Bodenversalzung, also eine übermäßige Anhäufung von löslichen Salzen im Boden, hat schädliche Auswirkungen auf Pflanzen, Tiere & die menschliche Gesundheit. Sie ist eine der Hauptbedrohungen für Bodenfruchtbarkeit & -stabilität und die biologische Vielfalt des Bodens und führt zu unerwünschten Veränderungen der physikalischen, chemischen & biologischen Bodenfunktionen. Abgesehen vom Boden, hat sie erhebliche Effekte auf andere Prozesse z.B. die Haltbarkeit von Baumaterialien, die Lebensdauer von Straßenbelägen und die CO2-Sequestrierung. Die Salzwasserverdunstung wird von den Transporteigenschaften des porösen Mediums, den äußeren Bedingungen (z. B. Wind, Umgebungstemperatur & relative Luftfeuchtigkeit), den Eigenschaften der verdunstenden Lösung und der Salzkristallisation beeinflusst. Während der Wasserverdunstung wird die gelöste Substanz durch kapillarinduzierte Flüssigkeitsströmung von der feuchten Zone am Boden zur Verdunstungsoberfläche transportiert. Dabei tendiert die Diffusion dazu, den gelösten Stoff homogen über die gesamte Domäne zu verteilen. Die Konkurrenz zwischen Aufwärtsadvektion und Diffusionstransport bestimmt die Verteilung der gelösten Stoffe im gesamten Boden. Wenn die Advektion die Diffusion dominiert, wird der gelöste Stoff meist in Oberflächennähe abgelagert, was zu einem allmählichen Konzentrationsanstieg führt. Bei klarer Überschreitung der Löslichkeitsgrenze, kommt es zur Ausfällung von Kristallen an der Bodenoberfläche. Die Oberflächenkristalle bilden komplexe Strukturen, die die für die Verdunstung verfügbare Fläche erheblich vergrößern können. Wie genau das Vorhandensein des sich verdunstungsbedingt bildenden porösen kristallisierten Salzes an der Oberfläche die Verdunstungswasserverluste aus dem Boden unter verschiedenen Bedingungen beeinflusst, ist nur unzureichend verstanden. Genaue Informationen über die komplexe Kopplung zwischen Strömungs- & Transportprozessen in porösen Medien und dem sich entwickelnden kristallisierten Salz an der Oberfläche sind für eine genaue Prognose der Wasserverdunstung aus dem Boden erforderlich, da unsere Beschreibung dieses Prozesses sonst auf die Anpassung von Parametern reagieren würde. Ohne dieses Wissen kann man die Wasserverfügbarkeit und die Verdunstung von der Bodenoberfläche deutlich unter- oder überschätzen, was verschiedene hydrologische Prozesse beeinflusst. Wir planen eine umfassende multiskalige, numerische & experimentelle Untersuchung, um die Auswirkungen des verdunstungsgetriebenen kristallisierten Salzes an der Oberfläche auf die verdunstenden Wasserverluste aus porösen Medien zu quantifizieren und werden die modernsten numerischen & experimentellen Werkzeuge wie Molekulardynamiksimulationen, Porennetzwerk- & Kontinuumsskalenmodellierung, Synchrotron-Röntgenmikrotomographie und maßgeschneiderte Laborexperimente einsetzen. Dies ermöglichet uns, die Salzwasserverdunstung genau zu beschreiben und die Wechselwirkungen zwischen Land und Atmosphäre zu quantifizieren.
Gasblasen mit Grössen zwischen einigen Mikrometern bis Zentimetern sind allgegenwärtig in aquatischen Ökosystemen. Sie beeinflussen nicht nur die physikalischen Eigenschaften des Wassers, sie ermöglichen auch einen wichtigen Transportweg mit hoher Relevanz für globale biogeochemische Kreisläufe und das Klima. An der Luft-Wasser-Grenzfläche beschleunigen Blasen den Gasaustausch und beeinflussen damit den globalen Kohlenstoffkreislauf. Aus Sedimenten freigesetzte Blasen (Ebullition) sind ein wichtiger Transportweg für Methan in die Atmosphäre. Darüber hinaus transportieren Blasen nicht nur Gase, sondern auch Partikel, gelöste Stoffe und Bakterien auf ihren Oberflächen. Dieses Material, darunter Kohlenstoff, Nährstoffe und Schadstoffe, stammt aus den Sedimenten oder wurde während des Aufstiegs aus der Wassersäule entfernt. Trotz dieser potenziellen Bedeutung ist wenig über Gasblasen und ihre Eigenschaften in Süßwasserökosystemen bekannt, bestehendes Wissen basiert hauptsächlich auf Beobachtungen in marinen Systemen. In diesem Projekt untersuchen wir diejenigen Prozesse, welche das Vorkommen und die Eigenschaften von Gasblasen in Süßwasserökosystemen kontrollieren, sowie die Rolle der Blasen für den Transport von Gasen, gelösten Stoffen und Partikeln. Wir unterscheiden zwischen Luftblasen die an der Wasseroberfläche eingetragen werden, Blasen die durch Gasübersättigung in der pelagischen Zone entstehen, sowie Blasen die in Sedimenten gebildet werden. Wir gehen davon aus, dass diese drei unterschiedlichen Arten von Blasen unterschiedliche Eigenschaften haben. Auf der Grundlage von Feldmessungen und Laborexperimenten untersuchen wir die Entstehung, Alterung und das Schicksal dieser drei Arten von Blasen und der von ihnen transportierten Substanzen in unterschiedlichen aquatischen Systemen. Die Beobachtungen und Ergebnisse werden mit prozessbasierten Modellen verknüpft um einen theoretisch fundierten und empirisch validierten Rahmen für die Bewertung der Relevanz von Stofftransport durch Gasblasen in aquatischen Ökosystemen zu entwickeln. Dies erlaubt die Übertragung der Ergebnisse dieses Projekts auf eine Vielzahl von Fragestellungen in unterschiedlichen Bereichen der aquatischen Forschung, der Gewässerüberwachung und des Gewässermanagements.
Die mikrobielle Biomasse im Untergrund leistet einen wesentlichen Beitrag zum Umsatz von Elementen, Nährstoffen und Schadstoffen in Böden und Grundwasser. Mikroben katalysieren Umsatzreaktionen und bauen dabei potentiell umweltschädliche, gelöste Stoffe wirksam ab. Veränderungen der Menge und Aktivität mikrobieller Biomasse sind eng mit der Effizienz der biologischen Abbauprozesse verbunden. Daher ist die Überwachung ihres Verhaltens der Schlüssel zu einem besseren Verständnis von Abbaureaktionen und der Vorhersagekraft von Wasserqualitätsmodellen. Die Messung von Mikroben ist jedoch nicht einfach, und traditionelle Methoden sind durch die schlechte Zugänglichkeit des Untergrunds begrenzt. Die Probenahme beruht daher auf invasiven Verfahren. Sogenannte nicht-invasive Methoden bieten die Möglichkeit Mikroben in den komplexen Umgebungen, in denen sie leben, z. B. in Böden und Grundwasser, zu überwachen. Sie liefern indirekte Informationen über dynamische Prozesse in Echtzeit und ohne Zerstörung des Beobachtungsobjektes. Insbesondere die spektrale induzierte Polarisation (SIP) ist, aufgrund der Eigenschaften von geladenen Bakterienoberflächen, sensitiv gegenüber mikrobiellem Wachstum in Böden. Offene Fragen zu den genauen Mechanismen, die zu den Signalen aus mikrobiellem Wachstum und mikrobieller Aktivität führen, bleiben jedoch unbeantwortet, was die Anwendung von SIP außerhalb des Bereichs der angewandten Geophysik erschwert. Das vorgeschlagene Projekt zielt darauf ab, das SIP-Signal von Bakterienzellen zu isolieren und die kombinierten Auswirkungen von Zelldichte und -aktivität mit der Größe und den spektralen Eigenschaften der SIP-Signale zu verbinden. Die vorgeschlagenen Arbeiten werden gezielte mikrobielle Wachstumsexperimente unter statischen (Batch), gut durchmischten (Retentostat) und Durchflussbedingungen kombinieren. In den Experimenten werden die Signale von Bakterienzellen in verschiedenen Stoffwechselzuständen quantifiziert, die von vorhanden und inaktiv bis hin zu aktiv und wachsend reichen. Durch die Durchführung von Messungen an Zellen in Abwesenheit anderer geladener Medien (z. B. Sediment) wird das Projekt den getrennten Beitrag der Abundanz gegenüber der Aktivität von Zellen isolieren. Das Upscaling von Batch-Inkubationen zu Durchflusssystemen wird durch systematische Experimente von zunehmender Komplexität durchgeführt. Experimente der höchsten Komplexitätsstufe in natürlichen porösen Medien werden von Daten aus den Vorläuferexperimenten profitieren. Diese werden es ermöglichen, mikrobielle elektrische Signale von den Signalen des Sediments zu separieren. Die vorgeschlagene Arbeit wird letztlich die Anwendbarkeit von SIP als nicht-invasives Überwachungsverfahren verfeinern, das den Sprung von einem vielversprechenden, von Geophysikern vorgestelltes Verfahren zu einer robusten geophysikalischen Methode schaffen kann, die von Biogeochemiker:innen, Geomikrobiolog:innen und Hydro(geo)log:innen angewandt wird.
Ziel des Vorhabens ist die Transformation der Bewirtschaftung von entwässerten, landwirtschaftlich genutzten Niedermoorböden hin zu einer klimaschonenden, moorbodenkonservierenden Nassbewirtschaftung durch den Anbau von Rohrkolben. Hierzu soll in zwei Modellregionen mit unterschiedlicher landwirtschaftlicher Struktur (Emsland und Cuxhaven) die großflächige, qualitätsoptimierte Erzeugung von Rohrkolben (Typha angustifolia und Typha latifolia) und die Verwertung der Biomasse als Baustoff und als Gartenbausubstrat (Torfersatz) entwickelt, demonstriert und für die Vermarktung vorbereitet werden. Das Teilvorhaben des Thünen-Instituts befasst sich mit dem Treibhausgasaustausch und dem Wasserhaushalt der Paludikulturen sowie intensiv landwirtschaftlich genutzter Referenzstandorte. Dabei kommt für die Messung des Austauschs von Kohlendioxid (CO2) und Methan (CH4) der Paludikulturen die Eddy-Kovarianz-Methode zum Einsatz, während an den Referenzstandorten CO2 mittels Eddy-Kovarianz und CH4 sowie Lachgas manuell mit Hauben gemessen werden. Daneben werden Steuerfaktoren wie Wasserstände und Nährstoffgehalte des Torfs sowie Änderungen der Geländehöhen erfasst. Insbesondere die erstmalige Messung von CH4-Emissionen mit der Eddy-Kovarianz-Methode werden zum Verständnis des vieldiskutierten, aber bisher wenig untersuchten Emissionsverhaltens von Typha-Paludikulturen beitragen und die Quantifizierung der Emissionsminderung durch diese Paludikulturen ermöglichen. Die Erfassung der Wasserhaushaltsgrößen erfolgt über die Messung oberirdischer Komponenten sowie eine Modellierung des Grundwasserzustroms. Die entsprechenden Ergebnisse werden Erkenntnisse zum Wasserbedarf von Typha-Paludikulturen liefern sowie zur Berechnung von Ein- und Austrägen gelöster Stoffe (Nährstoffe, gelöster organischer Kohlenstoff) genutzt werden.
Mit diesem Antrag sollen die physikalischen Prozesse identifiziert, analysiert und quantifiziert werden, die zu dem Austausch von gelösten Substanzen zwischen der Sediment-Wasser Grenzschicht, innerhalb der turbulenten Bodengrenzschicht (bottom boundary layer, BBL) und dem schwach turbulenten Inneren von geschichteten Becken beitragen. Im Fokus stehen dabei der Effekt von geneigten Hängen, an denen die Austauschprozesse durch das Zusammenwirken des Wiederaufbaus der Bodengrenzschichtschichtung , der Turbulenz innerhalb der BBL und sub-mesoskaligen Prozessen, von denen angenommen wird, dass sie den lateralen Austauschraten von Wasser bestimmen, verkompliziert werden. Diese Prozesse werden durch einen kombinierten Ansatz aus Feldmessungen und numerischer Modellierung untersucht. Insbesondere wird sich das Projekt dabei auf den Sediment-Wasser Austausch von Schwefelwasserstoff und Sauerstoff fokussieren, der in Situ mit Hilfe eines Eddy-Korrelationsmessgerätes als auch mit einem Mikroprofilsystem gemessen wird. Diese Messung wird durch ozeanographische Standardmessungen ergänzt, als auch durch Schiffs- und Verankerungsbasierte Turbulenzmessungen. Dieser Datensatz ist neuartig durch die Kombination von (A) der Sediment-Wasserflüsse von Sauerstoff und Schwefelwasserstoff und (B) der Turbulenzmessungen innerhalb der BBL und des Beckeninneren. Zusätzlich zu den Feldmessungen ist eine numerische Modellierung auf der Basis eines einfachen Sedimentmodells in Kombination mit einer Parametrisierung der Transportprozesse an der Sediment-Wassergrenzschicht geplant. Dieses Modell wird in idealisierten, eindimensionalen Parameterstudien, sowie in einem zweidimensionalen Setup verwendet, welches sich auf die Austauschprozesse der Bodengrenzschicht mit dem Beckeninneren konzentriert. Für die Untersuchung von dreidimensionalen Strukturen wie Eddies auf den Sauerstoff/Schwefelwasserstofftransport wird ein voll dreidimensionales realistisches Modell der zentralen Ostsee angewendet.
1
2
3
4
5
…
45
46
47