API src

Found 429 results.

Chaotische Advektion in porösen Medien: Die Suche nach experimentellen Beweisen

Das Mischen von Flüssigkeiten ist in vielen Bereichen der Wissenschaft und Technik von größter Bedeutung. In porösen Medien sind Mischprozesse normalerweise ineffizient. Eine Verbesserung der Durchmischung kann potenziell durch eine Verbesserung der Schadstofffahnenverformung durch Dehnung und Faltung des Strömungsfeldes unter Verwendung von Injektions-Extraktions-Systemen oder in Systemen, die von Natur aus eine komplexe instationäre Dynamik aufweisen, wie z.B. die Wirkung von Gezeiten, erreicht werden. Frühere Studien wurden auf mehreren räumlichen Skalen (d.h. Poren-, Darcy-, Feld- und Regionalskala) durchgeführt, wobei hauptsächlich theoretische und Modellierungsansätze verwendet wurden. Experimentelle Studien hingegen, die unterkontrollierten Bedingungen durchgeführt wurden, sind nur spärlich vorhanden. Das vorgeschlagene Forschungsprojekt zielt darauf ab, die Auswirkungen der chaotischen Advektion auf den Transport gelöster Stoffe in gesättigten porösen Medien unter kontrollierten Laborbedingungen experimentell nachzuweisen. Die experimentellen Arbeiten werden von der Entwicklung neuer fortschrittlicher numerischer Methoden begleitet, die in der DUNE-Umgebung (Distributed Unified Numerics Environment) entwickelt werden, um eine genaue modellgestützte Interpretation der Ergebnisse zuermöglichen. Darüber hinaus werden auch multiparametrische Studien durchgeführt, um die realistischen Szenarien zu untersuchen, die den Rahmen von Laborexperimenten sprengen. Dieses Forschungsprojekt ist innovativ, da folgende Punkte untersuchtwerden: 1) Die Auswirkung der nichtlinearen Geschwindigkeitsabhängigkeit der Dispersion und des Nicht-Fick‘schen Transports im Allgemeinen auf die chaotische Advektion; 2) Die Auswirkung der unvollständigen Vermischung auf der Porenskala auf die effektive Vermischungsverstärkung durch chaotische Advektion; 3) Die Auswirkung der Verzögerungs- und Dichteeffekte, die den Transport von gelösten Stoffen chemisch-relevanter Spezies beeinflussen, auf die durch chaotische Advektion erzielte Vermischungsverstärkung; 4) Die Auswirkung der chaotischen Advektion auf reaktiven Transport. Darüber hinaus zielen wir darauf ab, die fehlende Verbindung zwischen den Metriken, die die chaotische Advektion und die Vermischung auf der Darcy-Skalabeschreiben, herzustellen. Dies kann durch eine modellgestützte Interpretation der in diesem Forschungsprojekt gesammelten experimentellen Ergebnisse erreicht werden.

Nachhaltige Erzeugung und Verwertung von Rohrkolben auf Niedermoorstandorten in Niedersachsen, Teilvorhaben 12: Wissenschaftliche Begleituntersuchungen auf den Anbauflächen: Erfassung von Treibhausgasaustausch und Wasserhaushalt

Ziel des Vorhabens ist die Transformation der Bewirtschaftung von entwässerten, landwirtschaftlich genutzten Niedermoorböden hin zu einer klimaschonenden, moorbodenkonservierenden Nassbewirtschaftung durch den Anbau von Rohrkolben. Hierzu soll in zwei Modellregionen mit unterschiedlicher landwirtschaftlicher Struktur (Emsland und Cuxhaven) die großflächige, qualitätsoptimierte Erzeugung von Rohrkolben (Typha angustifolia und Typha latifolia) und die Verwertung der Biomasse als Baustoff und als Gartenbausubstrat (Torfersatz) entwickelt, demonstriert und für die Vermarktung vorbereitet werden. Das Teilvorhaben des Thünen-Instituts befasst sich mit dem Treibhausgasaustausch und dem Wasserhaushalt der Paludikulturen sowie intensiv landwirtschaftlich genutzter Referenzstandorte. Dabei kommt für die Messung des Austauschs von Kohlendioxid (CO2) und Methan (CH4) der Paludikulturen die Eddy-Kovarianz-Methode zum Einsatz, während an den Referenzstandorten CO2 mittels Eddy-Kovarianz und CH4 sowie Lachgas manuell mit Hauben gemessen werden. Daneben werden Steuerfaktoren wie Wasserstände und Nährstoffgehalte des Torfs sowie Änderungen der Geländehöhen erfasst. Insbesondere die erstmalige Messung von CH4-Emissionen mit der Eddy-Kovarianz-Methode werden zum Verständnis des vieldiskutierten, aber bisher wenig untersuchten Emissionsverhaltens von Typha-Paludikulturen beitragen und die Quantifizierung der Emissionsminderung durch diese Paludikulturen ermöglichen. Die Erfassung der Wasserhaushaltsgrößen erfolgt über die Messung oberirdischer Komponenten sowie eine Modellierung des Grundwasserzustroms. Die entsprechenden Ergebnisse werden Erkenntnisse zum Wasserbedarf von Typha-Paludikulturen liefern sowie zur Berechnung von Ein- und Austrägen gelöster Stoffe (Nährstoffe, gelöster organischer Kohlenstoff) genutzt werden.

Der Einfluss von bodennaher Turbulenz auf den Transport von Tracern in marinen Becken (ROBOTRACE)

Mit diesem Antrag sollen die physikalischen Prozesse identifiziert, analysiert und quantifiziert werden, die zu dem Austausch von gelösten Substanzen zwischen der Sediment-Wasser Grenzschicht, innerhalb der turbulenten Bodengrenzschicht (bottom boundary layer, BBL) und dem schwach turbulenten Inneren von geschichteten Becken beitragen. Im Fokus stehen dabei der Effekt von geneigten Hängen, an denen die Austauschprozesse durch das Zusammenwirken des Wiederaufbaus der Bodengrenzschichtschichtung , der Turbulenz innerhalb der BBL und sub-mesoskaligen Prozessen, von denen angenommen wird, dass sie den lateralen Austauschraten von Wasser bestimmen, verkompliziert werden. Diese Prozesse werden durch einen kombinierten Ansatz aus Feldmessungen und numerischer Modellierung untersucht. Insbesondere wird sich das Projekt dabei auf den Sediment-Wasser Austausch von Schwefelwasserstoff und Sauerstoff fokussieren, der in Situ mit Hilfe eines Eddy-Korrelationsmessgerätes als auch mit einem Mikroprofilsystem gemessen wird. Diese Messung wird durch ozeanographische Standardmessungen ergänzt, als auch durch Schiffs- und Verankerungsbasierte Turbulenzmessungen. Dieser Datensatz ist neuartig durch die Kombination von (A) der Sediment-Wasserflüsse von Sauerstoff und Schwefelwasserstoff und (B) der Turbulenzmessungen innerhalb der BBL und des Beckeninneren. Zusätzlich zu den Feldmessungen ist eine numerische Modellierung auf der Basis eines einfachen Sedimentmodells in Kombination mit einer Parametrisierung der Transportprozesse an der Sediment-Wassergrenzschicht geplant. Dieses Modell wird in idealisierten, eindimensionalen Parameterstudien, sowie in einem zweidimensionalen Setup verwendet, welches sich auf die Austauschprozesse der Bodengrenzschicht mit dem Beckeninneren konzentriert. Für die Untersuchung von dreidimensionalen Strukturen wie Eddies auf den Sauerstoff/Schwefelwasserstofftransport wird ein voll dreidimensionales realistisches Modell der zentralen Ostsee angewendet.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.6: Charakterisierung und Evaluierung des neu entwickelten Adsorbermaterials

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.2: Entwicklung eines Hybridfilters

Grundlagenforschung zur Ausnutzung hydrodynamischer Effekte zur Verringerung des Membranfoulings durch die Einführung spezieller Anordnungen neuartiger Feed-Spacer-Geometrien in Kombination mit unregelmäßigen Membranoberflächenmustern

Umkehrosmose- (UO) und Nanofiltrationsmembranen (NF) sind bekannt für ihre hohe Selektivität gegenüber gelösten Stoffen und neu auftretenden Schadstoffen, die in verschiedenen Wassertypen vorhanden sind. Elemente mit spiralförmig gewickelten Membranen sind die am häufigsten verwendete Membrankonfiguration in UO/NF-Anlagen. Sie bestehen aus mehreren Taschen aus Dünnschichtverbundmembranen (TFC), einem Permeatrohr sowie Spacer (Abstandshalter) für Permeat (Produkt) und Feed (Zulauf). Feed-Spacer bilden einen Strömungskanal zwischen zwei benachbarten Taschen. Sie spielen eine wesentliche Rolle für die Flüssigkeitscharakteristika innerhalb der Feed-Strömungskanäle und folglich bei der Beeinflussung der Querströmungsgeschwindigkeit und des Druckabfalls. Dies beeinflusst Membranverschmutzung (Fouling) und Energieverbrauch und damit die Betriebskosten. Feed-Spacer sind vorteilhaft, um den Massentransport, die Fluidmischung und die Scherrate zu verbessern, was die Konzentrationspolarisation (Ansammlung zurückgehaltener Stoffe in einer Grenzschicht nahe der Membranoberfläche) und das Scaling (Überschreiten des Löslichkeitsgleichgewichts von Salzen) mildern sollte. Es wird jedoch auch beobachtet, dass Spacer zu Zonen mit schlechtem Massentransport führen, in denen dann partikuläres Fouling und Biofouling verstärkt auftreten. Die Nutzung von synergetischen Einflüssen einer Oberflächen-Mikrostrukturierung der Membran (regelmäßiges Muster im Mikro- oder Nanometerbereich auf der aktiven Seite) sowie des Designs und der Ausrichtung der FeedSpacer kann potenziell eine Flüssigkeitsmischung fördern und den Massentransport durch eine erhöhte Scherrate an der Membranoberfläche und in den Feed-Spacer-Strukturen verbessern. Dies mildert die Adhäsion von Partikeln und Biofouling erheblich, reduziert die Konzentrationspolarisation und erhöht somit den durchschnittlichen Permeatfluss und den für das Einsetzen von Fouling kritischen Fluss. Bisher wurden das Partikelablagerungsverhalten und die Neigung zu Biofouling in mit Spacern gefüllten Kanälen oberflächenstrukturierter TFC-Membranen weder in theoretischen (Simulation) noch experimentellen Studien untersucht. Das vorgeschlagene Forschungsprojekt soll das Verständnis grundlegender Design- und Betriebsaspekte im Hinblick auf neue und innovative Entwicklungsansätze fördern. Basierend auf experimentell ermittelten räumlichen Verteilungen von Partikeln und Biofoulants in Feed-Spacern soll die Topographie der Membranoberfläche an die Geometrie der Feed-Spacer angepasst und spezifisch gestaltet werden. Dies führt zu einer neuen Generation maßgeschneiderter Membrantaschen, die verbesserte Trennleistung und Antifouling-Eigenschaften aufweisen. Dieses neue Entwicklungskonzept wird eine Erhöhung der Prozesseffizienz und der Modullebensdauer sowie eine Verringerung des Energieverbrauchs bewirken und damit nachhaltigere und kostengünstigere Wasserreinigungsprozesse ermöglichen.

Isotopenuntersuchung an gelöstem Phosphat

Phosphor spielt als limitierendes Element für die Produktivität von Ökosystemen allgemein und speziell für den trophischen Status von Gewässern eine zentrale Rolle. Durch die Adsorption von Phosphat an Tonmineralen in Böden und Gewässern ist die Aussagefähigkeit von Konzentrationsmessungen in diesem Bereich jedoch eng begrenzt. Der Einsatz von kurzlebigen radioaktiven Phosphorisotopen, wie er bei der Untersuchung von Böden genutzt wird, verbietet sich in natürlichen aquatischen Systemen. Das beantragte Projekt soll als Alternativmethode die Machbarkeit der Messung von d18OP04 an niedrigkonzentrierten natürlichen Phosphatlösungen (Flußwässer) klären und ggfs. erste Untersuchungen an natürlichen Fließsystemen sowie an Bodenlösung durchführen. Es soll versucht werden, auf diese Weise erste Aufschlüsse über Herkunft und Umsatz geogenen und anthropogenen Phosphats in Böden und Fließgewässern zu erlangen.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe

Geo-elektrische Signale von Bakterien und mikrobieller Aktivität in porösen Medien: Die Weiterentwicklung nicht-invasiven Monitorings

Die mikrobielle Biomasse im Untergrund leistet einen wesentlichen Beitrag zum Umsatz von Elementen, Nährstoffen und Schadstoffen in Böden und Grundwasser. Mikroben katalysieren Umsatzreaktionen und bauen dabei potentiell umweltschädliche, gelöste Stoffe wirksam ab. Veränderungen der Menge und Aktivität mikrobieller Biomasse sind eng mit der Effizienz der biologischen Abbauprozesse verbunden. Daher ist die Überwachung ihres Verhaltens der Schlüssel zu einem besseren Verständnis von Abbaureaktionen und der Vorhersagekraft von Wasserqualitätsmodellen. Die Messung von Mikroben ist jedoch nicht einfach, und traditionelle Methoden sind durch die schlechte Zugänglichkeit des Untergrunds begrenzt. Die Probenahme beruht daher auf invasiven Verfahren. Sogenannte nicht-invasive Methoden bieten die Möglichkeit Mikroben in den komplexen Umgebungen, in denen sie leben, z. B. in Böden und Grundwasser, zu überwachen. Sie liefern indirekte Informationen über dynamische Prozesse in Echtzeit und ohne Zerstörung des Beobachtungsobjektes. Insbesondere die spektrale induzierte Polarisation (SIP) ist, aufgrund der Eigenschaften von geladenen Bakterienoberflächen, sensitiv gegenüber mikrobiellem Wachstum in Böden. Offene Fragen zu den genauen Mechanismen, die zu den Signalen aus mikrobiellem Wachstum und mikrobieller Aktivität führen, bleiben jedoch unbeantwortet, was die Anwendung von SIP außerhalb des Bereichs der angewandten Geophysik erschwert. Das vorgeschlagene Projekt zielt darauf ab, das SIP-Signal von Bakterienzellen zu isolieren und die kombinierten Auswirkungen von Zelldichte und -aktivität mit der Größe und den spektralen Eigenschaften der SIP-Signale zu verbinden. Die vorgeschlagenen Arbeiten werden gezielte mikrobielle Wachstumsexperimente unter statischen (Batch), gut durchmischten (Retentostat) und Durchflussbedingungen kombinieren. In den Experimenten werden die Signale von Bakterienzellen in verschiedenen Stoffwechselzuständen quantifiziert, die von vorhanden und inaktiv bis hin zu aktiv und wachsend reichen. Durch die Durchführung von Messungen an Zellen in Abwesenheit anderer geladener Medien (z. B. Sediment) wird das Projekt den getrennten Beitrag der Abundanz gegenüber der Aktivität von Zellen isolieren. Das Upscaling von Batch-Inkubationen zu Durchflusssystemen wird durch systematische Experimente von zunehmender Komplexität durchgeführt. Experimente der höchsten Komplexitätsstufe in natürlichen porösen Medien werden von Daten aus den Vorläuferexperimenten profitieren. Diese werden es ermöglichen, mikrobielle elektrische Signale von den Signalen des Sediments zu separieren. Die vorgeschlagene Arbeit wird letztlich die Anwendbarkeit von SIP als nicht-invasives Überwachungsverfahren verfeinern, das den Sprung von einem vielversprechenden, von Geophysikern vorgestelltes Verfahren zu einer robusten geophysikalischen Methode schaffen kann, die von Biogeochemiker:innen, Geomikrobiolog:innen und Hydro(geo)log:innen angewandt wird.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.5: Entwicklung biotechnologischer Herstellungsprozesse für Enzyme in Pflanzen

1 2 3 4 541 42 43