API src

Found 186 results.

Related terms

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Koordinationsfonds

Das International Ocean Discovery Program (IODP) ist ein zehnjähriges globales Vorhaben zur Erkundung der Bereiche unter den Meeresböden durch Tiefbohrungen. Es hat im Oktober 2013 begonnen und baut auf früheren wissenschaftlichen Ozean-Bohrprogrammen, namentlich dem Deep Sea Drilling Project (DSDP, 1968 - 83), dem Ocean Drilling Program (ODP, 1983 - 2003) und dem Integrated Ocean Drilling Program (IODP, 2003 - 2013), auf. Die wissenschaftlichen Ziele des neuen Bohrprogramms sind im Wissenschaftsplan 'Illuminating Earth's Past Present and Future' zusammengefasst. Darin sind vier Forschungsschwerpunkte festgelegt, die ihrerseits in insgesamt 14 verschiedene wissenschaftliche 'Herausforderungen' unterteilt sind:1) 'Climate and Ocean Change': Eine der wichtigsten wissenschaftlichen Herausforderungen ist es unser Verständnis für Änderungsraten und Ursachen globaler Klimaereignisse sowie deren Folgen zu verbessern. Die Erbohrung und Untersuchung von hochauflösenden Paläoklima-Archiven aus der Tiefsee erlauben Klimaänderungen und deren Rahmenbedingungen besser zu fassen und als Analogmodelle für den aktuellen Klimawandel sowie als Grundlage für numerische Modelle zur Vorhersage zukünftige Kimaänderungen heranzuziehen.2) 'Biosphere Frontiers': Eine weitere Herausforderung ist die Erforschung von Leben tief unterhalb des Meeresbodens, wo Mikroben isoliert von der photosynthetischen Welt an den Grenzbereichen theoretisch möglicher Lebensräume existieren. Die Erforschung dieser extremen Lebensräume erlaubt unter anderem Rückschlüsse auf die Entstehung des Lebens auf der Erde, da zu dieser Zeit ähnlich extreme Bedingungen herrschten. Eine weitere wichtige Herausforderung im Rahmen dieses Schwerpunktes ist die Beziehung zwischen Biodiversität und schnellen Umweltveränderungen. Ihre Erforschung ermöglicht Vorhersagen, wie der derzeitige Umweltwandel die marine Biodiversität und die marinen Ökosysteme beeinflussen könnte.3) 'Earth Connections': In diesem Schwerpunkt wird auf die geochemischen Austauschprozesse zwischen der festen Erde, den Ozeanen und der Atmosphäre fokussiert. Eine wichtige Herausforderung sind Bohrungen in den Erdmantel. Dieses größte geochemische Reservoir der Erde ist immer noch weitgehend unerforscht. Weitere Herausforderungen sind unter anderem ein besseres Verständnis für die Produktion ozeanischer Kruste sowie die involvierten Alterationsprozesse voran zu treiben.4) 'Earth in Motion': Dieser Schwerpunkt fokussiert auf kurzfristige geodynamische Prozesse von unmittelbarer gesellschaftlicher Relevanz. Hierunter fallen z.B. Prozesse im Zusammenhang mit Erdbeben, Erdrutschen und Tsunamis. Ebenfalls unter diesen Schwerpunkt fallen Herausforderungen wie ein Verständnis für die Bildung und Stabilität von Gashydraten und das Potential für die Sequestierung großer Mengen Kohlendioxid in Gesteinen der Tiefsee sowie die Installation von Bohrlochobservatorien.

INSPIRE Download Service (predefined ATOM) für Datensatz Geologische Karte Tektonik Saarland 1:100.000

Beschreibung des INSPIRE Download Service (predefined Atom): Die geologische Karte stellt die an der Erdoberfläche anstehenden Gesteine hinsichtlich ihrer Verbreitung, Beschaffenheit, Genese, Lagerungsverhältnisse und Altersbeziehungen dar. In Profilschnitten wird die Fortsetzung der Schichten in die Tiefe dargestellt. Die GK 100 ist eine Zusammenstellung und Generalisierung neuerer geologischer Kartierungen, die in Teilbereichen durch ältere geologische Karten (Geologische Karte von Preußen, Geologische Karte von Bayern) ergänzt wurden. In dem Datensatz „Tektonik“ werden die Bruch- und Überschiebungstektonik dargestellt. Die Felder der Attributtabelle erklären sich selbst und umfassen Line_id (Kurzbezeichnung für die Art der Störung), Störungstyp (Aufschiebung, Abschiebung, Überschiebung, Blattverschiebung) sowie Bemerkungen. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen) der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik) , der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gk100 und Parameter Langtext = Tektonik exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: TYP: Störung sicher, Störung vermutet, Überschiebung; KZ_TYP :Kennziffer 1=Störung sicher, 2=Störung vermutet,4=Überschiebung; - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert

Geologische Karte Tektonik Saarland 1:100.000

Die geologische Karte stellt die an der Erdoberfläche anstehenden Gesteine hinsichtlich ihrer Verbreitung, Beschaffenheit, Genese, Lagerungsverhältnisse und Altersbeziehungen dar. In Profilschnitten wird die Fortsetzung der Schichten in die Tiefe dargestellt. Die GK 100 ist eine Zusammenstellung und Generalisierung neuerer geologischer Kartierungen, die in Teilbereichen durch ältere geologische Karten (Geologische Karte von Preußen, Geologische Karte von Bayern) ergänzt wurden. In dem Datensatz „Tektonik“ werden die Bruch- und Überschiebungstektonik dargestellt. Die Felder der Attributtabelle erklären sich selbst und umfassen Line_id (Kurzbezeichnung für die Art der Störung), Störungstyp (Aufschiebung, Abschiebung, Überschiebung, Blattverschiebung) sowie Bemerkungen. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen) der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik) , der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gk100 und Parameter Langtext = Tektonik exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: TYP: Störung sicher, Störung vermutet, Überschiebung; KZ_TYP :Kennziffer 1=Störung sicher, 2=Störung vermutet,4=Überschiebung;

IS GÜK 500 DS - Informationssystem Geologische Übersichtskarte von Nordrhein-Westfalen 1:500.000 - Datensatz

Der Datensatz zum Informationssystem Geologische Übersichtskarte von Nordrhein-Westfalen 1:500.000 [IS GÜK 500] gibt einen generalisierten Überblick über die Verbreitung der Gesteine in Nordrhein-Westfalen. Dargestellt werden die geologische Einheit, das geologische Alter (Chronostratigraphie), die Gesteinsart (Lithologie) und die Entstehungsart (Geogenese). Verfügbare Kartenthemen: Geologische Schichten, Tektonische Verwerfungen.

Geologische Karte Lithologie Saarland 1:25.000

Die geologische Karte stellt die an der Erdoberfläche anstehenden Gesteine hinsichtlich ihrer Verbreitung, Beschaffenheit, Genese, Lagerungsverhältnisse und Altersbeziehungen dar. In Profilschnitten wird die Fortsetzung der Schichten in die Tiefe dargestellt. Die GK 25 stellt eine Neubearbeitung dar, in der die Ergebnisse der älteren Geologischen Karte von Preußen und Bayern, sowie die Resultate von aktuellen Kartierungen kompiliert werden. In dem Datensatz „Lithostratigraphie“ wird die Verbreitung unterschiedlich alter Gesteinseinheiten dargestellt. Die Felder der Attributtabelle erklären sich selbst und beinhalten „Stratigraphie“, „stratigraphische Kurzbezeichnung“ und „Petrographie“, sowie die in der gedruckten Karte verwendeten stratigraphischen Bezeichnungen und Kürzel. Geologische Karte 1:25 000 Lithologie ist in Bearbeitung und noch nicht flächendeckend vorhanden. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen) der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik) , der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gk25 und Parameter Langtext = Llithologie exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: STRAT_KZ:Kennziffer für die Stratographie; FORMATION; SUPERGRUPPE. SUBGRUPPE GRUPPE STRAT_KURZ (Kürzel für die Stratigraphie)

Geologische Karte Lithostratigraphie Saarland 1:100.000

Die geologische Karte stellt die an der Erdoberfläche anstehenden Gesteine hinsichtlich ihrer Verbreitung, Beschaffenheit, Genese, Lagerungsverhältnisse und Altersbeziehungen dar. In Profilschnitten wird die Fortsetzung der Schichten in die Tiefe dargestellt. Die GK 100 ist eine Zusammenstellung und Generalisierung neuerer geologischer Kartierungen, die in Teilbereichen durch ältere geologische Karten (Geologische Karte von Preußen, Geologische Karte von Bayern) ergänzt wurden. In dem Datensatz „Lithostratigraphie“ wird die Verbreitung unterschiedlicher Gesteinseinheiten dargestellt.Die Felder der Attributtabelle erklären sich selbst und umfassen Stratigraphie, stratigraphische Kurzbezeichnung, Petrographie sowie die in der gedruckten Karte verwendeten stratigraphischen Bezeichnungen und Kürzel. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen) der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik) , der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gk100 und Parameter Langtext = Lithostratigrahie exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: Strat_Kurz; Stratigraphie; Stratigraphie1; Petrographie.

Erfassung von repräsentativen Emissionsfaktoren der relevanten Prozesse in der Steine- und Erden-Industrie als Grundlage zur Ergänzung der VDI-Richtlinie 3790 Blatt 3 und 4

Ocean Drilling Program / Deep Sea Drilling Project - Bestimmung der Transportwege von 10Be in der Wassersäule im Südpolarmeer, Sites 1089 und 1093, ODP Leg 177

Die geplanten Untersuchungen an den Sedimentkernen 1089 und 1093 des ODP Leg 177 aus dem Südpolarmeer sollen Aufschluss über Änderungen der Paläoproduktivität, des Sauerstoffgehalts des Bodenwassers, der 10Be Transport- und Sedimentationsprozesse geben, sowie eine 10Be-Stratigraphie liefern. Die vorgenommenen Arbeiten beinhalten: a) die Bestimmung der 231Paex/230Thex Verhältnisse für die letzten 150 ka; b) die Modellierung des diagenetischen Verhaltens von Mangan, Eisen und Uran im Sediment und c) die Erstellung von 10Be Tiefenprofilen. Mittels der 231Paex/230Thaex Verhältnisse soll die Paläoproduktivität im Südpolarmeer und die damit in Verbindung stehende Veränderung der geographischen Lage der Antarktischen Polarfrontzone untersucht werden. Die Lokationen der zu untersuchenden Sedimentkerne wurden so gewählt, dass sie sich nördlich und südlich der heutigen Polarfrontzone befinden. Die Modellierung des diagenetischen Verhaltens von Mangan, Eisen und Uran (234U, 238U) in der Sedimentsäule liefert Rückschlüsse auf Diagenese, den Sauerstoffgehalt des Bodenwassers und den Fluss von organischem Material ins Sediment. Die 10Be Stratigraphie dient der Überprüfung der Magnetostratigraphie, wobei sie eine höhere zeitliche Auflösung für die letzten 800 ka liefert. Der Vergleich der 10Be Depositionsflußdichte mit dem atmosphärischen Eintrag lässt Rückschlüsse auf Zeiten von erhöhtem oder erniedrigtem Eintrag von Trägermaterial (terrigen/biogen) zu. Der terrigene Anteil kann durch die Bestimmung der 9Be Konzentrationen ermittelt werden.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Die Bildung des Peak Rings in Chicxulub: Entschlüsselung des Deformationspfads und des gesteinsmechanischen Verhaltens

Der 200-km große Chicxulub-Einschlagskrater in Yucatán, Mexiko, wurde im Rahmen der IODP-ICDP Expedition 364 erbohrt. Die Bohrung hat zum ersten Mal eine zentrale Ringstruktur (Peak Ring) erfasst, welche ein gebirgiger Ring ist, der in großen Impaktstrukturen auftritt und sich innerhalb des Kraterrands über die Topographie des Kraterbodens erhebt. Dieser Antrag befasst sich mit zwei Hauptfragen, die im Rahmen der Expedition 364 gestellt wurden: 1) Welche Eigenschaften und Bildungsmechanismen sind für Peak Rings wichtig? 2) Wie werden Gesteine während großer Impakte entfestig, um dabei den Kollaps und die Bildung relativ weiter, flacher Krater zu ermöglichen?In Bezug auf die erste Frage gibt es zwei konkurrierende Modelle der Peak Ring-Bildung: i) Ein konzeptionelles geologisches Modell, das auf geologische und fernerkundliche Beobachtungen des Mondes und anderer planetarer Körper fußt, und die Rolle eines großen Anteils an Impaktschmelze für die Peak Ring-Bildung betont, und ii) ein numerisches Modell, das Hydrocode-Simulationen einsetzt, um die Peak Ring-Bildung zu berechnen. Die zwei Modelle prognostizieren deutlich unterschiedliche kinematische Pfade und strukturelle Deformationsmerkmale in den Peak Rings, und eine Voruntersuchung der Kerne von Expedition 364 zeigt, dass diese Merkmale grundsätzlich vorhanden sind. Wir werden die Kerne mit quantitativen mikro- und makrostrukturellen Methoden untersuchen, um die Deformationsgeschichte des Peak Rings zu entschlüsseln und damit Grundsatzdaten liefern, die diese Modelle bestätigen.Die zweite Frage spricht die Problematik der vorübergehenden Schwächung des Targets an, die für die Kraterbildung nötig ist, und ein fortwährendes Problem der Kratermechanik darstellt. Drei Modelle liegen vor: 1) Akustische Fluidisierung sieht die Reduktion der Reibung durch seismische Erschütterungen vor. 2) Thermal Softening postuliert eine Erhitzung durch Stoßwellen und plastische Verformung. 3) Strain Rate Weakening/Frictional Melting setzt z.B. eine lokale Herabsetzung der Reibung durch Schmelzen voraus. Die Bohrkerne ermöglichen es uns, die Relevanz der drei Modelle einzuschätzen. Wir werden die die Kerne auf spezifische mikrostrukturelle Merkmale untersuchen, um zwischen den Schwächungsmechanismen zu unterscheiden. Zudem wird die Entfestigung durch Impaktschädigung mittels mechanischer Versuche im Labor untersucht. Wir werden die Bedeutung der ratenabhängigen Spröddeformation auswerten als ein Prozess, der durch Pulverisierung die Gesteinsfestigkeit beeinflusst.Unsere makro- und mikrostrukturellen Analysen werden wir zu einem kinematischen Modell für den Chicxulub-Peak Ring zusammenführen. Als Beitrag zu einem vertieften Verständnis der Peak Ring-Bildung im Sonnensystem kann dies zu einer verbesserten Interpretation von Fernerkundungsstudien an großen Kratern führen. Potentiell werden hierdurch auch die speziellen Prozesse des Chicxulub-Impakts besser verstanden, die das K-Pg Aussterbeereignis auslösten.

Die Bildung und Entwicklung des Erdmantels im Archaikum; Subkalzische Granate und Eklogite als älteste Zeitzeugen

Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.

1 2 3 4 517 18 19