s/gesteinkunde/Gesteinskunde/gi
Die kürzlich beendete IODP Exp. 385 (Guaymas Basin Tectonics and Biosphere, Sept.-Nov. 2019) bohrte acht Stellen im Guaymas Basin, einem jungen Rift Becken im Golf von Kalifornien, das sich durch aktiven Vulkanismus und hohe Ablagerungsraten von organisch reichen Sedimente auszeichnet, bedingt durch die hohe Primärproduktivität im darüber liegenden Wasser, sowie dem starken Eintrag von terrigenen Sedimenten. Die Expedition erbohrte Kerne mit organisch reichen Sedimenten die von vulkanischen Sills unterbrochen werden. Die Mikrobiologie war eines der zentralen Forschungsthemen dieser Expedition. Ein großer Probensatz zur Quantifizierung von Sulfatreduktionsraten, dem quantitativ wichtigsten Elektronenakzeptorprozess in marinen Sedimenten, wurde gesammelt und befindet sich nun am GFZ. Das vorgeschlagene ThermoSill-Projekt wird sich zunächst auf die allgemeinen Eigenschaften der mikrobiellen Sulfatreduktion in diesen Kernen sowie auf die Auswirkungen von Druck und Temperatur konzentrieren. Die Bohrkerne wiesen sehr unterschiedliche geothermische Gradienten von 200 bis über 800 Grad C / km auf, und die an Bord gemessenen geochemischen Daten weisen bereits auf eine große Vielfalt biogeochemischer Prozesse hin. In Tiefseesedimenten, insbesondere solchen, die solche in großer Sedimenttiefe und daher hoher in-situ Temperatur, sind organische Substrate wie kurzkettige organische Säuren im Allgemeinen ein begrenzender Faktor. Da die Sedimente im Guaymas-Becken hydrothermal beeinflusst werden, liefert die thermogene Aufspaltung von makromolekularen organischen Substanzen im Sediment reichlich mikrobielle Substrate. ThermoSill wird untersuchen, ob dieses große Angebot an Substraten zu einem bevorzugten Abbau bestimmter Substrate führt und damit wird damit einen Beitrag zum Verständnis der Prozesse an der oberen Temperaturgrenze des Lebens liefern. Besonderes Augenmerk wird auf die anaerobe Oxidation von Methan gelegt. Im letzten Teil des Projekts wird das Eindringen von Sills in Sedimente und der damit einhergehende Temperaturanstieg im umgebenden Sediment durch Heizexperimente simuliert. Diese Experimente werden von Pyrolyseexperimenten und kinetischen Modellen begleitet, um zu testen, ob eine solche kurzzeitige Erwärmung die mikrobielle Gemeinschaft über geologische Zeitskalen hinweg beeinflussen kann. Das vorgeschlagene Projekt ist direkt relevant für die Ziele der Expedition. Es ist auch eine Ergänzung zu einem laufenden Projekt, das die Auswirkungen von Druck und Temperatur auf die mikrobielle Sulfatreduktion in nicht hydrothermal beeinflussten Sedimenten aus dem Nankai-Trog (IODP. Exp. 370) untersucht.
Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.
Mikrotrennflächen spielen eine zentrale Rolle in der Ingenieurgeologie, Gesteinsphysik und Felsmechanik. Um die Entwicklung von Mikrorissen und Risssystemen in Gesteinen besser vorhersagen zu können, soll in Fortsetzung der bisherigen Arbeiten am GeoForschungsZentrum Potsdam das Mikrorisswachstum unter Modus I und II Belastung untersucht werden. Hierzu sollen fortgeschrittene Verfahren zur Analyse der bei der Rissbildung abgestrahlten akustischen Emissionen (AE) eingesetzt werden, um den Anteil unterschiedlicher Mikrorisstypen bei Rissbildung unter Modus I und II Belastung zu bestimmen. Diese Untersuchungen sollen dazu beitragen, den Zusammenhang zwischen Mikrorissverteilung in der Prozesszone und Bruchzähigkeit für unterschiedliche Belastungsarten zu erfassen. Im ersten Teil der Studie wurde ein Verfahren zur Bestimmung der Modus II Bruchzähigkeit (PTS-Test) entwickelt. Dies soll nun weiterentwickelt werden, um es in der Anwendung als Standardverfahren (International Society of Rock Mechanics (ISRM) Suggested Method) einsetzen zu können. Hierzu sollen der Einfluss der Probengröße und der Belastungsgeschwindigkeit auf die Bruchzähigkeit untersucht werden.
Die magmatische Entwicklung von ozeanischen Inselbögen und ihre mögliche Bedeutung für das Verständnis von Subduktions-Initiierung sind momentan Schwerpunkte des IODP mit den Bohrfahrten 350, 351 und 352 im Izu-Bonin-Mariana (IBM) Inselbogen, forearc und rear-arc. Die meisten Modelle zur Subduktions-Initiierung basieren auf Untersuchungen am IBM, aber es ist nicht klar, ob diese auch für andere ozeanische Inselbögen gelten. Der New Hebrides Inselbogen (NHIA) ist einer der jüngsten der Erde und entstand durch Subduktions-Initiierung vor etwa 15 Millionen Jahren, als die Kollision des Ontong Java Plateaus einen Umschwung der Subduktionsrichtung erzwang. Das ODP Leg 134 erbohrte sieben Kerne mit Längen bis 1100 m im forearc und backarc des NHIA und förderte viele magmatische Gesteine und Aschenlagen mit vulkanischen Gläsern mit Altern bis in das mittlere Miozän. In diesem Projekt wollen wir die alten Proben mit modernen Methoden neu analysieren, um die magmatische Entwicklung des NHIA zu untersuchen und mit der des IBM zu vergleichen. Dazu wollen wir auch weitere bisher schlecht untersuchte submarine Proben analysieren und mit Geländearbeiten auf den Inseln des zentralen NHIA die Magmenbildung im Verlauf der Zeit bis mindestens 20 Ma definieren. Diese neuen Daten werden auch Einblicke in den Effekt der Subduktion des d'Entrecasteaux Rückens auf die Magmenbildung des NHIA geben, die vor etwa 2 Ma begann. Diese Untersuchungen sind wichtig für das globale Verständnis von Subduktionsprozessen und der damit einhergehenden Magmenbildung im Erdmantel.
Das analog vorliegende Kartenwerk der Geologischen Karte von Nordrhein-Westfalen im Massstab 1:100000 (GK100) wird digital verfuegbar gemacht. Die GK100 zeigt auf 20 Vollblaettern, die zT angrenzende Bundeslaender und auch europaeische Nachbarlaender anschneiden, die Verbreitung der an der Erdoberflaeche anstehenden Gesteine. Sie informiert ueber das Alter, die Beschaffenheit und die Lagerung des Untergrundes. Die digitale GK100 umfasst eine Fachdatentabelle und eine Vektorkarte. Die Fachinhalte und die Flaechenobjekte der Vektorkarte sind ueber die Kuerzel der geologischen Einheiten miteinander zu einem Fachinformationssystem verknuepft. Die Fachdatentabelle gibt ueber die Eigenschaften von mehr als 500 verschiedenen geologischen Einheiten des Landesgebietes Auskunft, zB ueber das Alter, die Gesteinsbeschaffenheit, die Entstehung, den geologischen Ablagerungsraum oder die hydrogeologischen sowie geotechnischen Besonderheiten. Die Vektorkarte besteht aus drei Informationsebenen: einem Flaechen-, einem Linien- und einem Punktaufleger. Der Flaechenaufleger speichert die Polygone, die die Flaechen der Kartiereinheiten begrenzen. Der Linienaufleger haelt die linienhaften geologischen Informationen des Kartenblatts vor, wie zB tektonische Stoerungen, Verbreitungsgrenzen von Kartiereinheiten im tieferen Untergrund, Schnittlinien etc. Punktinformationen, wie Aufschluesse, Bundeslaender Fundstellen uae, werden in einem Punktaufleger festgehalten. Die graphischen Informationsebenen werden in einer blattschnittfreien digitalen Kartengraphik verwaltet. Das Fachinformationssystem der GK100 bietet durch die Verknuepfung von Fach- und Graphikdaten die Moeglichkeit von thematischen Auswertekarten. Bisher wurden die Auswertungen 'Petrographie', 'Geologische Uebersicht', 'Genese' und 'Karst' erarbeitet. Die digitale GK100 und deren thematischen Auswertekarten koennen blattschnittfrei als Plot oder als Datensatz bereitgestellt werden. Die Graphikdaten koennen in verschiedenen ASCII-Formaten und den Formaten der martkueblichen Graphiksysteme, wie zB ArcView, ArcInfo, ALK-GIAP und PIA, bereitgestellt werden. In das geologische Informationssystem der GK100 werden neben den flaechenhaften zukuenftig auch die in den geologischen Schnitten der GK100 enthaltenen vertikalen Informationen eingebunden.
Selbst in tiefen Sedimentschichten unter z.T. mehreren Kilometern mächtiger Sedimentbedeckung finden sich noch aktive Mikroorganismen. Mit zunehmender Tiefe steigt die Temperatur im Untergrund an und überschreitet irgendwann die Grenze bis zu welcher Leben möglich ist. Die bisher festgestellte Temperaturobergrenze von Leben auf der Erde wurden an Mikroorganismen von hydrothermalen Systemen, sogenannten Schwarzen Rauchern gemessen und liegt bei ca. 120 Grad C. In Sedimenten hingegen liegt die Grenze deutlich niedriger. Messdaten aus Ölfeldern deuten auf eine Grenze von ca. 80 Grad C hin. Diese Diskrepanz zwischen hydrothermalen und sedimentären Systemen wurde dadurch erklärt, dass die Mikroorganismen in Sedimenten nicht genügend Energie gewinnen können um die bei hohen Temperaturen verstärkt notwendigen Reparaturen ihrer Zellbestandteile wie DNA und Proteinen durchzuführen. Interessanterweise lässt sich metabolische Aktivität bei extrem hohen Temperaturen nur dann nachweisen, wenn die Experimente unter hohem Druck stattfinden. IODP Expedition 370 wurde spezifisch zur Klärung der Frage nach dem Temperaturlimit von Leben in sedimentären Systemen durchgeführt. Im Nankai Graben vor der Küste Japans herrscht ein recht hoher geothermischer Gradient von ca. 100 Grad C/km, d.h. das gesamte Temperaturspektrum in dem Leben möglich ist erstreckt sich über ein Tiefeninterval von etwas mehr als einem Kilometer. Durch modernste Bohr- und Labortechniken war es möglich, Proben von höchster Qualität zu gewinnen, welche garantiert frei von Kontamination sind. Die Expedition hat einen stark interdisziplinären Charakter, so dass eine Vielzahl von biologischen und chemischen Parameter gemessen wurde, welche eine detaillierte Charakterisierung des Sediments erlauben. Das beantragte Projekt ist ein wichtiger Teil der Expedition, da Sulfatreduktion der quantitativ wichtigste anaerobe Prozess für den Abbau von organischem Material im Meeresboden ist. Im Rahmen einer MSc Arbeit wurden bereits erste Messungen durchgeführt. Diese konnten zeigen das Sulfatreduktion über die gesamte Kernlänge messbar ist, wenn auch z.T. mit extrem geringen Raten. Im Rahmen des beantragten Projekts sollen weitere Messungen durchgeführt werden, unter anderem auch unter hohem Druck. Dazu soll ein Hochdruck Temperatur-Gradientenblock gebaut und betrieben werden. Neben Sedimenten von IODP Exp. 370 sollen weitere Experimente mit hydrothermal beeinflusstem Sediment aus dem Guaymas Becken durchgeführt werden. Ein Vergleich zwischen diesen beiden Sedimenten soll weitere Einblicke in einen der wichtigsten biologischen Prozesse im Meeresboden liefern und ein besseres Verständnis über die Grenzen von Leben im allgemeinen.
Der Anstieg der Konzentrationen von gelöstem organischem Kohlenstoff (DOM) konnte in vielen Oberflächengewässern der temperierten Zonen der Nordhemisphäre nachgewiesen werden. Der Anstieg der DOM-Konzentrationen wird größtenteils auf die schnellere Zersetzung organischer Substanz und den erhöhten Austrag von DOM aus den Böden der Gewässereinzugsgebiete, hier speziell aus Torfmooren, in Flüsse und Seen zurückgeführt. Neben der Bedeutung des DOM im globalen Kohlenstoffkreislauf, auch im Zusammenhang mit Klimaveränderungen, verursacht die 'Gewässerverbraunung' Probleme im Zusammenhang mit der Trinkwassergewinnung. So vermindern hohe DOM-Gehalte, oft auch verbunden mit erhöhten Einträgen DOM-gebundener Schwermetalle, die Trinkwasserqualität und Erhöhen die Kosten der DOM-Entfernung. Obwohl die DOM-Zusammensetzung ein Schlüsselparameter für das Umweltverhalten von DOM ist, ist die Bedeutung seiner molekularen Zusammensetzung in Verbindung mit Landnutzung, Liefergebietsvegetation, Moorhydrologie und Schwermetalltransport kaum verstanden. Zusätzlich sind viele Waldgebiete und Moore in Mittelgebirgen aufgrund von jahrhundertelangem Bergbau oft mit Schwermetallen (Pb, Hg, Zn, etc.) und Arsen belastet. Im vorgeschlagenen Projekt soll das Phänomen des DOM-Anstiegs in Trinkwasserreservoiren am Beispiel der Eckertalsperre und seinem Liefergebiet im Harz untersucht werden. Der Anstieg der DOM-Konzentrationen wird dort bereits seit mehr als 10 Jahren beobachtet. Obwohl allgemein davon ausgegangen wird, dass eine erhöhte Torfzersetzung in Mooren die erhöhten DOM- und Schwermetallausträge verursacht, konnte dieses bisher nicht direkt nachgewiesen werden. Im Rahmen des vorgeschlagenen Projektes soll die molekulare Zusammensetzung von DOM im Eckertalstausee und seiner Zuflüsse, die sowohl schwermetallkontaminierte Moorgebiete als auch Waldböden entwässern, über einen Zeitraum von 12 Monaten regelmäßig zu untersuchen. Ziel ist es, die saisonale und räumlich Variabilität der Austräge und Quellen von DOM und seine Rolle als Transportmedium für Spurenstoffe als Funktion der molekularen DOM-Zusammensetzung zu verstehen. Anders als in früheren Studien wird der Schwerpunkt der Bestimmung der molekularen DOM-Zusammensetzung auf Festphasenanalysen mittel Pyrolyse-GC-MS und Thermally assisted Hydrolysis and Methylation -GC-MS unterstützt von spektroskopischen Methoden und Spurenelementanalysen liegen. Das beantragte Projekt soll somit, durch die Nutzung des Eckertalstausee-Systems als natürliches Labor, durch die Identifizierung der wichtigsten DOM-Quellen und deren chemischer Variabilität eine Lücke im Verständnis des biogeochemischen Verhaltens von DOM in der Umwelt schließen.
Gegenstand des beantragten Projekts ist die Spaltspuranalyse von Bohrkernproben aus der Delitzsch-Torgau-Doberlug-Synklinalzone zur Rekonstruktion der regionalen neoproterozoischen und phanerozoischen Exhumierungsgeschichte. Thematische Schwerpunkte sind die Herkunft der variszischen Sedimente, die maximale Versenkungstiefe der heute anstehenden oder erbohrten Gesteine, der Einfluss von Granitintrusionen und variszischer metamorpher Überprägungen auf das Umfeld, die Datierung von Exhumierungsphasen und die Bestimmung von Mechanismen zur Hebung/Exhumierung und Beckeninversion. Wesentliche Parameter, die die langfristige Landschaftsentwicklung der Delitzsch-Torgau-Doberlug-Synklinalzone kontrollieren (Paläotemperaturen, Denudation, Paläotopographie), sollen gedeutet und in Kartenserien dokumentiert werden. Zudem soll die Exhumierungsgeschichte der Delitzsch-Torgau-Doberlug-Synklinalzone mit jener der angrenzenden Krustenblöcke korreliert werden.
Dieses Projekt trägt zu Forschungsfragen der IODP Expedition 370: T-Limit of the Deep Biosphere off Muroto bei. Die Temperatur an Site C0023 (Nankai Trog, Japan) steigt bis 1.2 km Tiefe auf ca. 120 Grad C an - das Maximum dessen, was potentiell von Mikroorganismen toleriert werden kann. Nährstoffarme tiefe Sedimente werden wahrscheinlich bei 80-90 Grad C sterilisiert. Ziel der Expedition war es, herauszufinden, wie und gesteuert durch welche Faktoren sich die Mikroorganismen-Vergesellschaftung mit der Tiefe ändert und wo Leben erlischt. Teil des wissenschaftlichen Programms ist die Untersuchung mikrobiell nutzbarer Substrate und eindeutiger geochemischer und mikrobieller Signaturen, die eine Identifizierung von biotischem und abiotischem Bereich bzw. dessen Übergang ermöglichen. Es wurden hochauflösende und präzise Porenwasserdaten gewonnen, die Reaktionsfronten, potentielle mikrobielle Aktivität und hydrothermale Überprägung anzeigen. Ein Teil der Sedimente ist Methan- und Sulfat-frei. Mikrobielle Aktivität hängt also von anderen Elektonenakzeptoren als Sulfat ab. Aktuelle Studien zeigen, dass die klassische Redoxkaskade durch Fe- und Mn-Reduktion in methanführenden Sedimenten ergänzt werden muss und, dass biogeochemische Prozesse in natürlichen Systemen stärker durch Mineralogie als durch eine strikte Abfolge von Reaktionen, die sich aus theoretischen Berechnungen ergibt, bestimmt sind. Fe(III)-Reduktion ist eine der ältesten Formen der mikrobiellen Respiration. Eisenreduzierer können unter hohen T- und Druckbedingungen wachsen, was nahelegt, dass diese einen Großteil der tiefen Biosphäre ausmachen. Fe- und Mn wird in Sedimenten von Lokation C0023 freigesetzt. Durch sequentielle Extraktionen soll aufgezeigt werden, welche Fe- und Mn-Phasen als Elektronenakzeptoren verfügbar sind und wie stark primäre Minerale diagenetisch überprägt wurden. Von besonderem Interesse sind Aschelagen, die an anderer Stelle bereits als Hotspots für mikrobielles Leben identifiziert wurden. Diese sind zahlreich in C0023 Sedimenten und typischerweise reich an Fe und Mn. Mikrobielle Fe-Reduktion führt zu einer Anreicherung von 54Fe im Porenwasser und sich daraus bildenden authigenen Mineralen (z.B. Siderit, Magnetit). Dementgegen führen abiotische Reaktionen mit Sulfid zu einer Anreicherung von 56Fe in der gelösten Phase. Stabile Fe-Isotope von gelöstem Fe2+ und reaktivem Fe in der Festphase sollen genutzt werden, um biologische und abiotische Fe-Reduktion zu unterscheiden. Die d56Fe Signatur wird an Karbonat-gebundenem Fe, der Ferrihydrit+Lepidkrokit-Fraktion, Goethit+Hämatit sowie Magnetit gemessen. Weiterhin soll das Ausmaß der Sulfidisierung, die Auswirkungen auf die Interpretation von Daten zu magnetischen Eigenschaften hat, durch sequentielle Extraktion von Fe-Monosulfiden und Pyrit erfasst werden. Ziel des Projekts ist es, die Rolle von Eisenoxiden für mikrobielle Respiration und entsprechende diagenetische Alterationen in tiefen Sedimenten von Site C0023 zu erfa
Wir schlagen vor, IODP/ODP-Daten einzusetzen, um numerische Modelle für die Entstehung von Gashydraten in marinen Sedimenten zu kalibrieren. Wir möchten dabei besonders untersuchten, was mit dem Methangas geschieht, das entsteht wenn Gashydrate begraben und unterhalb der Stabilitätszone zersetzt werden. Dieses Gas kann entweder in die Stabilitätszone aufsteigen, um dort neues Hydrat zu bilden oder gemeinsam mit dem Sediment begraben werden. Wenn das Gas in die Stabilitätszone zurückfließt, kann dort sehr viel Hydrat akkumulieren. Ohne diese Rückführung liegt die Hydratsättigung im Porenraum dagegen in der Regel bei kleiner als 1 Prozent . In den Modellen, die bisher genutzt wurden, um die Hydratmenge im globalen Ozean abzuschätzen wurde angenommen, dass das Gas begraben und nicht zurückgeführt wird. Die tatsächliche Hydratmenge könnte sehr viel größer sein als bisher vermutet, falls die Gasrückführung ein weitverbreitetes Phänomen ist. Der Rolle der Gashydrate im Klimasystem und ihr Potential als fossiler Energieträger wären dann größer als bisher vermutet.
| Origin | Count |
|---|---|
| Bund | 583 |
| Type | Count |
|---|---|
| Förderprogramm | 583 |
| License | Count |
|---|---|
| offen | 583 |
| Language | Count |
|---|---|
| Deutsch | 393 |
| Englisch | 278 |
| Resource type | Count |
|---|---|
| Keine | 142 |
| Webseite | 441 |
| Topic | Count |
|---|---|
| Boden | 562 |
| Lebewesen und Lebensräume | 431 |
| Luft | 270 |
| Mensch und Umwelt | 583 |
| Wasser | 392 |
| Weitere | 583 |