Submarine Grundwasservorkommen sind ein globales Phänomen in küstennahen Sedimenten. Im Verlaufe der letzten ca. 20 Jahre wurden weltweit vermehrt Anstrengungen unternommen, submarine Grundwasservorkommen räumlich zu erfassen, um, unter anderem, eine bessere Abschätzung über die damit verbundenen Mengen an submarin gespeichertem Süßwasser zu erhalten sowie deren Bedeutung für Schelf-Ökosysteme bzw. globale Elementkreisläufe zu erfassen. Trotz der bisherigen Anstrengungen fehlt es derzeit immer noch an einem grundlegenden Verständnis der Entstehungsprozesse submariner Grundwasservorkommen sowie deren zeitlicher und räumlicher Entwicklung. Eine große Unbekannte ist in vielen Fällen, ob vorhandene Vorkommen rezent noch aktiv von Land aus gespeist werden oder von den Landsystemen abgeschnitten sind und somit Relikte früherer Umweltbedingungen darstellen. Die hier vorgeschlagenen Untersuchungen setzen an dieser übergeordneten Fragestellung an. Ziel ist es, anhand von IODP Bohrdaten der Legs 317 (Neuseeland) und 313 (New Jersey, USA), numerische 1D und 2D Transport-Reaktions-Modelle zu entwickeln, die insbesondere auf die Abbildung geochemischer Prozesse und die damit verbundene Verteilung gelöster Stoffe im Porenwasser abzielen. Unser derzeitiges Verständnis zur Entstehung und Entwicklung submariner Grundwasservorkommen in den genannten Gebieten beruht im Wesentlichen auf den Ergebnissen großräumiger, hydrogeologischer Modelle. Deren Ergebnisse können allerdings gemessene Element-Verteilungsmuster im Porenwasser aufgrund der unzureichenden, räumlichen Auflösung nicht wiedergeben und stehen darüber hinaus zum Teil in direktem Widerspruch zu einigen geochemischen Indikatoren. In diesem Antrag schlagen wir daher eine genaue Analyse dieser Widersprüche vor. Auf Grundlage der vorhandenen Porenwasserdaten sollen die geplanten 1D/2D Modellierungen insbesondere dazu dienen, den zeitlichen Verlauf der Grundwasserdynamik im Bereich der Bohrungen zu erfassen und abzubilden. Dabei ist das übergeordnete Ziel, eine bessere Bewertung submariner Grundwasservorkommen hinsichtlich ihrer nachhaltigen Nutzung sowie ihrer Bedeutung innerhalb globaler Elementkreisläufe zu ermöglichen.
Bereits geringe Anteile an organischer Substanz können die Benetzungseigenschaften eines Bodens drastisch verändern. Benetzungshemmungen haben erhebliche Konsequenzen für die im Boden ablaufenden physikalischen, chemischen und biologischen Prozesse. Begründet durch verschiedene Befunde wird angenommen, daß Hydrophobie die Stabilisierung der organischen Substanz mindestens über zwei unterschiedliche Wirkungen beeinflußt. Einerseits kann Hydrophobie als Indikator für die Abbaubarkeit der organischen Substanz bewertet werden, andererseits reduzieren benetzungsgehemmte Oberflächen die Kapillarkräfte, was Auswirkungen auf die Stabilität von Aggregaten und auf die Ausbildung hoher Feuchteunterschiede im Boden hat. In dem beantragten Vorhaben sollen durch die kombinierte Messung von Kontaktwinkel und Oberflächenladung eine umfassende und quantitative Charakterisierung der Oberfläche von Bodenpartikeln und Aggregatoberflächen der Böden aller Untersuchungsgebiete des Schwerpunktprogramms erfolgen. In weiteren Versuchen soll die Wirkung fraktionierter wasserlöslicher organischer Substanz auf die Benetzbarkeit auf die kapillare Wasseraufnahme der Böden untersucht werden. Durch die Kooperation mit anderen Projektteilnehmern können auf molekularer Ebene strukturchemische Daten mit fundamentalen physikalischen Oberlächenparametern verglichen werden und es können Bezüge zu makroskopischen Stabilisierungsprozessen hergestellt werden.
Ziel: Systematisierung von Wechselwirkung von natuerlichem geloestem Kohlenstoff im Boden mit organischen Schadstoffen (PAK, Pestizide). Fragestellung: Gibt es systematisierbare mindernde oder verstaerkende Wirkungsweisen von DOM (Dissolved Organic Matter) auf die Wirkung von organischen Schadstoffen auf Pflanzen bzw. Bodenmikroorganismen? Aufgaben: Charakterisierung von DOM verschiedener Herkunft (Landnutzung); Oekotoxizitaetstest im Labor mit Pflanzen und Bodenmikroorganismen.
Die mikrobielle Biomasse im Untergrund leistet einen wesentlichen Beitrag zum Umsatz von Elementen, Nährstoffen und Schadstoffen in Böden und Grundwasser. Mikroben katalysieren Umsatzreaktionen und bauen dabei potentiell umweltschädliche, gelöste Stoffe wirksam ab. Veränderungen der Menge und Aktivität mikrobieller Biomasse sind eng mit der Effizienz der biologischen Abbauprozesse verbunden. Daher ist die Überwachung ihres Verhaltens der Schlüssel zu einem besseren Verständnis von Abbaureaktionen und der Vorhersagekraft von Wasserqualitätsmodellen. Die Messung von Mikroben ist jedoch nicht einfach, und traditionelle Methoden sind durch die schlechte Zugänglichkeit des Untergrunds begrenzt. Die Probenahme beruht daher auf invasiven Verfahren. Sogenannte nicht-invasive Methoden bieten die Möglichkeit Mikroben in den komplexen Umgebungen, in denen sie leben, z. B. in Böden und Grundwasser, zu überwachen. Sie liefern indirekte Informationen über dynamische Prozesse in Echtzeit und ohne Zerstörung des Beobachtungsobjektes. Insbesondere die spektrale induzierte Polarisation (SIP) ist, aufgrund der Eigenschaften von geladenen Bakterienoberflächen, sensitiv gegenüber mikrobiellem Wachstum in Böden. Offene Fragen zu den genauen Mechanismen, die zu den Signalen aus mikrobiellem Wachstum und mikrobieller Aktivität führen, bleiben jedoch unbeantwortet, was die Anwendung von SIP außerhalb des Bereichs der angewandten Geophysik erschwert. Das vorgeschlagene Projekt zielt darauf ab, das SIP-Signal von Bakterienzellen zu isolieren und die kombinierten Auswirkungen von Zelldichte und -aktivität mit der Größe und den spektralen Eigenschaften der SIP-Signale zu verbinden. Die vorgeschlagenen Arbeiten werden gezielte mikrobielle Wachstumsexperimente unter statischen (Batch), gut durchmischten (Retentostat) und Durchflussbedingungen kombinieren. In den Experimenten werden die Signale von Bakterienzellen in verschiedenen Stoffwechselzuständen quantifiziert, die von vorhanden und inaktiv bis hin zu aktiv und wachsend reichen. Durch die Durchführung von Messungen an Zellen in Abwesenheit anderer geladener Medien (z. B. Sediment) wird das Projekt den getrennten Beitrag der Abundanz gegenüber der Aktivität von Zellen isolieren. Das Upscaling von Batch-Inkubationen zu Durchflusssystemen wird durch systematische Experimente von zunehmender Komplexität durchgeführt. Experimente der höchsten Komplexitätsstufe in natürlichen porösen Medien werden von Daten aus den Vorläuferexperimenten profitieren. Diese werden es ermöglichen, mikrobielle elektrische Signale von den Signalen des Sediments zu separieren. Die vorgeschlagene Arbeit wird letztlich die Anwendbarkeit von SIP als nicht-invasives Überwachungsverfahren verfeinern, das den Sprung von einem vielversprechenden, von Geophysikern vorgestelltes Verfahren zu einer robusten geophysikalischen Methode schaffen kann, die von Biogeochemiker:innen, Geomikrobiolog:innen und Hydro(geo)log:innen angewandt wird.
Ziel des Vorhabens ist die Transformation der Bewirtschaftung von entwässerten, landwirtschaftlich genutzten Niedermoorböden hin zu einer klimaschonenden, moorbodenkonservierenden Nassbewirtschaftung durch den Anbau von Rohrkolben. Hierzu soll in zwei Modellregionen mit unterschiedlicher landwirtschaftlicher Struktur (Emsland und Cuxhaven) die großflächige, qualitätsoptimierte Erzeugung von Rohrkolben (Typha angustifolia und Typha latifolia) und die Verwertung der Biomasse als Baustoff und als Gartenbausubstrat (Torfersatz) entwickelt, demonstriert und für die Vermarktung vorbereitet werden. Das Teilvorhaben des Thünen-Instituts befasst sich mit dem Treibhausgasaustausch und dem Wasserhaushalt der Paludikulturen sowie intensiv landwirtschaftlich genutzter Referenzstandorte. Dabei kommt für die Messung des Austauschs von Kohlendioxid (CO2) und Methan (CH4) der Paludikulturen die Eddy-Kovarianz-Methode zum Einsatz, während an den Referenzstandorten CO2 mittels Eddy-Kovarianz und CH4 sowie Lachgas manuell mit Hauben gemessen werden. Daneben werden Steuerfaktoren wie Wasserstände und Nährstoffgehalte des Torfs sowie Änderungen der Geländehöhen erfasst. Insbesondere die erstmalige Messung von CH4-Emissionen mit der Eddy-Kovarianz-Methode werden zum Verständnis des vieldiskutierten, aber bisher wenig untersuchten Emissionsverhaltens von Typha-Paludikulturen beitragen und die Quantifizierung der Emissionsminderung durch diese Paludikulturen ermöglichen. Die Erfassung der Wasserhaushaltsgrößen erfolgt über die Messung oberirdischer Komponenten sowie eine Modellierung des Grundwasserzustroms. Die entsprechenden Ergebnisse werden Erkenntnisse zum Wasserbedarf von Typha-Paludikulturen liefern sowie zur Berechnung von Ein- und Austrägen gelöster Stoffe (Nährstoffe, gelöster organischer Kohlenstoff) genutzt werden.
1
2
3
4
5
…
41
42
43