API src

Found 458 results.

Related terms

Methanemissionen aus Kleinseen: Dynamik und Verteilungsmuster (MethDyn)

Kleinseen stellen eine bedeutende Quelle von Methan im globalen Methanhaushalt dar. Diese Seen weisen pro Flächeneinheit höhere Methanflüsse auf als große Seen und haben einen wesentlichen Anteil an den weltweiten Methanemissionen aus Seen. Allerdings sind die Abschätzungen der seeweiten Methanemissionen mit sehr großen Unsicherheiten behaftet. Das liegt daran, dass es nur wenige und unzureichende Messungen und Modellansätze gibt, die die zeitliche und räumliche Variabilität von Methan in Seen erfasst. Die Ziele des Projekts sind die Dynamik und Verteilungsmuster von Methan in und Methanemissionen aus Kleinseen zu untersuchen sowie die Eigenschaften der Seen zu charakterisieren und die Prozesse zu quantifizieren, die die seeweiten Methanemissionen aus Kleinseen bestimmen. Ein spezieller Fokus des Projekts liegt dabei auf der relativen Bedeutung und zeitlichen Variabilität der räumlichen Methangradienten, der Herbst-Vollzirkulation und der verschieden Emissionspfade für die jährlichen, seeweiten Methanemissionen. Am Beispiel von sechs Kleinseen, die unterschiedliche Eigenschaften besitzen, werden intensive Feldexperimente durchgeführt. Während der Feldexperimente werden unter Berücksichtigung der Hauptemissionspfade die seeinterne Dynamik, räumliche Heterogenität, seeweite Verteilung und zeitliche Variabilität von gelöstem Methan und Methanemissionen zusammen mit den abiotischen Bedingungen in den sechs Kleinseen gemessen und analysiert. Dabei kommen neuste Messtechniken zum Einsatz (Eddy-Kovarianz System, Ein- und Mehrfrequenz Echolote, Methansonden, automatisierte Methanflusskammern und -trichter, tragbarer Treibhausgasanalysator, Sauerstoff- und Kohlendioxid-Optoden), die mit einer intensiven Wasserprobenahme und -analyse (gelöstes Methan, Methan-Isotopenzusammensetzung, Methan-Oxidationsraten und andere Wasserinhaltsstoffe) verknüpft werden. Diese Kombination erlaubt eine genaue und zuverlässige Aufnahme aller im Kontext nötigen abiotischen Parameter und im Speziellen der gelösten Methankonzentration mit einer hohen zeitlichen und räumlichen Auslösung. Die Feldexperimente werden durch numerische Simulationen zur Dynamik von Methan mit einem 3D Methan Modell komplettiert. Ziel dieser Modellrechnungen ist es, den horizontalen Transport, die Dynamik, Verteilung sowie den seeweiten, diffusiven Fluss von gelöstem Methan in die Atmosphäre bei sich ändernden Randbedingungen zu untersuchen. Des Weiteren wird mit numerischen Experimenten bestimmt wie sich ein verändertes Klima und unterschiedliche Windszenarien auf den diffusiven Fluss von gelöstem Methan in die Atmosphäre während Zirkulationsphasen auswirken und deren relativen Anteil an den seeweiten, jährlichen Emissionen verändern.

Optimalität und Selbstorganisation bei Fließprozessen im Grund- und Bodenwasser

Fließwege in Böden und porösen Gesteinen sind durch eine starke Heterogenität auf allen Skalen geprägt. Diese Heterogenität beeinflusst sowohl die Eigenschaften des Bodens oder Gesteins als Wasserspeicher als auch den Transport gelöster Stoffe. Obwohl kaum Zweifel an der Bedeutung dieser mehrskaligen Heterogenität bestehen, ist deren Integration in numerische Boden- und Grundwasserfließmodelle nach wie vor eine große Herausforderung. Einerseits ist die räumliche Struktur der Heterogenität und ihrer Abhängigkeit von den Boden- und Gesteinseigenschaften noch immer nicht hinreichend genau bekannt, und andererseits würde eine Abdeckung eines ausreichend großen Skalenbereichs den numerischen Aufwand stark erhöhen. In den letzten Jahrzehnten hat sich die Idee, statistische Eigenschaften von Fließmustern aus Prinzipien der Optimalität abzuleiten, zumindest für zwei natürliche System als tragfähig erwiesen, und zwar für Flussnetzwerke an der Erdoberfläche und für den Blutkreislauf. Vor einiger Zeit wurde vom Antragsteller ein theoretisches Konzept entwickelt, um eine optimale räumliche Verteilung von Porosität und hydraulischer Leitfähigkeit im Sinne einer Minimierung der Energiedissipation abzuleiten. Allerdings ist die Forschung diesbezüglich noch immer auf dem Niveau eines theoretischen Konzepts, welches im Wesentlichen auf Relationen zwischen Porosität, Leitfähigkeit und Fließrate (Darcy-Geschwindigkeit) beschränkt ist. Die Validierung des theoretischen Konzepts, seine Weiterentwicklung für die Anwendung auf realistische Szenarien und die Überführung in entsprechende 'lumped parameter' Modelle sind die Hauptziele des Forschungsvorhabens. Die Validierung wird sowohl auf Basis der statistischen Verteilung der Einzugsgebietsgrößen gegenüber Daten von mittleren Quellschüttungen als auch auf Basis von Schüttungskurven einzelner Quellen erfolgen. Die Erweiterungen bzw. Verallgemeinerungen des ursprünglichen generischen Modells werden horizontale und geneigte Aquifere in Boussinesq-Näherung und echte 3D Modelle umfassen. 'Lumped paramter' Modelle sind für alle Varianten geplant, um die Ansätze schließlich mit angemessenem numerischen Aufwand anwendbar zu machen.

Biogeochemische Prozesse in sandigen Strandsedimenten von Spiekeroog und Majorca

Wellen- und tidebeeinflusste sandige Strände machen einen Großteil der weltweiten Küstenlinie aus und spielen eine wichtige Rolle für Kohlenstoff-, Nährstoff- und Metallkreisläufe. Während Flut strömt Meerwasser in den Sedimentkörper, ebenso wird organisches Material eingetragen. Im Sediment wird dieses von Mikroorganismen abgebaut, sodass bei Ebbe an Nährstoffen angereichertes Wasser zurück in den Küstenozean strömt, wo die rezirkulierten Nährstoffe zur Primärproduktion genutzt werden. Durch mikrobielle Abbauprozesse entwickeln sich Redoxgradienten, die den Porenwasser-Chemismus prägen. Strände können sich außerdem in einer Mischzone zwischen süßem Grundwasser und Salzwasser befinden (subterranes Ästuar), sodass Salinitätsgradienten die Sediment-Porenwasser-Interaktion beeinflussen. Süßwasser ist zudem eine Quelle für terrestrische gelöste Stoffe. Um die globale Rolle von Strandsystemen in Bezug auf Kohlenstoff-, Nährstoff- und Metallzyklen verstehen zu können, ist es notwendig, biogeochemische Prozesse in Strandsedimenten detailliert und an verschiedenen Stränden weltweit zu untersuchen. Da in diesem Forschungsbereich nur wenige Studien existieren und insbesondere die Quellen- oder Senkenfunktion dieser Systeme bezüglich redoxsensitiver Metalle noch weitgehend unbekannt ist, wird dieses Projekt einen wichtigen Beitrag zur Aufklärung der Metallzyklen in solchen Systemen liefern. Wir planen, biogeochemische Prozesse in den subterranen Ästuaren von zwei kontrastierenden Strandsystemen auf den Inseln Spiekeroog (NW Deutschland, mesotidal, siliziklastisch) und Mallorca (Spanien, mikrotidal, carbonatisch) zu untersuchen. Es sollen Hauptionen, DOC, O2, H2S, Nährstoffe (N, P, C, Si) und Spurenmetalle (Mn, Fe, U, Mo, V, Re) sowie Fe-Isotopenverhältnisse im Strandporenwasser analysiert werden. Wir planen ebenfalls die Sedimentzusammensetzung zu charakterisieren, da diese die Porenwasserzusammensetzung maßgeblich beeinflusst. An beiden Standorten sollen Transekte zwischen Düne und Niedrigwasserlinie bis in 5 m (Spiekeroog) bzw. 2 m (Mallorca) Tiefe hochaufgelöst beprobt werden. Der Fokus des Projekts liegt darin, Redox- und Salinitätsgradienten zu identifizieren sowie deren Auswirkungen auf die Porenwasserzusammensetzung zu interpretieren. Hydrochemische Modellierung anhand der erhobenen Daten soll zu einem besseren Verständnis der Effekte der Mischung von Grundwässern unterschiedlicher Zusammensetzung beitragen. Es sollen quantitative Aussagen zur Quellen- oder Senkenfunktion der Strände bezüglich essentieller Nährstoffe und redoxsensitiver Metalle erarbeitet werden. Fe-Isotopenverhältnisse dienen dazu, das limitierte Wissen über den Fe-Kreislauf in subterranen Ästuaren zu erweitern und die Fe-Isotopensignatur des Porenwasserflusses aus diesen Systemen besser zu definieren. Weiterhin wird diese Studie eine solide Datenbasis für die Modellierung des Porenwasser-Austroms von einzelnen Elementspezies aus permeablen Sedimenten in den Küstenozean liefern.

Isotopenuntersuchung an gelöstem Phosphat

Phosphor spielt als limitierendes Element für die Produktivität von Ökosystemen allgemein und speziell für den trophischen Status von Gewässern eine zentrale Rolle. Durch die Adsorption von Phosphat an Tonmineralen in Böden und Gewässern ist die Aussagefähigkeit von Konzentrationsmessungen in diesem Bereich jedoch eng begrenzt. Der Einsatz von kurzlebigen radioaktiven Phosphorisotopen, wie er bei der Untersuchung von Böden genutzt wird, verbietet sich in natürlichen aquatischen Systemen. Das beantragte Projekt soll als Alternativmethode die Machbarkeit der Messung von d18OP04 an niedrigkonzentrierten natürlichen Phosphatlösungen (Flußwässer) klären und ggfs. erste Untersuchungen an natürlichen Fließsystemen sowie an Bodenlösung durchführen. Es soll versucht werden, auf diese Weise erste Aufschlüsse über Herkunft und Umsatz geogenen und anthropogenen Phosphats in Böden und Fließgewässern zu erlangen.

Dekontamination mit ueberkritischem Wasser

Es wird die Extraktion mit gleichzeitiger Umwandlung organischer Verunreinigungen (Dieselkraftstoff, Schmieroel, polyzyklische aromatische Kohlenwasserstoffe u.a.) aus kontaminierten Bodenmaterialien mit ueberkritischem Wasser (Temperatur 374 Grad Celsius, Druck 221 bar) als Loesungsmittel und als Reaktand untersucht. Das Ziel ist dabei zum einen die weitestgehende Reinigung der Bodenmaterialien, zum anderen die Umwandlung problematischer Verunreinigungen in biologisch gut abbaubare Stoffe. Wasser weist unter diesen Bedingungen eine hohe Loesefaehigkeit und Reaktionsfaehigkeit gegenueber organischen Substanzen auf. Das fluide Gemisch aus ueberkritischem Wasser und geloesten organischen Substanzen laesst sich leicht von dem festen Bodenmaterial abtrennen; die erzeugten Abwaesser koennen anschliessend biologisch weiterbehandelt werden. Fuer die Untersuchungen steht eine Laboranlage mit 500 ml Feststoffvolumen sowie eine kontinuierlich betriebene Extraktionseinheit zur Verfuegung. Die Extraktion und die Reaktionen werden durch Probenahme und anschliessende chromatographische Analyse verfolgt.

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.2: Entwicklung eines Hybridfilters

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.5: Entwicklung biotechnologischer Herstellungsprozesse für Enzyme in Pflanzen

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.6: Charakterisierung und Evaluierung des neu entwickelten Adsorbermaterials

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.3: Entwicklung der biotechnologischen Filterkomponenten und der mikrobiellen Herstellungsprozesse der Enzyme

Weitergehende Behandlungsstufen zur Entfernung gelöster Stoffe, TP2.7: Entwicklung von Adhäsionsvermittlerpeptiden mit Enzymfunktionalität zur Elimination von gelösten Stoffen

1 2 3 4 544 45 46