Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.
Die Asian Tropopause Aerosol Layer (ATAL), eine Schicht mit erhöhtem Aerosolgehalt, tritt jedes Jahr von Juni bis September in 14-18 km Höhe in einem Gebiet auf, das sich vom Mittelmeer bis zum westlichen Pazifik erstreckt. Hinsichtlich der Zusammensetzung der Partikel, sowie ihrer Bedeutung für die Strahlungsbilanz in dieser klimasensitiven Höhenregion bestehen große Unsicherheiten. Die bisher einzigen Flugzeugmessungen aus dem Zentrum der ATAL wurden 2017 im Rahmen der StratoClim Kampagne von Kathmandu aus gewonnen. Dabei entdeckten wir mit Hilfe des Infrarotspektrometers GLORIA auf dem Forschungsflugzeug Geophysica, dass feste Ammoniumnitrat (AN) â€Ì Partikel einen beträchtlichen Teil der Aerosolmasse ausmachen. Diese zählen zu den effizientesten Eiskeimen in der Atmosphäre. Zudem zeigte die gleichzeitige Messung von Ammoniakgas (NH3) durch GLORIA, dass dieses Vorläufergas durch starke Konvektion in die obere Troposphäre verfrachtet wird. Im Rahmen der PHILEAS-Kampagne schlagen wir eine gemeinsamen Betrachtung von atmosphärischen Modellsimulationen und Messungen vor, um die Zusammensetzung, Ursprung, Auswirkungen und Verbleib der ATAL-Partikel zu untersuchen â€Ì insbesondere im Hinblick auf ihre Prozessierung sowie ihren Einfluss auf die obere Troposphäre und die untere Stratosphäre der nördlichen Hemisphäre. Messungen von monsunbeeinflussten Luftmassen über dem östlichen Mittelmeer sowie über dem nördlichen Pazifik werden es uns erlauben, Luft mit gealtertem Aerosol- und Spurengasgehalt zu analysieren und damit die StratoClim-Beobachtungen aus dem Inneren des Monsuns zu komplementieren. Um dabei die wahrscheinlich geringeren Konzentrationen an Aerosol und Spurengasen zu quantifizieren, schlagen wir vor, die GLORIA-Datenerfassung von NH3 und AN u.a. durch die Verwendung neuartiger spektroskopischer Daten zu verbessern. Ferner werden wir die Analyse der GLORIA-Spektren auf Sulfataerosole sowie deren Vorläufergas SO2 auszudehnen. Auf der Modellseite werden wir das globale Wetter- und Klimamodellsystem ICON-ART weiterentwickeln, um die ATAL unter Einbeziehung verschiedener Aerosoltypen (Nitrat, Ammonium, Sulfat, organische Partikel, Staub) zu simulieren â€Ì unter Berücksichtigung der hohen Eiskeimfähigkeit von festem AN. Modellläufe werden durchgeführt, um einerseits einen globalen Überblick über die Entwicklung der ATAL 2023 zu gewinnen und zudem detaillierte, auf die relevanten Kampagnenperioden zugeschnittene, wolkenauflösende Informationen über die Aerosol-Wolken-Strahlungs-Wechselwirkungen zu erhalten. Über die direkte Analyse der PHILEAS-Kampagne hinausgehend wird diese Arbeit die Grundlage für eine verbesserte Analyse von Aerosolparametern aus GLORIA-Beobachtungen früherer und zukünftiger HALO-Kampagnen sowie aus Satellitenbeobachtungen legen. Darüber hinaus wird sie ICON-ART, einem der zentralen Klimamodellsysteme in Deutschland die Simulation von Aerosolprozessen sowie Aerosol/Wolken-Wechselwirkungen im Zusammenhang mit der ATAL ermöglichen.
Für Milliarden Menschen weltweit, vor allem aber für jene in Küstengebieten, ist Grundwasser die primäre Quelle für Trinkwasser. Weltweit sind die verfügbaren Grundwasserressourcen durch steigende Wasserentnahmen gefährdet, dies gilt vor allem für küstennahe Aquifere, da diese zusätzlich von Salzwasserintrusion bedroht sind. Gleichzeitig ist der Grundwasserabfluss in die Ozeane ein wichtiger Prozess für aquatische Ökosysteme. Das sich wandelnde Klima und die steigenden Meeresspiegel werden die Küstengrundwasserdynamiken weiter verändern.Kürzlich entwickelte globale Grundwassermodelle bieten die Möglichkeit, diese globalen Herausforderungen sichtbar werden zu lassen. COASTGUARD stellt sich zur Aufgabe die Parametrisierung dieser neuartigen Modelle an der Randbedingung Ozean genauer zu untersuchen und dabei Unsicherheiten zu quantifizieren. Die Projektergebnisse werden der Forschungsgemeinschaft weltweit helfen, großskalige Küstengrundwasserprozesse besser zu verstehen und diese mit lokalen Erkenntnissen in Zusammenhang zu setzen. COASTGUARD wird nicht nur zu einem besseren Verständnis der Dynamiken von Küstengrundwasserprozessen beitragen, sondern auch Implikationen für die zukünftige Frischwasserverfügbarkeit zulassen. Außerdem wird COASTGUARD weltweit Regionen aufzeigen, welche besonders durch ein sich änderndes Klima betroffen sind.COASTGUARD bietet damit die einmalige Gelegenheit: (1) Unsicherheiten der globalen Grundwassermodellierung zu untersuchen und deren Parametrisierung an der so wichtigen Schnittstelle Ozean zu verbessern, (2) neue Erkenntnisse darüber zu liefern, welche Prozesse bezüglich der Dynamik zwischen Grundwasser und Meer auf einer globalen Skala dominant sind sowie (3) die weltweite Quantifizierung von Salzwasserintrusion und Grundwasserabfluss im Kontext von Klimawandel und dem steigenden Meeresspiegel darzustellen.
Die Tiefsee ist das größte Ökosystem auf der Erde, das uns aufgrund der Unerreichbarkeit und immensen Ausdehnung in weiten Teilen noch fremd ist. Wegen der geringen Verbreitung von Tiefsee-Sedimenten auf dem Festland und dem Mangel einer kontinuierlichen Fossil-Überlieferung ist unsere Kenntnis über Tiefseepaläobiogeographie und Tiefsee-Evolution ebenfalls recht limitiert. Eine Sichtung unterkretazischer bis obermiozäner Sedimente in ODP/DSDP/IODP-Bohrkernen (Paläoablagerungstiefe: tiefes Bathyal über 2000 m) erbrachte überraschende Ergebnisse: Sklerite von Echinodermata (Holothurien, Ophiuren, Asteroideen, Crinoiden), die heute einen wichtigen Anteil der Tiefseefaunafauna stellen, fehlen nahezu völlig. Dafür sind Stacheln von irregulären Echiniden (Holasteroida, Spatangoida: Atelostomata) häufig. Da die Stacheln morphologisch sehr variabel sind, bergen Klassifizierung der morphologischen Bandbreite ('Morphospace'), der Morphospace-Veränderung in der Zeit und die berechnete Stachel-Akkumulationsrate das Potential, Diversitäts- und Abundanz-Veränderungen in Bezug zu globalem Klimawandel zu kartieren. Da die derzeitige globale Erwärmung besonders in offenen Ozeanen zu geringerer Produktivität und verringertem Export von Organik in die Tiefsee führt, eignet sich der östliche tropische Pazifik als Modell-Region um zwei Arbeitshypothesen zu testen. i) Die Stachel-Diversität der Atelostomata korreliert invers mit känozoischen Warmzeiten, was die 'Productivity-Diversity Relation' stützt; und ii) Die Abundanz von Atelostomata-Stacheln als Ausdruck von Biomasse und Export-Productivity ist geringer in warmen Perioden als in kühlen. Für das Projekt wurde exemplarisch känozoisches Material aus einer sich rapide ändernden Welt berücksichtigt (Abkühlung Mittel-Miozän, mittelmiozänes Klimaoptimum, Abkühlung oberstes Oligozän, Warmphase Ober-Oligozän, oligozäne Oi-2 Eiszeiten & Nachspiel). Klassifizierbare Merkmale der Stacheln (z.B. Morphologie des Schaftes, Anwesenheit, Verteilung, Häufigkeit von Stacheln und Dornen, Form/Anzahl von Poren, Form der Stachelspitze u.a.) werden in eine Datenmatrix eingepflegt und statistisch ausgewertet. Variationen der Stachel-Diversität (Shannon-Wiener-Index) sind Ausdruck sich verändernder Biodiversität, und eine Abnahme der Diversität sowie der Stachel-Akkumulationsrate werden in Kontext mit Warmphasen vermutet. Eine 'Principal Component Analysis' von Stachel-Vergesellschaftungen einzelner Zeitintervalle ermöglicht es, die Disparität des Morphospace der berücksichtigten Intervalle zu erarbeiten. Hieraus lassen sich darüber hinaus Aussagen über graduelle (Evolution?) oder abrupte (Aussterben und Speziation/Immigration) Faunenveränderungen in der Tiefsee treffen, die in Beziehung zu schwankender Primärproduktivität durch globale Temperaturschwankungen gesetzt werden können (Hypothese 2).
Die Entwicklung arktischer Luftmassen ist wichtig für die Entstehung und Beständigkeit von Wolken und Niederschlag. Zwei Phänomene – warme und feuchte Einflüsse aus dem Süden sowie kalte und trockene Strömungen aus dem Norden – verursachen besonders starke und schnelle Änderungen in den Luftmassen. Während dieser Ereignisse ändern sich die Zustände z.B. der Wolken, der Stabilität und des Feuchtebudgets sowohl räumlich als auch zeitlich. Aufgrund dieser schnellen Änderungen sowie den generellen arktischen Bedingungen mit niedrigen und oft starken Inversionen, ist es schwierig die Prozesse mit globalen Modellen mit einer groben Auflösung sinnvoll wiederzugeben. Um die entscheidenden Prozesse sowohl besser zu erfassen als auch zu parameterisieren, wird in diesem Projekt eine Kombination aus detaillierten Beobachtungen mit dem HALO Flugzeug und hoch-aufgelösten Simulationen mit dem ICON-LEM verwendet. Durch die lange Reichweite des HALO Flugzeuges wird es möglich sein dasselbe Ereignis mehrmals zu messen und dadurch einen breiten Einblick in die Struktur der Luftmasse zu bekommen. Darüber hinaus wird es durch die Lagrangsche, d.h. mit der Strömung mitbewegte, Flugstrategie möglich sein, die zeitliche Entwicklung der Luftmassen während der Ereignisse zu erfassen. Durch lokale Verfeinerungen um den tatsächlichen Flug herum wird die Auflösung des ICON-LEM Setups zwischen 1 km und 100 m variieren. Mit dieser einzigartige Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird es möglich sein, das Feuchtebudget während der beobachteten warmen und kalten Einströmungen abzuschätzen. Anhang dieser Abschätzung können anschließend offene Fragen wie die Effizienz des Niederschlages sowie deren Einfluss auf die Beständigkeit der arktischen Mischphasenwolken untersucht werden. Während die Lagrangsche Flugstrategie es ermöglicht neue und einzigartige Forschungsfragen zu untersuchen, stellt sie die Flugplanung vor eine große Herausforderung, da eine gute Abschätzung der Luftströmungen unerlässlich sein wird. Teil dieses Projekts ist es deshalb auch die Flugplanung durch hochaufgelöste Vorhersagen und die Verfolgung bestimmter Luftmassen zu unterstützen. Insbesondere die Berechnung mehrerer Trajektorien wird es ermöglichen die verbleibenden Unsicherheiten abzuschätzen und sinnvolle Flugmuster vorzuschlagen. Die vorgeschlagene Kombination von Flugzeugbeobachtungen und hochauflösender Modellierung wird zu einem besseren Verständnis der Änderungen im Feuchtebudget und der Erhaltung von Mischphasenwolken während der feuchten sowie kalten Luftströmungen in der Arktis führen.
Energetische Elektronen aus der Aurora und den Strahlungsgürteln sind bekannte Quellen von Stickoxiden in der Auroraregion der oberen Mesosphäre und unteren Thermosphäre (MLT, 60-140 km). Im polaren Winter können diese Stickoxide bis in die mittlere Stratosphäre (30—45 km) herunter transportiert werden; sie variieren dabei mit der geomagnetischen Aktivität und dem dynamischen Zustand der Atmosphäre. Hier tragen Stickoxide maßgeblich zum katalytischen Ozonabbau bei; da Ozon eine wesentliche Rolle in der Strahlungsheizung der Stratosphäre spielt, ändern sich durch den Abwärtstransport von auroralen Stickoxiden auch Temperaturen und Windfelder. Diese Änderungen der Atmosphärendynamik können die ganze Atmosphäre bis hinunter zu troposphärischen Wettersystemen betreffen. Aus diesem Grund wurde kürzlich zum ersten Mal empfohlen, geomagnetische Aktivität als Teil des solaren Forcings des Klimasystems in Klima-Chemiemodellstudien wie CMIP-6 zu berücksichtigen. Die atmosphärischen Ionisationsraten, welche verwendet werden, um solche Modellexperimente anzutreiben, basieren empirisch auf Flüssen von präzipitierenden Elektronen, welche jedoch mit großen Unsicherheiten behaftet sind; neue Studien legen nahe, daß es ernsthafte Probleme mit der Genauigkeit dieser Daten gibt. In diesem Projekt werden wir untersuchen, wie vom Sonnenwind getriebene Prozesse in der Magnetosphäre präzipitierende Elektronen verschiedener Energien beeinflussen, und welchen Einfluß diese präzipitierenden Elektronen auf die Zusammensetzung, Temperatur, und Windfelder in der mittleren Atmosphäre haben.Insbesondere werden wir untersuchen:• Wie beeinflussen vom Sonnenwind getriebene Prozesse in der Magnetosphäre das Präzipitieren von Strahlungsgürtelelektronen in die Atmosphäre?• Zu welchen Energien werden präzipitierende Elektronen in den unterschiedlichen geomagnetischen Stürmen in der Magnetosphäre beschleunigt? • Welcher Energiebereich der Präzipitierenden Elektronen hat den größten Einfluss auf die Zusammensetzung und Dynamik der mittleren Atmosphäre?Dazu werden Modellsimulationen mit dem neuentwickelten VERB-4D Modell durchgeführt, welches Elektronenbeschleunigung in die Atmosphäre durch Welle-Teilchen-Wechselwirkungen mit Chorus, Plasmaspheric hiss, hiss in plumes, und EMIC-Wellen berücksichtigt. Ergebnisse werden mit NOAA POES Daten validiert. Modellierte Elektronenflüsse am Oberrand des Modells werden als Input verwendet für das neuentwickelte Klima-Chemiemodells EMAC/EDITh (Boden bis 220km). Modellierte Temperaturen und der Stickoxid-Gehalt werden anhand von Beobachtungen validiert. Fallstudien werden durchgeführt werden für geomagnetische Stürme, die durch Korotating Interaction Regions (CIR) und solare koronale Massenauswürfe (CMEs) ausgelöst wurden, um zu untersuchen, wie die verschiedenen Prozesse unterschiedliche Bereiche der Atmosphäre beeinflussen.
Die erste Antragsphase war auf die Bildungsraten und die Speicherung von anthropogenem Kohlenstoff (Cant) im Antarktischen Zwischenwasser (AAIW) fokussiert. Mit Hilfe von Freon (CFC) Daten konnten wir eine signifikante Reduktion der AAIW Bildungsrate von den 1990ern zu den 2000ern Jahren feststellen. Dies führte zu einer geringeren Steigerung der Cant Speicherung als vom atmosphärischen Cant Anstieg und einem unveränderten Ozean zu erwarten war. Um den Schwierigkeiten mit den Randbedingungen auszuweichen (Pazifisches AAIW strömt über die Drake Passage auch in den Atlantik und weiter in den Indischen Ozean) planen wir nun ein globales Vorgehen um in allen Ozeanen die Bildungsraten und Cant Speicherungen in den Zwischen- Tiefen- und Bodenwassermassen zu berechnen. Darüber hinaus wird der Zeitraum bis 2015 ausgedehnt, und wo immer die Datenlage es zulässt, Pentaden- anstatt Dekadenmittelwerte gebildet. Verwendet wird der aktualisierte GlODAPv2 Datensatz und eigene Daten.Die Berechnungen aus den Beobachtungen werden mit den Ergebnissen eines wirbelauflösenden globalen Ozeanmodells (1/10 Grad) kombiniert. Das POP Modell (Los Alamos Laboratory Parallel Ocean Program) mit eines horizontalen Auflösung von 0.1 Grad und 42 Tiefenstufen wird für die letzten 20 Jahre mit einem realistischen Forcing angetrieben und enthält außerdem die Freone als Tracer. Neben dem Vergleich mit einem klimatologischen Antrieb wird das Modell zur Weiterentwicklung der Tracer-Methode verwendet wir z.B. die Unsicherheit von zu wenig Datenpunkten und der Extrpolationsroutine auf die Bildungsraten / Cant Speicherungen. Ein weiterer wichtiger Punkt wird die Bestimmung der TTDs aus Lagrange Trajektorien und der Vergleich mit TTDs aus Tracermessungen sein, sowie die Untersuchung der Rolle der Wirbel, der Vermischung durch Wirbel und der vertikalen Vermischung.
Wir schlagen vor, IODP/ODP-Daten einzusetzen, um numerische Modelle für die Entstehung von Gashydraten in marinen Sedimenten zu kalibrieren. Wir möchten dabei besonders untersuchten, was mit dem Methangas geschieht, das entsteht wenn Gashydrate begraben und unterhalb der Stabilitätszone zersetzt werden. Dieses Gas kann entweder in die Stabilitätszone aufsteigen, um dort neues Hydrat zu bilden oder gemeinsam mit dem Sediment begraben werden. Wenn das Gas in die Stabilitätszone zurückfließt, kann dort sehr viel Hydrat akkumulieren. Ohne diese Rückführung liegt die Hydratsättigung im Porenraum dagegen in der Regel bei kleiner als 1 Prozent . In den Modellen, die bisher genutzt wurden, um die Hydratmenge im globalen Ozean abzuschätzen wurde angenommen, dass das Gas begraben und nicht zurückgeführt wird. Die tatsächliche Hydratmenge könnte sehr viel größer sein als bisher vermutet, falls die Gasrückführung ein weitverbreitetes Phänomen ist. Der Rolle der Gashydrate im Klimasystem und ihr Potential als fossiler Energieträger wären dann größer als bisher vermutet.
Karst entsteht sich durch die Verwitterung von Karbonatgestein und erzeugt starke oberflächliche und unterirdische Heterogenität von hydrologischen Speicher und Fließprozessen. Ungefähr 7% bis 12% der Erdoberfläche besteht aus Karstgebieten und etwa ein Viertel der Weltbevölkerung ist ganz oder teilweise abhängig von Trinkwasser aus Karstgrundwasserleitern. Für die nächsten Jahrzehnte, Klimamodelle prognostizieren einen starken Temperaturanstieg und eine Abnahme von Niederschlagsmengen in vielen Karstregionen der Welt. Trotz dieser Vorhersagen gibt es nur wenige Studien, die die Auswirkungen des Klimawandels auf die Karstwasserressourcen abschätzen. Die ist hautsächlich auf das Fehlen von Messdaten und die inadäquate Abbildung von Karstprozessen in derzeit angewandten Ansätzen zur großskaligen Modellierung zurückzuführen. Das Ziel der beantragten Nachwuchsgruppe ist, die notwendigen Daten und Ansätze zur erstmaligen Abschätzung der gegenwärtigen und zukünftigem Verfügbarkeit von Wasserressourcen in Karstgebieten zur Verfügung zu stellen. Um dieser Herausforderung gerecht zu werden, sind signifikante Fortschritte (1) zum Verständnis der Heterogenität von Karstregionen und zu deren Einarbeitung in hydrologische Modelle, (2) zum Upscaling von Beobachtungen auf der Einzugsgebietsskale für Anwendungen von Simulationsmodellen im globalen Maßstab, und (3) zum Vergleich der gegenwärtigen und zukünftigen Verfügbarkeit von Wasserressourcen mit gegenwärtigen und zukünftigen Wasserbedarf von Nöten. Im vorgeschlagenen Projekt sollen neuartige Ansätze zur Messung und Analyse hydrologischer Daten an fünf experimentellen Messgebieten, die in 5 verschiedenen Klimaregionen über den Globus verteilt sind (AU, D, ES, MX, UK), eingesetzt werden, um die Einflüsse der Heterogenität von Karstgebieten auf oberflächennahe Fließprozesse zu erkunden. Mittels einer neu entwickelten Karstdatenbank, welche beobachtete Zeitreihen von Karstquellenabflüssen enthält, und Rezessionsanalyse sollen die Heterogenität von Grundwasser und Abflussprozesse in verschiedenen Regionen der Welt charakterisiert werden. Dieselbe Datenbank, erweitert durch zusätzlich Abflussdaten auf Flussgebietsskale des Global Runoff Data Center (GRDC), soll zur Entwicklung eines neuen Ansatzes zur Einbindung der neu gewonnenen Erkenntnisse in ein großskaliges Simulationsmodell speziell für Karstregionen angewandt werden. Dieses Modell soll letztendlich dazu benutzt werden, um (1) gegenwärtige und, gekoppelt mit Klimaszenarien, zukünftige Verfügbarkeit von Wasserressourcen in Karstgebieten zu erkunden, um diese (2) mit gegenwärtigen und zukünftigen Wasserbedarf zu vergleichen und von Wassermangel bedrohte Regionen zu identifizieren.
PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.
Origin | Count |
---|---|
Bund | 258 |
Land | 6 |
Wissenschaft | 13 |
Type | Count |
---|---|
Förderprogramm | 258 |
Text | 4 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 4 |
offen | 259 |
Language | Count |
---|---|
Deutsch | 189 |
Englisch | 114 |
Resource type | Count |
---|---|
Bild | 3 |
Keine | 170 |
Unbekannt | 1 |
Webseite | 90 |
Topic | Count |
---|---|
Boden | 215 |
Lebewesen & Lebensräume | 216 |
Luft | 263 |
Mensch & Umwelt | 263 |
Wasser | 205 |
Weitere | 259 |