendungen.</p><p>Dieser Wert spiegelt sich in einem entsprechenden Marktpreis wider, der deutlich macht, dass die Verfügbarkeit des Rohstoffs begrenzt ist. Die werkstoffliche Nutzung der Sägenebenprodukte ersetzt neu eingeschlagenes Holz sowohl für kurzlebige Produkte (Zellstoff) als auch für langlebige Produkte (Möbel, Baustoffe). Auch Sägeabfälle können so in langlebigen Produkten den holzbasierten CO2-Produktspeicher erhöhen.</p><p>Die Ausweisung der direkten CO2-Emissionen im CO2-Rechner ermöglicht es, die unterschiedlichen Nutzungsmöglichkeiten von Sägenebenprodukten in Bezug auf ihr Klimaschutzpotenzial miteinander zu vergleichen.</p><p>1.6 Stimmt es, dass bei der Verbrennung von Holz nur das CO₂ frei wird, das zuvor durch die Bäume gebunden wurde? </p><p>Holz ist ein nachwachsender Rohstoff. Er benötigt allerdings Zeit zum Wachsen. Ein Baum ist in der Regel erst nach rund 80 Jahren „erntereif“. Wird dieser Baum verbrannt, wird das über Jahrzehnte gespeicherte CO2 sofort frei und erhöht damit die CO2-Konzentration der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>. Es dauert Jahrzehnte, bis an gleicher Stelle dieses CO2 wieder gebunden wird.</p><p>Lange Zeit wurde davon ausgegangen, dass das CO2 zwar nicht an der gleichen Stelle, aber durch den Zuwachs des gesamten Waldes erneut zeitnah gebunden würde. Daraus entwickelte sich die Konvention, CO2-Emissionen, die beim Verbrennen von Holz entstehen, mit den durch allgemeinen Waldzuwachs gebundenen CO2-Emissionen pauschal zu verrechnen und auszugleichen. Aus fachlicher Perspektive sprechen jedoch mehrere Gründe gegen diese Berechnung:</p><p>Vor diesem Hintergrund folgt der CO2-Rechner einer Grundregel, die auch für ökonomische Bilanzen gilt: Ausgaben (hier: CO2-Emissionen) und Einnahmen (hier: CO2-Bindung) werden nicht vorab verrechnet, sondern getrennt in der Bilanz ausgewiesen, damit wichtige Informationen transparent zugänglich sind. Daher weist der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-CO2-Rechner z. B. Flugemissionen auch dann aus, wenn diese kompensiert wurden.</p><p>1.7 Ist die CO₂-Neutralität von Holzenergie in EU- und deutschem Recht verankert? Verstößt der CO₂-Rechner gegen geltendes Recht?</p><p>Die Ausweisung von Verbrennungsemissionen in einem Informations- und Bildungstool widerspricht nicht geltendem Recht. Der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-CO2-Rechner fällt nicht unter den Anwendungsrahmen der Richtlinie 2018/2001 des Europäischen Parlaments zur Förderung der Nutzung von Energie aus erneuerbaren Quellen und der darauf aufbauenden Berechnung der Emissionsbilanz erneuerbarer Energieträger. Im Rahmen der internationalen Treibhausgasbilanzierung ist das UBA sogar gesetzlich verpflichtet, Verbrennungsemissionen und Einbindungen von CO2 getrennt zu erfassen und zu betrachten.</p><p>Im Bundes-Klimaschutzgesetz sind die Ziele für die Sektoren <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzung#alphabar">Landnutzung</a>, <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Landnutzungsnderung#alphabar">Landnutzungsänderung</a> und Forstwirtschaft (<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) verbindlich festgelegt. Demnach sollen bis zum Jahr 2030 jährlich mindestens 25 Mio. t CO2-Äquivalente (CO2e), bis zum Jahr 2045 mindestens 40 Mio. t CO2e aus der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> durch den Sektor LULUCF zurückgeholt werden. Damit steigen die Anforderungen an die Leistung des Waldes als CO2-Senke. Deutsche Wälder müssen demnach mehr CO2-Emissionen einbinden als emittieren. Daraus folgt, dass ein „klimaneutraler“ Wald den gesetzlichen Vorgaben nicht mehr genügt.</p><p>1.8 Ist das UBA grundsätzlich gegen die Bewirtschaftung von Wäldern und die Ernte von Holz?</p><p>Das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> befürwortet eine nachhaltige und naturnahe Bewirtschaftung von Wäldern. Aus Klimaschutzsicht gibt es zwei zentrale Herausforderungen: Erstens die Stärkung der Wälder als Kohlenstoffsenke, wie sie das Bundes-Klimaschutzgesetz (KSG) vorgibt. Zweitens die Erhöhung der Widerstandsfähigkeit unserer Wälder gegenüber den Folgen des Klimawandels (Erhöhung der Klimaresilienz).</p><p>Laut Bundes-Klimaschutzgesetzes müssen bis 2030 mindestens 25 Mio. t CO2, bis 2035 mindestens 35 Mio. t CO2 und bis 2045 mindestens 40 Mio. t CO2 durch die Ökosysteme (u. a. Wälder, Moore und Grünflächen) eingespeichert werden. Dies ist ein gesetzliches Ziel, genauso wie die Treibhausgasminderung in anderen Sektoren wie der Energiewirtschaft oder Industrie. Im Bereich der Wälder kann dies durch naturnahe Waldbewirtschaftung, Waldzuwachs und Waldumbau mit möglichst hohem Struktur- und Artenreichtum gelingen. Auch braucht es mehr geschützte Waldbestände.</p><p>Ein weiteres wichtiges Handlungsfeld ist die Speicherung von Kohlenstoffvorräten in Holzprodukten. Denn CO2 wird nicht nur im Wald und im Waldboden, sondern auch in Holzprodukten gespeichert (Produktspeicher). Es ist daher sinnvoll, den wertvollen Rohstoff Holz möglichst lange und mehrfach zu nutzen (Kaskadennutzung), indem er beispielsweise zunächst stofflich als Baustoff genutzt und erst später nach möglichst weiteren Nutzungen als Altholz zur Wärmegewinnung in dafür geeigneten Kraftwerken verbrannt wird. Dies gilt auch für Sägenebenprodukte und die Weiternutzung eines beträchtlichen Anteils des Altholzaufkommens.</p><p>Für das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> ist es wichtig, den gesamten CO2-Speicher „Holz“ (inklusive der Holzprodukte) zu stabilisieren und systematisch zu vergrößern. Hierzu braucht es sowohl Maßnahmen auf der Ebene des Waldspeichers als auch auf der Ebene des Holzproduktspeichers. In unseren Hintergrundpapieren „<a href="https://www.umweltbundesamt.de/publikationen/umweltschutz-wald-nachhaltige-holznutzung-2021/">Umweltschutz, Wald und nachhaltige Holznutzung in Deutschland</a>“ und „<a href="https://www.umweltbundesamt.de/publikationen/netto-null-in-2045-ausbau-der-senken-durch/">Netto-null in 2045: Ausbau der Senken durch klimaresiliente Wälder und langlebige Holzprodukte</a>“ finden sich ausführliche Empfehlungen für eine nachhaltige und umweltfreundliche Forst- und Holzwirtschaft.</p><p>2 Praktische Fragen rund ums Heizen mit Holzenergie</p><p>2.1 Haben die CO₂-Emissionsfaktoren für Holzbrennstoffe im CO₂-Rechner Folgen für den Betrieb meiner Holzheizung?</p><p>Nein, der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-CO2-Rechner ist ein Informations- und Bildungstool und hat keine rechtliche Wirkung auf den Betrieb Ihrer Heizung. Wenn Sie mit Holz heizen, müssen Sie die Anforderungen der <a href="https://www.gesetze-im-internet.de/bimschv_1_2010/">Verordnung über kleine und mittlere Feuerungsanlagen (1. BImSchV)</a> erfüllen, die u. a. Grenzwerte für die Luftschadstoffemissionen von Heizkesseln und Einzelraumheizungen enthält. Die Einhaltung der gesetzlichen Anforderungen wird von den Schornsteinfeger*innen kontrolliert.</p><p>Beachten Sie hierzu auch unsere Umwelttipps zu <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/pelletkessel">Pelletkessel</a>, <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/pelletofen">Pelletofen</a> und <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/kaminofen/">Kaminofen</a>. Viele Infos finden Sie auch in unserem Ratgeber „<a href="https://www.umweltbundesamt.de/publikationen/heizen-holz/">Heizen mit Holz</a>“ oder in unserem Flyer „<a href="https://www.umweltbundesamt.de/publikationen/heizen-holz-wenn-dann-richtig/">Heizen mit Holz: Wenn, dann richtig!</a>“.</p><p>Wenn Sie einen Austausch der Heizung oder einen Neubau planen, finden Sie wertvolle Tipps auf unserer Seite zum <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/heizungstausch/">Heizungstausch</a> sowie in unserem <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/umgebungswaerme-waermepumpen/so-gehts-mit-waermepumpen/">Portal zu Wärmepumpen</a>. Das Umweltbundesamt empfiehlt die Installation eines Heizsystems, das keine Brennstoffe benötigt (also ohne Gas, Öl, Holz auskommt).</p><p>2.2 Sollten Heizungen, die mit Holzbrennstoffen betrieben werden, zeitnah wieder ausgebaut werden, auch wenn sie noch funktionieren?</p><p>Eine funktionierende Heizung mit Holzbrennstoffen, die den gesetzlichen Anforderungen entspricht, darf betrieben werden. Ist Ihr Heizkessel älter als 15 Jahre, empfiehlt das Umweltbundesamt aber, den Austausch des Heizkessels zu prüfen. Auch empfehlen wir, rechtzeitig den Ausstieg aus der Heizung mit Brennstoffen (Gas, Öl, Holz) vorzubereiten und mögliche Fördergelder im Blick zu haben (siehe Umwelttipp <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/heizungstausch/">Heizungstausch</a>).</p><p>2.3 Ich habe bereits eine Holzheizung eingebaut. Wie kann ich sie so betreiben, dass sie Klima, Umwelt und Gesundheit möglichst wenig belastet? </p><p>In den <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Umwelttipps finden Sie unter der Rubrik <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen">Heizen & Bauen</a> nützliche Hinweise zum Betrieb von Holzheizungen: <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/pelletkessel">Pelletkessel</a>, <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/pelletofen">Pelletofen</a> und <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/kaminofen/">Kaminofen</a>. Infos finden Sie auch in unserem Ratgeber „<a href="https://www.umweltbundesamt.de/publikationen/heizen-holz/">Heizen mit Holz</a>“ oder in unserem Flyer „<a href="https://www.umweltbundesamt.de/publikationen/heizen-holz-wenn-dann-richtig/">Heizen mit Holz: Wenn, dann richtig!</a>“.</p><p>2.4 Welche Heizsysteme sind aus Umweltsicht sinnvoll? </p><p>Grundsätzlich sollte man vor der Auswahl eines spezifischen Heizsystems den Wärmebedarf des Hauses möglichst weitgehend reduzieren – insbesondere durch eine umfassende <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/waermedaemmung-fenster/">Wärmedämmung</a>. Durch Gebäudesanierungen können enorme Einsparpotenziale bei der Wärmeversorgung erschlossen werden.</p><p>Ökonomisch und ökologisch sinnvoll ist es, Gebäude vornehmlich mit Hilfe von Wärmenetzen, sofern diese verfügbar sind, oder Wärmepumpen zu beheizen. Diese können inzwischen auch teilsanierte Bestandsgebäude effizient versorgen. Wo eine Wärmepumpe allein nicht ausreicht, sind Hybridheizungen eine Lösung, bei denen die Wärmepumpe die meiste Heizwärme liefert und ein Heizkessel an den kältesten Tagen unterstützt. Bereits diese Kombination spart viel Brennstoff. Stromdirektheizungen eignen sich nur in energetisch sehr gut gedämmten Gebäuden mit minimalem Heizbedarf.</p><p>Wenn Sie einen Austausch der Heizung oder einen Neubau planen, finden Sie wertvolle Tipps in unseren <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-Umwelttipps zum <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen/heizungstausch/">Heizungstausch</a> sowie unterschiedliche Praxisbeispiele in unserem <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/umgebungswaerme-waermepumpen/so-gehts-mit-waermepumpen/">Portal zu Wärmepumpen</a>.</p><p>2.5 Muss ich mir als Besitzer*in einer Holzheizung Sorgen machen, dass auf Holzenergie eine CO₂-Abgabe anfallen könnte?</p><p>Das Umweltbundesamt hat keine Empfehlung zur CO2-Bepreisung von Holzenergie abgegeben.</p><p>Doch auch ohne eine CO2-Abgabe auf Holzenergie sind steigende Preise für Holzbrennstoffe wahrscheinlich. Grund dafür sind die absehbar weltweit steigende Nachfrage nach Holzrohstoffen einerseits und die weltweit abnehmenden Waldbestände andererseits.</p><p>3 Allgemeine Fragen zum UBA-CO₂-Rechner</p><p>3.1 Wer kann den CO₂-Rechner nutzen? </p><p>Der <a href="https://uba.co2-rechner.de/de_DE/">UBA-CO2-Rechner</a> ist ohne Zugangsbarriere für jede und jeden nutzbar. Auch Institutionen oder Unternehmen können den Rechner dementsprechend nutzen.</p><p>3.2 Wie sieht es mit Datenschutz beim CO₂-Rechner aus? Was genau passiert mit den eingegebenen Daten?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>-CO2-Rechner ist ohne Anmeldung nutzbar. Der Rechner speichert weder zuordenbare IP-Adressen noch sonstige Informationen darüber, wer den Rechner genutzt hat. Eine statistische Auswertung der Besucherzugriffe erfolgt lediglich anonym mit der Open-Source-Software Matomo (siehe <a href="https://uba.co2-rechner.de/de_DE/">Datenschutzerklärung des Rechners</a> (auf der Seite ganz unten)).</p><p>Wenn die Nutzenden ihre Eingaben speichern oder für wissenschaftliche Auswertungen zur Verfügungen stellen möchte, müssen sie dieser <a href="https://uba.co2-rechner.de/de_DE/footprint#panel-calc">Speicherung aktiv zustimmen</a>. Sie können sich in diesem Fall einen bei der Zustimmung erzeugten Link kopieren und mit diesem die Eingaben wieder aufrufen, gegebenenfalls weiterbearbeiten und auch wieder löschen. Auch in diesem Fall gilt: Die Daten bleiben anonym, da eine Zuordnung der Daten z. B. über eine IP-Adresse nicht möglich ist.</p><p>Wurde von den Nutzenden der Speicherung der Daten für wissenschaftliche Zwecke zugestimmt, nutzt das UBA diese anonymen <a href="https://www.umweltbundesamt.de/publikationen/der-uba-co2-rechner-als-wissenschaftliches">Bilanzen für Forschungszwecke</a>.</p><p>3.3 Wo finde ich UBA-Publikationen und weitere Informationen zu dem Thema?</p><p>Allgemeine Informationen zum CO2-Rechner finden Sie zum einen in den Informationstexten im <a href="https://uba.co2-rechner.de/de_DE/">UBA-CO2-Rechner</a> selbst sowie in der Publikation „<a href="https://www.umweltbundesamt.de/publikationen/der-uba-co2-rechner-fuer-privatpersonen">Der UBA-CO2-Rechner für Privatpersonen: Hintergrundinformationen</a>“. Das UBA-Factsheet „<a href="https://www.umweltbundesamt.de/publikationen/einsatzmoeglichkeiten-des-uba-co2-rechners-in">Einsatzmöglichkeiten des UBA-CO2-Rechners in Kommunen</a>“ listet Anwendungsfelder und Praxisbeispiele des Rechners z. B. im Kontext von Bildung oder Öffentlichkeitsarbeit auf.</p><p>Spezifische Erläuterungen zur Bilanzierung von Holzbrennstoffen finden sich in im Factsheet „<a href="https://www.umweltbundesamt.de/publikationen/ansatz-zur-neubewertung-von-co2-emissionen-aus-der">Ansatz zur Neubewertung von CO2-Emissionen aus der Holzverbrennung</a>“, die wissenschaftlichen Grundlagen hierzu u. a. in der 2024 veröffentlichten Studie „<a href="https://www.umweltbundesamt.de/publikationen/auswirkungen-der-energetischen-nutzung-forstlicher">Auswirkungen der energetischen Nutzung forstlicher Biomasse in Deutschland auf deutsche und internationale LULUCF-Senken (BioSINK)</a>“.</p><p>Darüber hinaus finden Sie viele Anregungen in den <a href="https://www.umweltbundesamt.de/uba-umwelttipps">UBA-Umwelttipps</a> (z. B. zum Thema <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/heizen-bauen">Heizen & Bauen</a>) sowie in der <a href="https://www.umweltbundesamt.de/publikationen">Publikationsdatenbank des UBA</a>.</p>
Aktuell wird die Wärmeversorgung deutscher Haushalte maßgeblich durch Öl- und Gasheizungen bewerkstelligt, was eine starke Abhängigkeit von fossilen Ressourcen bedeutet. Durch ihre Effizienz verhalten sich elektrische Wärmepumpen (WP) deutlich klimafreundlicher und können, wenn mit Strom aus regenerativen Energiequellen betrieben, maßgeblich zur Dekarbonisierung der Wärmeversorgung beitragen. Zusätzlich wird die Nutzung umweltfreundlicher Kältemittel wie z.B. Propan (R290) oder Butan (R600) zunehmend gesetzlich gefördert. Durch die hohe Entzündlichkeit dieser Kältemittel rückt eine dauerhafte, technische Dichtheit ins Zentrum aktueller WP-Entwicklungen. Im Rahmen eines Fraunhofer Plattformprojekts sollen in WP-Resilienz in enger Kooperation mit der Industrie (Hersteller für Haus-WP und Klimagerätehersteller für Schienenfahrzeuge) Methoden zur künstlichen/ beschleunigten Alterung, zielgerichteten Fehlstellenanalyse und Lebensdauerprognose von Propan-Kältekreisen entwickelt werden. Zudem soll eine vereinheitliche Datenbasis für die Risikobewertung von Kältekreisen im Hinblick auf Leckagen und damit verbunden ausströmendes Kältemittel geschaffen werden. Neben Leckagen sollen auch Risiken basierend auf Zündquellen und Unfälle in die Datenbank aufgenommen werden. Durch die zentralen Ergebnisse des Vorhabens soll der Industrie eine Methodik zur Verfügung gestellt werden, um das komplexe Zusammenspiel von Schwingungsanregungen durch den Kompressor, Eigenspannungen nach dem Herstellungsprozess sowie Temperatur- und Druckschwankungen und variierende Umwelteinflüsse (z.B. korrosive Atmosphären) wissenschaftlich und anwendungsnah zu bewerten, wodurch erstmals eine belastbare Lebensdauerabschätzung von hermetischen Kältekreisen möglich wird. Zusätzlich sollen detaillierte Untersuchungen von leckbehafteten Bauteilen eine übersichtliche Datengrundlage zur Durchführung von Risikobewertungen für Kältekreise ermöglichen, die zur Einhaltung gesetzlicher Vorgaben ist.
Aktuell wird die Wärmeversorgung deutscher Haushalte maßgeblich durch Öl- und Gasheizungen bewerkstelligt, was eine starke Abhängigkeit von fossilen Ressourcen bedeutet. Durch ihre Effizienz verhalten sich elektrische Wärmepumpen (WP) deutlich klimafreundlicher und können, wenn mit Strom aus regenerativen Energiequellen betrieben, maßgeblich zur Dekarbonisierung der Wärmeversorgung beitragen. Zusätzlich wird die Nutzung umweltfreundlicher Kältemittel wie z.B. Propan (R290) oder Butan (R600) zunehmend gesetzlich gefördert. Durch die hohe Entzündlichkeit dieser Kältemittel rückt eine dauerhafte, technische Dichtheit ins Zentrum aktueller WP-Entwicklungen. Im Rahmen eines Fraunhofer Plattformprojekts sollen in WP-Resilienz in enger Kooperation mit der Industrie (Hersteller für Haus-WP und Klimagerätehersteller für Schienenfahrzeuge) Methoden zur künstlichen/ beschleunigten Alterung, zielgerichteten Fehlstellenanalyse und Lebensdauerprognose von Propan-Kältekreisen entwickelt werden. Zudem soll eine vereinheitliche Datenbasis für die Risikobewertung von Kältekreisen im Hinblick auf Leckagen und damit verbunden ausströmendes Kältemittel geschaffen werden. Neben Leckagen sollen auch Risiken basierend auf Zündquellen und Unfälle in die Datenbank aufgenommen werden. Durch die zentralen Ergebnisse des Vorhabens soll der Industrie eine Methodik zur Verfügung gestellt werden, um das komplexe Zusammenspiel von Schwingungsanregungen durch den Kompressor, Eigenspannungen nach dem Herstellungsprozess sowie Temperatur- und Druckschwankungen und variierende Umwelteinflüsse (z.B. korrosive Atmosphären) wissenschaftlich und anwendungsnah zu bewerten, wodurch erstmals eine belastbare Lebensdauerabschätzung von hermetischen Kältekreisen möglich wird. Zusätzlich sollen detaillierte Untersuchungen von leckbehafteten Bauteilen eine übersichtliche Datengrundlage zur Durchführung von Risikobewertungen für Kältekreise ermöglichen, die zur Einhaltung gesetzlicher Vorgaben ist.
Bei dem Pilotvorhaben der OCER Energie GmbH im niedersächsischen Zetel (Kreis Friesland/Niedersachsen), wird die im Grundwasser gespeicherte Erdwärme genutzt, um Gewächshäuser einer Gärtnerei ganzjährig, kontinuierlich mit Wärme zu versorgen. Damit kann im Vergleich zu einer herkömmlichen Erdgasheizung rund die Hälfte des Brennstoffs eingespart werden. Der Ausstoß an klimaschädlichem Kohlendioxid wird um rund 368 Tonnen pro Jahr verringert. Die im Rahmen des Vorhabens benötigte Wärmeenergie soll mittels erdgasbetriebener Wärmepumpen Brunnenwasser aus rund 30 Meter Tiefe, das ganzjährig ca. 10 Grad Celsius warm ist, gewonnen werden. Zusätzlich soll auch die Abwärme der Gasmotoren genutzt werden. Da an sonnenscheinreichen Tagen eine Beheizung der Gewächshäuser nicht nötig ist, wird die Wärme in dieser Zeit in Wassertanks gespeichert und je nach Bedarf zugeführt. Das Vorhaben kann ein Modell für eine Vielzahl von anderen Gärtnereien und Einrichtungen sein, bei denen die benötigte Energie oft die größten Kosten verursacht und Grundwasser in ausreichender Menge zur Verfügung steht.
Die Luftqualität in Berlin hat sich in den letzten Jahrzehnten stark verbessert. Seit 2020 werden die aktuell geltenden Grenz- und Zielwerte für Luftschadstoffe stadtweit eingehalten – ein Erfolg für Umwelt und Gesundheit. Grundlage für den Rückgang der Luftbelastung sind die schrittweisen Verschärfungen von Grenzwerten zum Schadstoffausstoß von Kraftwerken, Industrie, Kleinfeuerungsanlagen und Fahrzeugen, die auf europäischer und nationaler Ebene festgelegt wurden und werden. Zusätzlich beigetragen haben Maßnahmen aus den Berliner Luftreinhalteplänen . Die Luftqualität in Berlin wird seit Mitte der 1970er Jahren kontinuierlich überwacht, um die Immissionsbelastung durch Luftschadstoffe zu dokumentieren. Seit 2002 erfolgen die Messungen gemäß den Vorschriften der Europäischen Luftqualitätsrichtlinien. Zur besseren Einordnung der Messwerte werden drei Belastungsregime unterschieden: Verkehr : Messstationen an Hauptverkehrsstraßen mit hoher Belastung Innerstädtischer Hintergrund : Messstationen in innerstädtischen Wohngebieten mit geringem direktem Verkehrseinfluss Stadtrand : Messstationen am Stadtrand zeigen die quellferne Belastungssituation und erlauben zudem auch die Beurteilung über den Eintrag von Luftschadstoffen von außerhalb des Stadtgebietes Die folgenden Abbildungen zeigen den langjährigen Verlauf der mittleren Luftbelastung einzelner Schadstoffe in diesen Belastungsregimen. Für Stickstoffdioxid NO₂, Feinstaub PM₁₀, PM₂ꓹ₅ und Ozon O₃ werden die langfristigen Entwicklungen basierend auf einem Differenzenmodell ermittelt, wie im Jahresbericht 2019 (PDF, 4,2 MB) beschrieben. Im Kern werden dabei die Differenzen der Jahresmittelwerte von einem zum darauffolgenden Jahr verwendet. Werte für die einzelnen Stationen nach Schadstoffen und sind verfügbar unter: Darstellung von Luftmessdaten | Berliner Luftgütemessnetz Ab 2030 müssen deutlich strengere EU-Grenzwerte gemäß der EU-Richtlinie 2024/2881 eingehalten werden, unter anderem für die Jahresmittelwerte von Stickstoffdioxid (20 statt 40 µg/m³), Partikel PM₁₀ (20 statt 40 µg/m³) und Partikel PM₂,₅ (10 statt 25 µg/m³). Diese künftigen Grenzwerte sind in den Abbildungen zusätzlich zu den derzeit geltenden Grenzwerten eingezeichnet. Stickstoffdioxid Schwebstaub / Partikel PM 10 Partikel PM 2,5 Ozon Polyzyklische aromatische Kohlenwasserstoffe (PAK) Schwefeldioxid Benzol Kohlenmonoxid Entwicklung der NO₂-Belastung in Berlin (1990 bis 2024) Die NO₂-Konzentrationen in Berlin sind in den vergangenen Jahrzehnten insgesamt deutlich zurückgegangen, wenn auch mit zeitweiligen Stagnationen. Seit 2020 werden die Grenzwerte an allen Stationen eingehalten. Die nebenstehende Grafik zeigt die langjährige Entwicklung der NO₂-Belastung der automatischen Messstellen sowie der acht beurteilungsrelevanten Passivsammlerstandorte (Passivsammler = PS). Die sehr kleinen Passivsammler befinden sich überwiegend an Straßen mit einer engen Randbebauung, in denen die Abgase der Fahrzeuge schlechter verdünnt werden. Daher liegt der Mittelwert über diese Passivsammler höher als der Mittelwert über die kontinuierlich messenden Verkehrsstationen. Hohe Stickstoffdioxidkonzentrationen werden überwiegend vom Straßenverkehr verursacht. Die höchsten NO₂-Werte treten an Hauptverkehrsstraßen auf. Dort waren die NO₂-Jahresmittelwerte bis 2019 etwa doppelt so hoch wie im städtischen Hintergrund und liegen heute im Mittel immer noch etwa ein Drittel höher als im städtischen Hintergrund. Überschreitungen der seit 2020 geltenden Grenzwerte traten daher nur an Hauptverkehrsstraßen auf. Der langfristige Verlauf zeigt: In den 1990er- bis 2010er-Jahren kam es zu einem Rückgang der NO₂-Belastung infolge technischer Maßnahmen, wie dem Einsatz von Katalysatoren in Otto-Pkw und die Ausrüstung von Kraftwerken mit Entstickungsanlagen. Auch die Einführung der Berliner Umweltzone – in zwei Stufen 2008 und 2010 – trug zur Verbesserung der Luftqualität bei. Insbesondere reduzierte sie die Zahl der Otto-Fahrzeuge ohne Katalysator im innerstädtischen Verkehr. Zwischen 2000 und 2015 blieben die NO₂-Jahresmittelwerte auf einem annähernd gleichbleibenden Niveau. Dabei kamen zwei Gründe zusammen. Zum einen stieg der Anteil an Diesel-Pkw mit hohen Stickoxidausstoß zulasten der Otto-Pkw mit Katalysator. Zum anderen wurde bei Diesel-Pkw der reale Stickoxidausstoß nicht im gesetzlich vorgeschriebenen Maße vermindert (Dieselabgasskandal von 2015). Erst mit der Einführung neuer Abgasvorschriften (Euro 6d-TEMP und Euro 6d) mit Abgasprüfungen im realen Straßenverkehr sowie Software-Updates und Nachrüstung von Diesel-Fahrzeugen konnte in den folgenden Jahren eine deutliche Reduzierung des Schadstoffausstoßes von Diesel-Pkw erreicht werden. Auffällig sind die erhöhten Jahresmittelwerte von 2006. Vor allem für die Straßenmessstellen zeigen diese hohen Jahresmittelwerte eindrucksvoll den Einfluss von meteorologischen Bedingungen auf die Konzentration von Luftschadstoffen. Denn das Jahr 2006 war geprägt durch eine hohe Anzahl windschwacher Hochdruckwetterlagen und ungünstigen meteorologischen Ausbreitungsbedingungen. Seit 2016 sind die NO₂-Werte insbesondere durch die verschärften Abgasvorschriften Kraftfahrzeuge in allen Belastungsbereichen wieder deutlich gesunken. Konkrete Messdaten belegen: An Hauptverkehrsstraßen gingen die NO₂-Werte zwischen 2016 und 2024 um etwa 55 % zurück. Der stärkste Rückgang wurde zwischen 2019 und 2020 beobachtet – begünstigt auch durch Maßnahmen der Berliner Luftreinhalteplanung wie die Nachrüstung und Modernisierung von Dieselbussen und Einführung von Elektro-Bussen durch die BVG , Tempo 30 auf hoch belasteten Hauptverkehrsstraßen , Ausweitung der Parkraumbewirtschaftung , sowie die Förderung des Umweltverbunds aus öffentlichem Nahverkehr , Rad- und Fußverkehr . Zusätzlich führten Lock-Down-Phasen während der Corona-Pandemie 2020-2022 zu Rückgängen des Verkehrs und verstärkten die Abnahme der NO₂-Belastung. Daraus resultiert weiterhin ein höherer Anteil von Home-Office mit einem dämpfenden Effekt auf den Berufsverkehr. 2023 und 2024 lagen die NO₂-Mittelwerte im Berliner Luftgüte-Messnetz (BLUME) je nach Standort zwischen 8 und 20 µg/m³, während Passivsammler 2024 im Mittel 28 µg/m³ zeigten Der zukünftige EU-Grenzwert von 20 µg/m³, der ab 2030 einzuhalten ist, wird noch an einigen hoch belasteten Straßen überschritten. Es besteht also weiterhin Handlungsbedarf, vor allem in der Verkehrsplanung, beim Umstieg auf emissionsarme Fahrzeuge und der Förderung nachhaltiger Mobilität. Auch die Umsetzung der Berliner Wärmestrategie trägt durch den schrittweisen Ersatz fossiler Heizsysteme zur Reduktion von Feinstaub- und Stickoxid-Emissionen bei. Weitere Informationen zur Definition und Messung von NO₂ bietet das Umweltbundesamt . Entwicklung der TSP- und PM₁₀-Belastung in Berlin (1987 bis 2024) Ende der 1990er Jahre wurde mit der Messung von Partikeln PM₁₀, also von einatembaren Teilchen kleiner als 10 Mikrometer (µm), begonnen. Sie ersetzte die Gesamtstaubmessung (TSP – total suspended particles), bei der auch grobe Teilchen > 10 µm erfasst wurden. Deshalb sind beide Reihen nicht direkt miteinander vergleichbar. Der sehr starke Rückgang der Gesamtstaubbelastung zwischen 1987 und 1997 beruht im Wesentlichen auf dem Umstieg von Kohleeinzelraumfeuerungen („Kachelöfen“) auf Gasheizungen und Fernwärme sowie der Modernisierung oder Stilllegung von Kraftwerken in den Gebieten der ehemaligen DDR. Die langfristige Entwicklung zeigt einen deutlichen Rückgang der PM₁₀-Konzentrationen in Berlin: Seit 2000 sanken die Werte an verkehrsnahen Standorten um ca. 40 %, in Wohngebieten und am Stadtrand um rund 30 %. Seit 2004 wird der gesetzliche Jahresmittelgrenzwert von 40 µg/m³ an allen Messstationen eingehalten. Die Zahl der Tage mit Überschreitungen des Tagesmittelgrenzwerts von 50 µg/m³ ist ebenfalls deutlich rückläufig. Die letzte Überschreitung der zulässigen Anzahl von 35 Überschreitungstagen wurde 2015 registriert (Station MC174 an der Frankfurter Allee mit 36 Tagen). Die Feinstaubbelastung ist stark witterungsabhängig: Kalte Winter mit hohem Heizbedarf führen häufig zu höheren Werten. Hochdruckwetterlagen mit geringen Windgeschwindigkeiten und Inversionswetter verhindern den Abtransport von Schadstoffen. Ferntransporte (z. B. großräumige Verfrachtung von Schadstoffen aus Kraftwerken und Holzfeuerungen, der Landwirtschaft oder Saharastaub ) können zusätzlich zur Belastung beitragen. Beispiele: Günstige Wetterjahre wie 2007, 2012, 2017, 2019, 2020, 2022, 2023 führten zu vergleichsweise niedrigen PM₁₀-Konzentrationen, ungünstige Wetterbedingungen in den Jahren 2003, 2006, 2010, 2011, 2014 und 2018 zu höheren Belastungen. Der langjährig rückläufige Trend der PM₁₀-Belastung ist auf gezielte Maßnahmen zurückzuführen: Rauchgasreinigung bei Kraftwerken und Abfallverbrennung, Ersatz von Kohleheizungen, Partikelfilter für Diesel-Fahrzeuge und Baumaschinen , sowie Förderung des Umweltverbunds aus öffentlichem Nahverkehr und Rad- und Fußverkehr und Tempo 30 auf hoch belasteten Hauptverkehrsstraßen. Der verkehrsbedingte Anteil an der PM₁₀-Belastung wurde seit den späten 1990er Jahren um rund 70 % reduziert. Ab 2030 gelten in der EU strengere Grenzwerte : Der Jahresmittelwert wird auf 20 µg/m³ gesenkt, ein Tagesmittelgrenzwert von 45 µg/m³ darf an höchstens 18 Tagen pro Jahr überschritten werden (bisher: 35 Tage mit 50 µg/m³). An vielen Berliner Messstationen werden diese Werte bereits eingehalten, an verkehrsnahen Standorten jedoch teils noch überschritten. Es besteht somit weiterer Handlungsbedarf – insbesondere im Straßenverkehr und bei häuslichen Emissionen. Weitere Informationen zur Definition und Messung von PM₁₀ bietet das Umweltbundesamt . Entwicklung der PM₂,₅-Belastung in Berlin (2004 bis 2024) Als Partikel PM₂ꓹ₅ werden sehr kleine Partikel bezeichnet, deren aerodynamischer Durchmesser kleiner als 2,5 µm ist. Sie können nachhaltig die Lunge schädigen, da sie tief in die Atemwege eindringen und länger dort verweilen. Außerdem können hohe PM₂ꓹ₅-Belastungen zu Herz- und Kreislauferkrankungen führen. Der enthaltene Ruß gilt als krebserregend. In den vergangenen zwei Jahrzehnten ist die PM₂,₅-Belastung in Berlin deutlich gesunken: An verkehrsnahen Messstationen um rund 45 %, im innerstädtischen Hintergrund um etwa 40 %. Der gesetzliche Jahresmittelgrenzwert von 25 µg/m³ wird seit seiner Einführung im Jahr 2015 an allen Berliner Messstellen zuverlässig eingehalten. Auch der gleitende Drei-Jahres-Mittelwert im städtischen Hintergrund liegt seit Jahren unter dem Zielwert von 20 µg/m³. Die PM₂,₅-Konzentrationen unterliegen jedoch starken witterungsbedingten Schwankungen. Kalte Winter mit erhöhtem Heizbedarf führen zu mehr Emissionen. Inversionslagen verhindern den Luftaustausch, sodass sich Schadstoffe anreichern. Ferntransporte – etwa Abgase aus Kraftwerken, Industrie oder Holzfeuerungen, Saharastaub oder landwirtschaftliche Quellen – tragen zusätzlich zur Belastung bei. Auch die sekundäre Partikelbildung – z. B. aus Stickoxiden, Schwefeldioxid oder Ammoniak – ist wetterabhängig. Günstige Wetterjahre mit viel Wind und Regen wie 2012, 2017, 2019, 2020, 2022 und 2023 führten zu niedrigeren PM₂,₅-Werten. In ungünstigen Jahren wie 2006, 2010, 2014, 2018 und 2024 wurden dagegen teils erhöhte Belastungen gemessen. Der Rückgang der PM₂,₅-Belastung ist auf eine Vielzahl von Luftreinhaltemaßnahmen zurückzuführen: strengere EU-Abgasnormen, der verstärkte Einsatz von Partikelfiltern für Dieselfahrzeuge, u.a. durch die Einführung der Berliner Umweltzone ab 2008, die Modernisierung veralteter Heizungsanlagen, der Umstieg auf emissionsärmere Energieträger und die Reduktion gasförmiger Vorläuferstoffe. Seit 2023 ergänzt die Informationskampagne „Richtig Heizen mit Holz“ das Berliner Maßnahmenpaket. Ab 2030 gelten in der EU deutlich strengere Grenzwerte : Der Jahresmittelgrenzwert für PM₂,₅ wird von 25 µg/m³ auf 10 µg/m³ gesenkt. Dieser Wert wird derzeit an Verkehrsmessstationen und teilweise auch im städtischen Hintergrund nicht eingehalten. Zudem wird ein neuer Tagesmittelgrenzwert von 25 µg/m³ eingeführt, der an höchstens 18 Tagen pro Jahr überschritten werden darf. Zusätzlich gilt ab 2030 eine Minderungsverpflichtung für die PM₂ꓹ₅-Belastung im städtischen Hintergrund. Zur Einhaltung der künftigen Grenzwerte sind zusätzliche Maßnahmen nötig – vor allem in den Bereichen Verkehrsplanung, emissionsarme Wärmeversorgung und umweltfreundliche Stadtentwicklung. Da circa 60 bis 70 % der in Berlin gemessenen Partikeln aus Quellen außerhalb Berlins stammen, muss die Partikelbelastung europaweit gesenkt werden. Weitere Informationen zur Definition und Messung von PM₂ꓹ₅ bietet das Umweltbundesamt . Dieser dreiatomige Sauerstoff ist ein natürlicher Bestandteil der Luft und wird nur selten direkt emittiert. Die Bildung von bodennahem Ozon geschieht über chemische Reaktionen aus Vorläuferstoffe unter dem Einfluss von UV-Strahlung. Der wichtigste Vorläuferstoff ist Stickstoffdioxid (NO₂). Aber auch flüchtige organische Verbindungen (VOC, volatile organic compounds) sind für die Ozonbildung von Bedeutung, da diese zur Umwandlung von Stickstoffmonoxid (NO) zum Ozonvorläuferstoff NO₂ beitragen. Abgebaut wird Ozon wiederum durch NO. Die höchsten Ozonkonzentrationen treten im Sommer während sonnigen Schönwetterperioden auf. Denn dann ist die UV-Einstrahlung hoch und zudem werden von der Vegetation bei hohen Temperaturen mehr VOCs freigesetzt. Entwicklung der O₃-Belastung in Berlin (1988 bis 2024) Die langfristige Entwicklung der Jahresmittelwerte zeigt zwei gegensätzliche Trends je nach Standorttyp: Im innerstädtischen Hintergrund ist seit Ende der 1980er Jahre ein nahezu kontinuierlicher Anstieg der mittleren Ozonkonzentrationen zu beobachten. Eine Regressionsanalyse ergibt eine Zunahme von etwa 0,4 µg/m³ pro Jahr. Am Stadtrand hingegen ist nach einem Rückgang Anfang der 1990er Jahre eine geringere Zunahme um rund 0,1 µg/m³ pro Jahr festzustellen. Die mittlere Ozonbelastung ist damit inzwischen im städtischen Hintergrund genauso hoch wie am Stadtrand. Für die verkehrsnahe Station MC174 liegen seit 2020 eigene Ozon-Messdaten vor, die deutlich niedrigere Werte zeigen – beispielsweise 42 µg/m³ im Jahr 2019, 43 µg/m³ 2020 und 47 µg/m³ 2024. Ursache dafür ist der direkte NO-Ausstoß aus dem Straßenverkehr, der Ozon effektiv reduziert. Die Jahresmittelwerte unterliegen darüber hinaus starken witterungsbedingten Schwankungen. Unterschiede von bis zu 7 µg/m³ zwischen zwei aufeinanderfolgenden Jahren sind nicht ungewöhnlich. Besonders hohe Ozonwerte wurden in den Jahren 2018 und 2019 gemessen – bedingt durch heiße, sonnige Sommer mit stabilen Hochdruckwetterlagen. Die Jahre 2023 und 2024 wiesen mit jeweils 52 bis 53 µg/m³ im innerstädtischen Hintergrund die höchsten je gemessenen Mittelwerte auf und bestätigen damit den langfristigen Trend. Der beobachtete Anstieg der mittleren Ozonwerte lässt sich vor allem auf die Reduktion der NO-Konzentrationen zurückführen, insbesondere im Sommer. Weniger NO bedeutet eine geringere Abbaurate von Ozon, wodurch sich O₃ länger in der Atmosphäre hält. Weitere Einflussfaktoren sind die Trockenheit und der Hitzestress der Vegetation – wie in den Jahren 2018 und 2019. Dies führt zu geringeren VOC-Emissionen, wodurch insbesondere die Bildung extremer Ozonspitzen reduziert wird. Zudem haben Emissionseinsparungen bei den Ozonvorläufern NOₓ und VOCs aus Verkehr, Industrie und privatem Gebrauch (etwa Farben, Lacke, Lösungsmittel) die Häufigkeit hoher Kurzzeitbelastungen deutlich reduziert. Kurzzeitige O₃-Belastungsspitzen sind gesundheitlich besonders relevant, da erhöhte Ozon-Konzentrationen zu Reizerscheinungen der Augen und Schleimhäute sowie Lungenschäden führen können. Deshalb wurden zum Zweck des Gesundheitsschutzes die Informationsschwelle von 180 µg/m³ und die Alarmschwelle von 240 µg/m³, jeweils als Mittelwert über eine Stunde, festgelegt. Diese Belastungsspitzen sind jedoch im Gegensatz zur mittleren O₃-Belastung seit Jahren rückläufig, selbst in Jahren mit eigentlich günstigen Bedingungen für Ozonbildung. So zeigen 2018, 2019, 2023 und 2024: Trotz hoher Temperaturen kam es nicht zu extremen Ozonspitzen, vermutlich infolge niedriger NO₂-Werte und verringerter VOC-Emissionen durch Trockenheit. Weitere Informationen zur Definition und Messung von Ozon bietet das Umweltbundesamt . Ein Zukunftsausblick: Für Ozon gibt es bislang keine EU-Grenzwerte für Jahresmittelwerte, aber die Einhaltung der Informations- und Alarmschwellen bleibt essenziell. Mit dem Klimawandel – mehr Hitzetage und längere Trockenperioden – wird die Bedeutung der Ozonbelastung weiter zunehmen. Eine wirksame Reduktion von Vorläuferstoffen bleibt daher entscheidend, um Gesundheit und Umwelt langfristig zu schützen. Entwicklung der Benz[a]pyren-Belastung in Berlin (1993 bis 2022) Polyzyklische aromatische Kohlenwasserstoffe (PAK) gelten als krebserregende organische Verbindungen. Diese Stoffe entstehen überwiegend bei schlechter (unvollständiger) Verbrennung von Öl, Kohle oder Holz. Wichtige Quellen sind in Berlin Holzverbrennung in Kleinfeuerungsanlagen und Dieselmotoren ohne Filter. Als wichtigste Messgröße wird dabei Benzo(a)pyren (B(a)P) verwendet. Bereits Mitte der 1990er Jahre gab es erste orientierende Messungen von Benzo(a)pyren an der Messstelle Nansenstraße in Neukölln. Seit 2006 werden regelmäßige Messungen an vier verschiedenen Standorten (Hauptverkehrsstraßen, Wohngebiete und städtischer Hintergrund) durchgeführt. Damit wird die Einhaltung des gesetzlich festgelegten Zielwerts für Benzo(a)pyren von 1 ng/m³ als Jahresmittelwert überwacht. Ein Blick auf die langfristige Entwicklung zeigt: Im städtischen Wohngebiet ist die Belastung seit den 1990er Jahren um den Faktor fünf gesunken. In den Jahren 2006 und 2010 wurde an der Messstation im innerstädtischen Wohngebiet Neukölln sowie an der Hauptverkehrsstraße Schildhornstraße der Grenzwert von 1 ng/m³ erreicht. Dieser Anstieg wird unter anderem auf besonders kalte Winter und den damit einhergehenden erhöhten Verbrauch von Kohle und Holz in privaten Feuerungsanlagen zurückgeführt – wie Kohleheizungen, Holzöfen und Kaminen. Seit 2012 liegen die gemessenen PAK-Konzentrationen an allen Messstellen nahe beieinander und deutlich unter dem Grenzwert. Zwischen 2012 und 2021 bewegten sich die Jahresmittelwerte an allen Stationen zwischen etwa 0,3 und 0,5 ng/m³, 2022 sank die Belastung auf den niedrigsten bisher gemessenen Wert von 0,1 ng/m³. Entwicklung der SO₂-Belastung in Berlin (1988 bis 2019) Die Luftbelastung durch die meisten direkt emittierten Schadstoffe ist in den letzten 20 Jahren stark gesunken. Beim Schwefeldioxid, das hauptsächlich aus Kraftwerken, Industrie und Kohleöfen stammte, ist dieser Rückgang am deutlichsten. Die Entwicklung der SO₂-Belastung in Berlin ist in der Abbildung für den Zeitraum von 1976 bis 2019 dargestellt. Die blau gestrichelte Linie beruht auf Daten, welche bis 2000 im Jahresbericht des BLUME (Senatsverwaltung für Stadtentwicklung, 2001) als SO₂-Gebietsmittel veröffentlicht wurden, jedoch nicht in digitaler Form vorliegen. Seit 1989 liegen die als Punkte dargestellten Jahresmittelwerte der einzelnen Messstationen in digitaler Form in der Datenbank des BLUME vor. Auf Grundlage dieser Daten wurde unter Anwendung der Differenzenmethode der mittlere Verlauf der SO₂-Entwicklung aller Messstationen (rote Linie) und der Messstationen des städtischen Raums (innerstädtischer Hintergrund und Verkehr, gelbe Linie) berechnet. Die Emissionen sind durch die Sanierung oder Stilllegung von Industrieanlagen und die Installation von Rauchgasentschwefelungsanlagen in Kraftwerken Ende der 80er Jahre in West-Berlin und nach 1990 auch in den neuen Bundesländern und osteuropäischen Nachbarländern stark gesunken. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme und der Einsatz von schwefelarmem Kraftstoff haben zur Verbesserung der Luftqualität beigetragen. Zwischen 2004 und 2014 lag die Schwefeldioxidimmission im gesamten Stadtgebiet, sowohl in der Innenstadt als auch in den Außenbezirken auf Jahresmittelwerte zwischen 1-4 µg/m³ . Seit 2015 liegt sie im Bereich von 1-2 µg/m³. Damit ist die Konzentration von Schwefeldioxid im Vergleich zu 1989 um fast 99 % zurückgegangen. Das heutige Konzentrationsniveau liegt mit Tagesmittelwerten von maximal 6 µg/m³ an drei Tagen im Jahr 2019 weit unterhalb der unteren Beurteilungsschwelle der 39. BImSchV von 50 µg/m³ an höchstens drei Tagen im Jahr. Die Messungen wurden daher im Jahr 2020 eingestellt. Entwicklung der Benzol-Belastung in Berlin (1993/94 bis 2022) Benzol gehört zu den krebserregenden Stoffen und kann Leukämie (Blutkrebs) verursachen. Benzol wird vorwiegend von Pkw mit Ottomotor emittiert. Durch den Einsatz des geregelten Katalysators, verbesserter Motortechnik, besserer Kraftstoffe und den Einsatz von Gaspendelsystemen an Tankstellen sowie in Tanklagern konnte die Emission dieses Schadstoffes in den letzten Jahren deutlich verringert werden. Entsprechend hat auch die Immissionsbelastung durch Benzol in den vergangenen Jahren in Berlin stark abgenommen. Die Benzolwerte im Jahr 2010 waren an den Hauptverkehrsstraßen nur ein Fünftel und im innerstädtischen Hintergrund nur noch ein Drittel so hoch wie 1993. Zwischen 2010 und 2022 hat sich die Belastung an der Verkehrsmessstation noch mal halbiert. Der seit 2010 einzuhaltende Grenzwert von 5 µg/m³ wird bereits seit dem Jahr 2000 unterschritten. In den letzten drei Jahren lag auch die straßennahe Benzolkonzentration im Jahresmittel unter 2 µg/m³. Ab 2030 gilt für Benzol ein Grenzwert von 3,4 µg/m³. Auch dieser Wert wird bereits deutlich unterschritten. Kohlenmonoxid (CO) entsteht bei der unvollständigen Verbrennung von kohlenstoffhaltigen Brennstoffen, insbesondere in Kleinfeuerungsanlagen (Holz, Kohle), schlecht eingestellten Ölheizungen und Verbrennungsmotoren. In den letzten drei Jahrzehnten nahm die Kohlenmonoxid-Belastung an den Hauptverkehrsstraßen und im innerstädtischen Hintergrund um jeweils ca. 80 % ab. Der starke Rückgang der Kohlenmonoxid-Belastung beruht zum einen auf der Einführung des geregelten Katalysators und effizienterer Motoren in Kraftfahrzeugen. Zum anderen hat auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme dazu beigetragen. Dadurch wurde auch der seit 2005 einzuhaltende Kohlenmonoxid-Grenzwert zum Schutz der menschlichen Gesundheit von 10 mg/m³ als höchster 8-Stunden-Mittelwert eines Tages an allen Messstationen nie überschritten.
In dem hier skizzierten Projekt sollen einfach anwendbare und multiplizierbare Lösungen für den Austausch von Gas- und Ölheizungen durch Wärmepumpen in Bestandsgebäuden unter Verwendung des natürlichen Kältemittels R290 (Propan) erarbeitet werden. Die Kombination aus dem für die Energiewende erforderlichen Anstieg installierter Wärmepumpensysteme (6 Mio. Geräte bis 2030) und der angestrebten Verschärfung der F-Gas-Verordnung stellt für die Wärmepumpenhersteller und die umsetzenden Gewerke eine große Herausforderung dar. Dabei stellen sich je nach Bestandsanlagentechnik und Gebäudeklasse (E/ZFH vs. MFH, Baualtersklasse) verschiedene Anforderungen und Schwierigkeitsgrade des Heizungsaustauschs durch Wärmepumpen. Besondere Herausforderungen werden im Wohnungsbestand der Mehrfamilienhäuser gesehen. In dem hier skizzierten Projekt sollen für die drei Anwendungsfelder 'Ersatz Gas-Etagenheizung', 'Ersatz Zentralheizung im Keller' und 'Leistungssteigerung außen aufgestellter Wärmepumpen' technische Wärmepumpensystemlösungen entwickelt und in unterschiedlicher Ausprägung durch Funktionsmuster demonstriert werden. Die Lösungen sollen derart gestaltet sein, dass im Anschluss an das Projekt eine breite und akzeptierte Umsetzung in Gebäuden stattfinden kann. Die wissenschaftlichen Herausforderungen liegen in zahlreichen Einzelthemen, wie z.B. der Kältemittelreduktion für neue Wärmepumpensysteme, der Entwicklung von Lösungen für den Ersatz von Gasetagenheizungen, der systematischen Quellenanalyse hierfür und der integrierenden Regelung zwischen Gerät und System und soll Grundstein für Entwicklungsfragen der nächsten und übernächsten Produktgenerationen sein. Die zentralen Marktakteure dieses Prozesses, die Wohnungswirtschaft und die Wärmepumpenhersteller, sind über einen Beirat in das Projekt eingebunden und können die Anforderungen und Randbedingungen der zu entwickelnden Lösungen mitbestimmen und jeweils in ihre dann folgenden Produktentwicklungen übernehmen.
In dem hier skizzierten Projekt sollen einfach anwendbare und multiplizierbare Lösungen für den Austausch von Gas- und Ölheizungen durch Wärmepumpen in Bestandsgebäuden unter Verwendung des natürlichen Kältemittels R290 (Propan) erarbeitet werden. Die Kombination aus dem für die Energiewende erforderlichen Anstieg installierter Wärmepumpensysteme (6 Mio. Geräte bis 2030) und der angestrebten Verschärfung der F-Gas-Verordnung stellt für die Wärmepumpenhersteller und die umsetzenden Gewerke eine große Herausforderung dar. Dabei stellen sich je nach Bestandsanlagentechnik und Gebäudeklasse (E/ZFH vs. MFH, Baualtersklasse) verschiedene Anforderungen und Schwierigkeitsgrade des Heizungsaustauschs durch Wärmepumpen. Besondere Herausforderungen werden im Wohnungsbestand der Mehrfamilienhäuser gesehen. In dem hier skizzierten Projekt sollen für die drei Anwendungsfelder 'Ersatz Gas-Etagenheizung', 'Ersatz Zentralheizung im Keller' und 'Leistungssteigerung außen aufgestellter Wärmepumpen' technische Wärmepumpensystemlösungen entwickelt und in unterschiedlicher Ausprägung durch Funktionsmuster demonstriert werden. Die Lösungen sollen derart gestaltet sein, dass im Anschluss an das Projekt eine breite und akzeptierte Umsetzung in Gebäuden stattfinden kann. Die wissenschaftlichen Herausforderungen liegen in zahlreichen Einzelthemen, wie z.B. der Kältemittelreduktion für neue Wärmepumpensysteme, der Entwicklung von Lösungen für den Ersatz von Gasetagenheizungen, der systematischen Quellenanalyse hierfür und der integrierenden Regelung zwischen Gerät und System und soll Grundstein für Entwicklungsfragen der nächsten und übernächsten Produktgenerationen sein. Die zentralen Marktakteure dieses Prozesses, die Wohnungswirtschaft und die Wärmepumpenhersteller, sind über einen Beirat in das Projekt eingebunden und können die Anforderungen und Randbedingungen der zu entwickelnden Lösungen mitbestimmen und jeweils in ihre dann folgenden Produktentwicklungen übernehmen.
Rheinland-pfälzische Energie- und Klimaschutzminister Katrin Eder zur aktuellen Debatte um das Heizungsgesetz „Es muss endlich Schluss sein mit der Verunsicherung von Betrieben sowie Bürgerinnen und Bürgern. 2025 hat erstmals die Anzahl der installierten Wärmepumpen die Zahl der installierten Gasheizungen überschritten. Eine Entwicklung, die auch für die Erreichung der rheinland-pfälzischen Klimaziele bedeutsam ist. Insgesamt hat die Debatte um das Heizungsgesetz dazu geführt, dass die Bürgerinnen und Bürger sich bei der Umstellung ihrer Heizsysteme zurückhalten. Dennoch hat die attraktive, einkommensbezogene Förderung einen Positivtrend bei den Wärmepumpen ausgelöst. Diese Entwicklung darf jetzt nicht durch neue Verunsicherung mit Blick auf das geltende Gebäudeenergiegesetz aufs Spiel gesetzt werden. Wirtschaft und Bürgerinnen und Bürger brauchen endlich Verlässlichkeit. Das GEG basiert im Übrigen auf einem Vorläufergesetz, das bereits in den 70er Jahren erlassen wurde. Die Forderung, es nun abzuschaffen, ist reiner Populismus.“
<p>Kleinfeuerungsanlagen für feste Brennstoffe sind eine wesentliche Quelle von Luftbelastungen. Bei winterlichen Inversionswetterlagen sowie in Tal- und Kessellagen kommt es zusätzlich zur bestehenden Hintergrundbelastung zur Belastung der Atemluft mit Feinstaub und anderen Luftschadstoffen. Vor allem unsachgemäße Bedienung und unsachgemäße Brennstoffbeschaffenheit führen zu hohen Emissionen.</p><p>Feinstaub-Emissionen aus Kleinfeuerungsanlagen</p><p>Kleinfeuerungsanlagen erzeugen durch das Verbrennen von Erdgas, Heizöl, Holz oder Kohle Heizwärme oder erwärmen das Brauchwasser. Überwiegend handelt es sich um Heizkessel, die ganze Wohnungen oder Häuser beheizen, etwa Festbrennstoff-, Öl- oder Gasheizungen. Bei Feuerungsanlagen, die einzelne Zimmer beheizen, wie Kamin- oder Kachelöfen, handelt es sich um Einzelraumfeuerungsanlagen, die meist mit Holz oder Kohle befeuert werden. Im Folgenden werden unter Kleinfeuerungsanlagen alle Anlagen mit einer Feuerungswärmeleistung unter 1.000 kW verstanden, die in der Ersten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - <a href="https://www.gesetze-im-internet.de/bimschv_1_2010/">1. BImSchV)</a> geregelt sind.</p><p>Die im Folgenden dargelegten Emissionsdaten stammen aus dem nationalen Emissionsinventar für Luftschadstoffe, Submission 2025, und spiegeln den Stand für das Jahr 2023 wider.</p><p>Die Staubemissionen werden hierbei in den Größenklassen <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a> (Partikel mit einem aerodynamischen Durchmesser ≤ 10 µm) und <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> (Partikel mit einem aerodynamischen Durchmesser ≤ 2,5 µm) angegeben. Feinstaub (PM2,5) ist aus gesundheitlicher Sicht relevanter und sollte im Hinblick auf die Empfehlungen der Weltgesundheitsorganisation prioritär reduziert werden. </p><p>Die Feinstaub-Emissionen (PM10) aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) liegen bei 17,3 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM10) aus Kleinfeuerungsanlagen“). Hiervon machen die Emissionen aus Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 15,7 Tsd. t den größten Anteil der Feinstaub-Emissionen aus (Nationales Emissionsinventar für Luftschadstoffe, Submission 2025).</p><p>Bei der Feinstaubfraktion (PM2,5) liegen die Emissionen aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) bei 16,3 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM2,5) aus Kleinfeuerungsanlagen“). Auch hier machen Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 14,9 Tsd. t den größten Anteil der Feinstaub-Emissionen aus (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>).</p><p>Die Verbrennung von Holz in privaten Haushalten sowie in gewerblich genutzten Gebäuden ist somit eine wesentliche Quelle der Feinstaubemissionen in Deutschland. Die Emissionen von Kleinfeuerungsanlagen sind stark von der <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> während der Heizperiode abhängig: Bei niedrigen Außentemperaturen in der Heizperiode ergeben sich höhere Emissionen aufgrund des höheren Brennstoffeinsatzes. Bei höheren Außentemperaturen in der Heizperiode ergeben sich geringere Emissionen aufgrund des gesunkenen Brennstoffeinsatzes. Außerdem ist die Verwendung ordnungsgemäßer Brennstoffe sowie eine sachgerechte Bedienung und regelmäßige Wartung der Anlagen notwendig, um die Emissionen so gering wie möglich zu halten.</p><p>Weitere Informationen zur Organisation und Methodik der Luftschadstoff- Emissionsberichterstattung erhalten Sie <a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/wie-funktioniert-die-berichterstattung">hier</a>.</p><p>Emissionen unterschiedlicher Feuerungssysteme </p><p>Bei Holzfeuerungen in privaten Haushalten ist zwischen Einzelraumfeuerungsanlagen wie Kamin- oder Kachelöfen, die einzelne Räume beheizen, und Zentralheizungskesseln, die Wohnungen oder Häuser mit Wärme versorgen, zu unterscheiden. Einzelraumfeuerungsanlagen verbrennen meist entweder Scheitholz oder Kohle die von Hand in die Feuerungsanlage eingebracht werden oder Holzpellets, die mechanisch der Feuerungsanlage zugeführt werden. Bei Festbrennstoffkesseln gibt es neben Pellet-, Scheitholz- und Kohlekesseln auch noch automatisch betriebene Hackschnitzelkessel. Dabei werden die Holzhackschnitzel mechanisch dem Brennraum zugeführt.</p><p>Ein Problem für die Luftreinhaltung stellen die – zumeist älteren – Einzelraumfeuerungen dar. Diese verursachen bei gleichem (Primär-) Energieeinsatz um ein Vielfaches höhere Feinstaub-Emissionen als moderne Festbrennstoffkessel. Wie hoch diese Emissionen tatsächlich sind, hängt nicht nur von Art und Alter der Anlage ab. Auch die Art der Brennstoffzufuhr (automatisch oder manuell), der Wartungszustand der Anlage, die Bedienung sowie die Auswahl und Qualität des genutzten Holzes haben einen großen Einfluss auf die Emissionen.</p><p>Gas- und Ölfeuerungen stoßen bei gleichem Energiebedarf sehr viel weniger Feinstaub aus als Festbrennstoffkessel: So liegen die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>- bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> -Emissionen aller Gasheizungen, die in der 1. <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a> geregelt sind, bei 35 t (inklusive Flüssiggas mit 1 t) und die PM10 bzw. PM2,5 -Emissionen aller Ölheizungen bei 380 t (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>).</p><p>Anforderungen an Holzfeuerungsanlagen</p><p>Für die Begrenzung der Emissionen aus Kleinfeuerungsanlagen gilt in Deutschland die 1. Bundesimmissionsschutzverordnung (<a href="https://www.gesetze-im-internet.de/bimschv_1_2010/">1. BImSchV).</a> Sie gibt vor, welche Emissionsgrenzwerte Feuerungsanlagen der Haushalte und Kleinverbraucher einhalten müssen und welche Brennstoffe in solchen Anlagen zulässig sind. Diese Vorschrift wurde im Jahr 2010 novelliert. Für Feuerungsanlagen, die ab 2015 errichtet wurden, gelten Emissionsgrenzwerte, die nur mit moderner Technik eingehalten werden können. Auch für kleinere Heizkessel ab vier Kilowatt (kW) gelten Emissionsgrenzwerte und Überwachungspflichten abhängig vom Errichtungsjahr. Alte Öfen und Kessel mit hohen Emissionen müssen die Betreiber*innen nach entsprechenden Übergangsfristen nachrüsten oder stilllegen.</p><p>Angesichts des hohen Ausstoßes an Feinstaub sollte bei Holzfeuerungen nur modernste Anlagentechnik mit möglichst niedrigen Emissionen zum Einsatz kommen. Relativ niedrige Emissionsgrenzwerte gelten für Holzpelletheizungen. Besonders emissionsarme Holzfeuerungen erfüllen die Anforderungen des Umweltzeichens „Blauer Engel“ oder erhalten im Rahmen der „Bundesförderung für effiziente Gebäude - Einzelmaßnahmen“ (<a href="https://www.bafa.de/DE/Energie/Effiziente_Gebaeude/effiziente_gebaeude_node.html">BEG EM</a>) einen Bonus (sog. Emissionsminderungs-Zuschlag).</p><p>Eine weitere Minderung der Emissionen kann durch eine Kombination aus Nutzung einer erneuerbaren Energiequelle (Sonne, Erd- oder Luftwärme) zur Abdeckung der Grundlast und der Holzfeuerung zur Abdeckung von Zeiten hohen Energiebedarfs erreicht werden. Auf das Verbrennen von Holz ausschließlich aus Behaglichkeitsgründen sollte nach Möglichkeit verzichtet werden.</p><p>Anteil an den Stickstoffoxid-Emissionen</p><p>Die Emissionen von Stickstoffoxiden aus Kleinfeuerungsanlagen machten 2023 mit rund 67 Tausend Tonnen etwa 8 % der Gesamtemissionen in Deutschland aus (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>). Hier bestehen zwischen Anlagen mit unterschiedlichen Brennstoffen geringere Unterschiede als bei den Feinstaubemissionen.</p><p>Kohlendioxid-Emissionen aus Kleinfeuerungsanlagen</p><p>Die Kohlendioxid-Emissionen fossiler Energieträger (Heizöl, Erdgas, Flüssiggas, Kohle) aus Kleinfeuerungsanlagen lagen im Jahr 2023 mit 100 Millionen Tonnen etwas niedriger als im Vorjahr <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen">(Nationales Treibhausgasinventar, Submission 2025)</a>.</p><p>Weitere Informationen zur Organisation und Methodik der Treibhausgas-Emissionsberichterstattung erhalten Sie <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/treibhausgas-emissionen/wie-funktioniert-die-berichterstattung">hier</a>.</p><p>Anteil an den Emissionen gasförmiger organischer Luftschadstoffe (ohne Methan)</p><p>Die Emissionen von gasförmigen organischen Luftschadstoffen ohne Methan (sog. <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>) aus Kleinfeuerungsanlagenmachten 2023 mit rund 36 Tausend Tonnen etwa 3,7 % der Gesamtemissionen in Deutschland aus (<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">Nationales Emissionsinventar für Luftschadstoffe, Submission 2025</a>).</p><p>Weitere Informationen zur Organisation und Methodik der Emissionsberichterstattung für Treibhausgase und Luftschadstoffe erhalten Sie hier (<a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/wie-funktioniert-die-berichterstattung">Treibhausgase</a> bzw. <a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen/wie-funktioniert-die-berichterstattung">Luftschadstoffe</a>).</p>
| Origin | Count |
|---|---|
| Bund | 64 |
| Land | 21 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 26 |
| Text | 53 |
| Umweltprüfung | 1 |
| unbekannt | 6 |
| License | Count |
|---|---|
| geschlossen | 43 |
| offen | 30 |
| unbekannt | 13 |
| Language | Count |
|---|---|
| Deutsch | 83 |
| Englisch | 10 |
| Resource type | Count |
|---|---|
| Archiv | 13 |
| Bild | 3 |
| Datei | 17 |
| Dokument | 30 |
| Keine | 34 |
| Webseite | 35 |
| Topic | Count |
|---|---|
| Boden | 55 |
| Lebewesen und Lebensräume | 52 |
| Luft | 46 |
| Mensch und Umwelt | 86 |
| Wasser | 40 |
| Weitere | 79 |