Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".
Deutscher Wetterdienst DWD 1996: Klimakarten für das Land Berlin, Teil 1: Bioklima Berlin, Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, unveröffentlicht. GEO-NET 2013: Klimaökologische Untersuchung „Tempelhofer Freiheit“ in Berlin – Entwurf Rev. 02, im Auftrag der Tempelhof Projekt GmbH, Berlin unveröffentlicht. Groß, G. 1989: Numerical simulation of the nocturnal flow systems in the Freiburg area for different topographies, in: Beitr. Phys. Atmosph.,H 62, S. 57-72. Groß, G. 1993: Numerical simulation of canopy flows, Springer Verlag Berlin. Groß, G. 2002: The exploration of boundary layer phenomena using a nonhydrostatic mesoscale model, in: Meteor.Z.schr. Vol. 11 Nr.5, S.701-710. Höppe, P. 1984: Die Energiebilanz des Menschen. Münchener Universitätsschriften, Meteorol. Inst., Wiss. Mitt. 49. Höppe, P., Mayer, H. 1987: Planungsrelevante Bewertung der thermischen Komponente des Stadtklimas. Landschaft und Stadt 19 (1), S. 22–29. Kiese, O. et al. 1992: Stadtklima Münster. Entwicklung und Begründung eines klimarelevanten Planungskonzeptes für das Stadtgebiet von Münster. Stadt Münster – Werkstattberichte zum Umweltschutz 1/1992. Landesamt für Gesundheit und Soziales (LAGeSo) (Hrsg.) 2014: Verzeichnis der Krankenhäuser und Privatentbindungsanstalten, Stand 06/2014, Berlin. Internet: www.berlin.de/lageso/service/downloadcenter/ (Zugriff: 26.11.2015) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013: Amtliches Liegenschaftskatasterinformationssystem (ALKIS), Potsdam Internet: geobasis-bb.de/lgb/de/geodaten/liegenschaftskataster/alkis/ (Zugriff 28.07.2020) Landesvermessung und Geobasisinformation Brandenburg (LGB) 2013a: Digitales Geländemodell (DGM), Potsdam Internet: geobasis-bb.de/lgb/de/geodaten/3d-produkte/gelaendemodell/ (Zugriff 28.07.2020) Matzarakis, A., Mayer, H., 1996: Another Kind of Environmental Stress: Thermal Stress. NEWSLETTERS No. 18, 7-10. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. Matzarakis, A., Rutz, F., Mayer, H., 2000: Modellierung der mittleren Strahlungstemperatur in urbanen Strukturen, Fachtagung METTOOLS, Stuttgart 2000. Internet: www.urbanclimate.net/matzarakis/papers/Tmrt_mettoolsiv.PDF (Zugriff: 04.02.2019) Mosimann, T. et al. 1999: Karten der klima- und immissionsökologischen Funktionen – Instrumente zur prozessorientierten Betrachtung von Klima und Luft in der Umweltplanung, in: Naturschutz und Landschaftsplanung 31,(4),S. 101-108, Stuttgart. Moriske & Turowski 2002: Handbuch für Bioklima und Lufthygiene, 8. Ergänzungslieferung, Ecomed-Verlag, Landsberg. Richter & Röckle (iMA Immissionen, Meteorologie Akustik) o.J.: Das numerische Simulationsmodell FITNAH, digitale PDF-Datei, Freiburg. Internet: www.ima-umwelt.de/fileadmin/Dokumente/Klima/fitnah_kurzuebersicht.pdf (Zugriff am 27.01.2016) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010: Flächennutzung und Stadtstruktur – Dokumentation der Kartiereinheiten und Aktualisierung des Datenbestandes, Berlin. Internet: /umweltatlas/_assets/literatur/nutzungen_stadtstruktur_2010.pdf (Zugriff 26.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015: GEO-NET Umweltconsulting GmbH, Hannover: GIS-gestützte Modellierung von stadtklimatisch relevanten Kenngrößen auf der Basis hochaufgelöster Gebäude- und Vegetationsdaten; EFRE Projekt 027 Stadtklima Berlin, Abschlussbericht. Internet: fbinter.stadt-berlin.de/fb_daten/umweltatlas/download/Projektbericht_StadtklimaBerlin_SenStadtUm_IIID_2015.pdf (Zugriff 25.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015c: PRISMA – Planungsraumbezogenes Informationssystem für Monitoring und Analyse, Berlin. Internet: www.berlin.de/sen/sbw/stadtdaten/stadtwissen/sozialraumorientierte-planungsgrundlagen/prisma/ (Zugriff 22.03.2023) VDI (Verein Deutscher Ingenieure) 2008: Richtlinie VDI 3785, Blatt1, Methodik und Ergebnisdarstellung von Untersuchungen zum planungsrelevanten Stadtklima, Düsseldorf. Internet: www.vdi.de/ (Zugriff am 11.05.2009) VDI (Verband Deutscher Ingenieure) 2015: Richtlinie 3787, Blatt 1 Umweltmeteorologie – Klima- und Lufthygienekarten für Städte und Regionen. Internet: www.vdi.de/richtlinie/vdi_3787_blatt_1-umweltmeteorologie_klima_und_lufthygienekarten_fuer_staedte_und_regionen/ (Zugriff 26.11.2015) Vogt, J. 2002a: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Textteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Vogt, J. 2002b: Bericht über orientierende Untersuchungen zur lokalklimatischen Funktion der Flächen des Gleisdreieckes in Berlin, Abbildungsteil, Voruntersuchung im Auftrag der Vivico Management GmbH, unveröffentlicht, Berlin. Digitale Karten SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.06 Oberflächentemperaturen bei Tag und Nacht, 1:85 000, Berlin. Internet: /umweltatlas/klima/oberflaechentemperatur/2000/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2001a: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2001, Karte 04.07 Klimafunktionen, 1:50 000, Berlin. Internet: /umweltatlas/klima/klimaanalyse/2000/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2003: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2003, Karte 04.10 Klimamodell Berlin – Analysekarten, 1:50 000, Berlin. Internet: /umweltatlas/klima/klimaanalyse/2001/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2004: Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2004, Karte 04.11 Klimamodell Berlin – Bewertungskarten, 1:50 000, Berlin. Internet: /umweltatlas/klima/klimabewertung/2001/karten/index.php SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2009, Karte 04.10 Klimamodell Berlin – Analysekarten, Berlin. Internet: /umweltatlas/klima/klimaanalyse/2005/karten/index.php (Zugriff 28.01.2016) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2009a: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2009, Karte 04.11 Klimamodell Berlin – Bewertungskarten, Berlin. Internet: /umweltatlas/klima/klimabewertung/2005/karten/index.php (Zugriff 28.01.2016) SenStadt (Senatsverwaltung für Stadtentwicklung Berlin) (Hrsg.) 2010a: Digitaler Umweltatlas Berlin, Ausgabe 2010, Karte 01.08 Geländehöhen, Berlin. SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2011: Digitaler Umweltatlas Berlin, aktualisierte Ausgabe 2011, Karte 03.11 Straßenverkehr – Emissionen und Immissionen, Berlin. Internet: /umweltatlas/luft/strassenverkehr-emissionen-und-immissionen/2009/karten/index.php (Zugriff 28.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2012: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2012, Karte 01.02 Versiegelung, Berlin. Internet: /umweltatlas/boden/versiegelung/2011/karten/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2013: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2013, Karte 01.11.3 Naturnähe, Berlin. Internet: /umweltatlas/boden/bodenfunktionskriterien/2010/karten/artikel.951908.php (Zugriff 26.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2013a: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2013, Karte 07.05 Strategische Lärmkarten, Berlin. Internet: /umweltatlas/verkehr-laerm/laermbelastung/2012/karten/index.php (Zugriff 26.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2014: Digitaler Umweltatlas Berlin, Ausgabe 2014, Karte 06.10 Gebäude- und Vegetationshöhen, Berlin. Internet: /umweltatlas/nutzung/gebaeude-und-vegetationshoehen/2012/karten/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2014a: Detailnetz Berlin, Stand 11.2014, aktueller Stand verfügbar über Geoportal Berlin, Berlin. Internet: fbinter.stadt-berlin.de/fb/index.jsp (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015a: Digitaler Umweltatlas Berlin, Ausgabe 2015, Karte 04.13 Langjährige Entwicklung ausgewählter Klimaparameter, Berlin. Internet: /umweltatlas/klima/entwicklung-von-klimaparametern/2013/zusammenfassung/index.php (Zugriff 26.11.2015) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2015b: Automatisierte Liegenschaftskarte Berlin (ALK), Stand 01.06.2014, aktueller Stand verfügbar über Geoportal Berlin, Berlin. Hinweis: mit der Einführung von ALKIS (Amtliches Liegenschaftskatasterinformationssystem) sind die Daten des Liegenschaftskatasters seit Februar 2016 in neuer Struktur im Geoportal verfügbar. Internet: fbinter.stadt-berlin.de/fb/index.jsp (Zugriff 25.01.2016) SenStadtUm (Senatsverwaltung für Stadtentwicklung und Umwelt Berlin) (Hrsg.) 2016: Digitaler Umweltatlas Berlin, aktualisierte und erweiterte Ausgabe 2016, Karte 04.11 Klimamodell Berlin – Planungshinweiskarte Stadtklima, Berlin. Internet: /umweltatlas/klima/klimabewertung/2015/karten/index.php (Zugriff 26.01.2016)
Überschreitungen von Luftqualitätsgrenzwerten von Feinstaub (PM10) im Osten Deutschlands treten meist an Tagen mit kalten und stabilen Wetterlagen im Winter auf und sind oft verbunden mit dem Transport von belasteter Luft aus Polen und anderen osteuropäischen Ländern. Im Rahmen dieses Projekts wurde eine Studie zur Quellzuordnung durchgeführt, um den Beitrag des grenzüberschreitenden Transports aus unterschiedlichen Emissionsquellen an der erhöhten Feinstaubkonzentration im Osten Deutschlands zu bewerten. Die Studie wurde mit dem Chemie-Transportmodell LOTOS-EUROS uns der darin implementierten Labelling-Technik zur Quellzuordnung durchgeführt. Die Ergebnisse wurden mit den PM10-Beobachtungen der PM-Ost-Kampagne und den Ergebnissen der darin durchgeführten messbasierten Quellzuordnung verglichen. Um die Qualität des Modells im Hinblick auf die Simulation von Episoden mit hoher PM Konzentration im Winter zu verbessern, wurden in der ersten Phase des Projekts Verbesserungen der Hausbrand- Emissionen und deren zeitlicher Variabilität vorgenommen. Zusätzlich wurde eine Optimierung der vom meteorologischen Modell COSMO simulierten Mischungsschichthöhen über Sensitivitätsläufe angestrebt. Die Ergebnisse zeigen, dass der Hausbrand und die Landwirtschaft die dominierenden Faktoren für erhöhte PM10-Konzentrationen im Osten Deutschlands bei kalten und stabilen Wetterbedingungen sind. Für städtische Stationen ist auch der Verkehrsbeitrag von Bedeutung. Im Durchschnitt stammt der größte Feinstaubbeitrag aus Deutschland. Bei höheren PM-Konzentrationen allerdings übersteigt der grenzüberschreitende Beitrag Polens und anderer osteuropäischer Länder denjenigen Deutschlands selbst. Die dominierenden Quellen dieses über große Distanzen transportierten Feinstaubs sind Hausbrand und Landwirtschaft. Der Vergleich der modellbasierten Quellzuordnung aus den LOTOS-EUROS-Ergebnissen mit den auf Messungen basierenden Ergebnissen aus dem PM-Ost-Projekt zeigt eine gute Übereinstimmung für Ammoniumnitrat- und Verbrennungsquellen. Für den verkehrsbedingten Beitrag sind größere Unterschiede zu erkennen, die auf die zeitliche Variabilität der Emissionen, die Auflösung des LOTOS-EUROS-Modells, die Unterschätzung der Aufwirbelung und den Reifen- und Bremsenabrieb zurückzuführen sind. Die PM10 Gesamtkonzentrationen aus dem LOTOS-EUROS Mo-dell sind in der Regel niedriger als die gemessenen Werte, was auf nicht erfasste Quellen oder Pro-zesse im Modell zurückgeführt werden kann. Die Korrelation des nicht modellierten PM10 Anteils mit den PMF-Quellen legt nahe, dass neben einer Unterschätzung der vertikalen Mischung, der Ausschluss der SOA-Bildung in LOTOS-EUROS und eine Unterschätzung der Sulfat-Bildung wahrscheinliche Gründe für die PM10-Unterschätzung sind. Quelle: Forschungsbericht
Scope The 3D seismic survey was a very extensive project. Here, we take a look at its dimensions. Survey area The first test measurements were carried out in 2013 in order to clarify whether a 3D seismic survey could be used to model the structure of the Asse mountain range and the overburden. These measurements showed that seismic mapping of the subsurface could be carried out with sufficient accuracy. They also provided basic information relating to the measurement set-up for the 3D seismic survey. The measurement area extended over some 37.5 square kilometres, running from the south-west to the north-east. It included the localities of Wittmar, Remlingen, Groß Vahlberg, Mönchevahlberg, Weferlingen and Klein Biewende, as well as parts of Dettum and Sottmar. In addition to built-up areas, the survey area also included large areas of farmland and woodland. In terms of depth, the plan was to record the geological structures of the Asse at depths of 200 to 2,000 metres. As a long-term consequence of World War II, it was impossible to rule out that unexploded ordnance would be encountered in the survey area. Given the dense seismic measurement grid, this ordnance could have posed a risk to personnel. Following preliminary investigations, the BGE reached the assumption that unexploded bombs or discarded ordnance were to be expected in some six percent of the survey area. More-detailed analyses of this situation were carried out over the course of the 3D seismic survey. Measurement grid The measurement grid consisted of two main components: lines of source points (“source lines”) and lines of receiver points (“receiver lines”). At the source points, seismic waves were emitted into the subsurface using vibration vehicles or small detonations. After being reflected by the various rock layers, these waves were recorded and stored at receiver points on the surface by instruments known as geophones. The 3D seismic survey was carried out using an orthogonal measurement system, i.e. the source lines and receiver lines were at right angles to one another. The line interval of the measurement grid was small in the vicinity of the Asse II mine and increased in size at the edge of the survey area. Per square kilometre, there were up to 2,000 source points from which seismic waves were emitted into the subsurface. Of the envisaged total of 40,860, it was possible to implement 36,137 source points (88.4%). The receiver points, which detected the seismic waves reflected by the rock, were even more numerous. Of the planned total of around 46,130, it was possible to implement 44,677 measuring points (96.9%). The exact locations of the points were determined using GPS signals. This large number of measuring points was necessitated by the geology of the Asse mountain range – specifically the steep sides of its salt structure and the similarly steeply inclined layers of the overburden. The steep incline of the individual layer boundaries was also the main reason for the large measurement area. Seismic waves emitted at the ground surface in the vicinity of the Asse mountain range and reflected at the side of the salt structure could only be recorded far away from the source points – and potentially only at the edge of the measuring area. Short measuring point intervals of 10 metres were necessary not only because of the angle at which the reflected waves returned to the ground surface but also in light of the achievable resolution when it came to modelling the geological structures. Although the plans showed perfectly straight individual source and receiver lines at 90 degrees to one another, the actual course was adapted to the respective localities. In the villages, for example, roads were followed wherever possible. Time frame Measurements were scheduled to begin on 1 October 2019 and to be completed on 31 March 2020 at the latest. This period also included preparation and follow-up work for the measurement process. The use of vibration vehicles and detonations was limited to the period from 17 January 2020 to 20 February 2020. Measurements Further measurements were carried out as part of the evaluation and geological interpretation of the resulting data. On short profiles, these included seismic refraction measurements intended to provide information about the wave velocities in the near-surface layers, thereby making the results of the 3D seismic survey more meaningful. Vertical seismic profiling (VSP) measurements were also carried out. These measurements helped to improve the velocity model – that is, the information about the speed at which the seismic waves propagate in the various layers – in the area of the overburden with a view to increasing the precision of the geological interpretation. Info Asse Please don’t hesitate to contact the staff at the Asse information centre if you have any questions. If necessary, they will also put you in touch with their relevant specialist colleagues. If you would like to see what the Asse II mine is like for yourself, we would be delighted to take you on a tour. Please contact the Asse information centre for further information.
The atmospheric composition is strongly influenced by a change in atmospheric dynamics, which is potentially related to climate change. A prominent example is the doubling of the stratospheric ozone component at the summit station Zugspitze (2962 m a.s.l., Garmisch-Partenkirchen, Germany) between the mid-seventies 15 and 2005, roughly from 11 ppb to 23 ppb (43 %). Systematic efforts for identifying and quantifying this influence have been made since the late 1990s. Meanwhile, routine lidar measurements of ozone and water vapour carried out at Garmisch-Partenkirchen (German Alps) since 2007, combined with in-situ and radiosonde data and trajectory calculations, have revealed that stratospheric intrusion layers are present on 84 % of the yearly measurement days. At Alpine summit stations the frequency of intrusions exhibits a seasonal cycle with a 20 pronounced summer minimum that is reproduced by the lidar measurements. The summer minimum disappears if one looks at the free troposphere as a whole. The mid- and upper-tropospheric intrusion layers seem to be dominated by very long descent on up to hemispheric scale in an altitude range starting at about 4.5 km a.s.l. Without interfering air flows, these layers remain very dry, typically with RH =< 5 % at the centre of the intrusion. Pronounced ozone maxima observed above Garmisch-Partenkirchen have been mostly related to a 25 stratospheric origin rather than to long-range transport from remote boundary layers. Our findings and results for other latitudes seem to support the idea of a rather high contribution of ozone import from the stratosphere to tropospheric ozone. Copyright: Author(s) 2019. CC BY 4.0 License
Karte 04.06.1: Oberflächentemperaturen am Abend Die Überfliegung fand zum Zeitpunkt fortschreitender Abkühlung statt, die in Abhängigkeit vom Thermalverhalten der einzelnen Strukturen unterschiedlich weit erfolgt war. Der erste optische Eindruck der abendlichen Überfliegung wird von den kältesten Standorten im blau-lila Bereich bestimmt. Bis auf einzelne Standorte im inneren Stadtgebiet liegen diese Flächen ausschließlich im Stadtrandbereich und außerhalb Berlins. Dabei handelt es sich vor allem um die für die Berliner Umgebung typischen weitläufigen Äcker und (z.T. ehemaligen) Rieselfelder , die sich beinahe wie ein Kranz um die Stadt legen und im Westen (Karolinenhöhe) und Nordosten (Lübars – Blankenfelde – Wartenberg) auch noch innerhalb der Stadt liegen. Kleinere, sehr kalte und deutlich abgegrenzte Flächen stellen z.B. die Äcker des Johannisstiftes in Spandau, der Jagen 94 im Grunewald, die Ruderalfläche südöstlich des Müggelsees, aber auch die Brachflächen der Flughäfen dar. Westlich des Stadtgebietes sind zu diesen stark abkühlenden Bereichen auch die Gebiete der Döberitzer Heide (und hier besonders die Senken) zu zählen. Ihr thermisches Verhalten wird – im Gegensatz zu den Waldgebieten – zumeist unwesentlich von Reliefeinflüssen verändert. Ausschlaggebend für die genannten Flächen ist ihre Größe von mindestens mehreren Hektar Fläche sowie ihr hoher und schneller Energieumsatz im Bereich der Grenzschicht Boden/Luft. Es findet kaum oder keine Beeinflussung durch benachbarte Strukturen statt. Die trockenen Böden lassen nur eine geringe Wärmeleitung zu. Diese isolierende Wirkung zeigt sich am deutlichsten bei Sandböden mit besonders hohem Luftquantum. Moorstandorte weisen demgegenüber ähnlich der wärmespeichernden Wirkung der großen Wasserflächen eine geringere Abkühlungsrate auf; ein ähnliches Verhalten ist auch für die überstauten Bereiche in Betrieb befindlicher Rieselfelder zu erwarten. Die genannten Standorte stellen einerseits effiziente “Kaltluftproduktionsflächen” dar, sind andererseits durch die nachts sich entwickelnde Luftstagnation aber auch besonders immissionsgefährdet. Inwieweit ihre Ausgleichswirkung für den klimatisch belasteten Bereich von Berlin wirksam werden kann, hängt somit vom Emittenteneinfluss, aber auch der räumlichen Beziehung zum Belastungsgebiet ab. Gesondert betrachtet werden müssen die vereinzelt vorkommenden großflächigen Metall-Flachdachkomplexe , so z.B. an der Kanal- und Gradestraße in Neukölln, im Bereich Eichbornstraße in Reinickendorf oder am Messegelände. Blanke Metallflächen mit ihrem stark reduzierten Emissionswert unter 0,1 nehmen – wie bereits erwähnt – eine Sonderstellung ein, so dass sich aus der im Thermalbild erfassten Strahlungstemperatur nicht die “wahre” Oberflächentemperatur berechnen lässt (vgl. Methode). Sie erscheinen in der Karte zu kalt. Alle übrigen Flachdachkomplexe bieten mit ihrer weitgehend horizontalen Ausrichtung sehr effektive Ein- und Ausstrahlungsbedingungen und erreichen dementsprechend sehr hohe tägliche Temperaturmaxima und nächtliche -minima. Grundsätzlich ähnlich wie die im Außenbereich liegenden Grünland- und Ackerflächen lässt sich das thermische Verhalten auch bei den großen innerstädtischen Kleingärten und von Wiesen geprägten Parkanlagen einstufen. Jedoch ist hier die Beeinflussung durch die jeweilige Lage zum bzw. im Stadtgebiet von Bedeutung. Beispiele für offen strukturierte, vor allem durch Rasen und kleinkronige Bäume bestimmte Flächen, sind die Kolonien am Südgelände, südlich des Hohenzollernkanals, im Bereich des Britzer Gartens oder die Wiesenflächen am Wasserwerk Johannisthal. Grünbereiche mit größerem Anteil an Baumbestand zeigen demgegenüber ein thermisches Verhalten, wie es in den Waldgebieten, jedoch auch schon bei entsprechenden Parkanlagen im Stadtgebiet erkennbar ist. Am Beispiel des etwa 220 ha Großen Tiergartens soll dies näher erläutert werden: Als Parkanlage im Zentrum der Stadt ist der Große Tiergarten dem Einfluss der umgebenden dichten Bebauung ausgesetzt. Darüber hinaus kann davon ausgegangen werden, dass – bei windschwachen Wetterlagen weniger als bei strömungsreichen – die Ausstrahlungsverluste besonders der baumbestandenen Flächen durch die warme Umgebungsluft eingeschränkt werden. Über Wiesenflächen wird relativ schnell eine der Oberfläche aufliegende Kaltluftschicht aufgebaut, deren Mächtigkeit im Laufe der Nacht zunimmt. Bei weitgehend geschlossenen baumbestandenen Flächen erfasst die Thermalaufnahme dagegen nicht den Bestandesboden, sondern die Ausstrahlung im Bereich des Kronenraumes. In den Abendstunden verhindert zunächst die im Kronen- und Stammbereich gespeicherte Wärme ein schnelles Abkühlen. Im weiteren Verlauf wird zusätzlich aus der Umgebung Warmluft zugeführt, an den Blattoberflächen abgekühlt, in den Stammraum abgeleitet und durch nachströmende Warmluft aus dem Stammraum, aber auch aus der Umgebung oberhalb des Kronenbereiches ergänzt, die wiederum den abstrahlenden Blattoberflächen Wärme zuführt. Dieser Prozess wird erst dann beendet, wenn sich vom Bestandesboden her eine Kaltluftschicht aufgebaut hat, die auch den Kronenbereich erfasst. Der zum Zeitpunkt der größten Abkühlung zu erwartende Temperaturgradient zwischen den Wiesen- und Baumflächen des Großen Tiergartens hängt daher sehr stark von der Bestandeshöhe, -art und -dichte der Bäume ab. Die Waldflächen folgen grundsätzlich dem oben genannten Abkühlungsschema. In bewegtem Gelände verzögert sich die Abkühlung aber zusätzlich durch Kaltluftabfluss bzw. Kaltluftsammlung in den Senken. Die hohen Bestandestemperaturen in Kuppenlagen (Havel- und Müggelberge, Schäferberg) lassen sich dadurch erklären, dass hier der Aufbau einer Kaltluftschicht vom Boden her durch den dem Gefälle folgenden Kaltluftabfluss verhindert wird. Umgekehrt konzentriert sich die produzierte Kaltluft in vorhandenen Senkenbereichen. Im Grenzbereich zu den Gewässern überlagern sich diese Einflüsse mit dem dortigen durch das ausgeprägte Wärmespeichervermögen von Wasser gegebenen hohen Temperaturniveau. Die Gewässer wirken sehr ausgeglichen im Tag-Nachtrhythmus; der Temperaturverlauf ist abhängig von der Gewässertiefe und damit dem “Nachschub” an gespeicherter Wärme sowie direkten anthropogenen Einflüssen. Der Temperaturverlauf in den bebauten Bereichen ist im Wesentlichen eine Funktion der Bebauungsstrukturen. Hoher Anteil an wärmespeichernden Materialien wie Beton, Stein, Asphalt führt erwartungsgemäß in weiten Bereichen der Innenstadt, in Kerngebietslagen ebenso wie in Industriegebieten, zu den höchsten Temperaturwerten nach den Feucht- und Gewässerstandorten. Sie können daher als eine flächenhafte Wärmequelle angesprochen werden, die den größten Einfluss auf die Ausbildung des sogenannten “Wärmeinsel-Effektes” ausübt. Beeinflusst wird die Intensität der örtlichen Abkühlung einerseits von dem Anteil der gut wärmespeichernden Baumassen im Gebäude-, Straßen- und Stadtplatzbereich sowie andererseits von den schneller und stärker wärmeabstrahlenden Flächen der Gebäudedächer und Grünbereiche. Somit ergeben sich auch für die verdichteten Innenstadtlagen noch Unterschiede zwischen den engbebauten Blockstrukturen mit hohem Anteil schlecht wärmeleitender Dachflächen und unbesonnter Innenhöfe und den mit mehr Platz- und Abstandsflächen ausgestatteten Innenstadtgebieten. Eine Einschätzung im Hinblick auf die klimatische Gesamtsituation dieser bebauten Bereiche ist ebenso wenig wie in vergleichbaren Industriegebieten abzuleiten, da im Einzelfalle immer streng in die im Thermalbild erfassten Temperaturniveaus zu unterscheiden ist. Ähnliche Phänomene hoher Abkühlungsraten auf anthropogen stark beeinflussten Standorten sind überall dort zu erwarten, wo kein fester Anschluss an den Untergrund vorhanden ist, wie etwa bei den Schotterflächen der Bahntrassen und angrenzender Flächen. Karte 04.06.2: Oberflächentemperaturen am Morgen Die Erwärmung der Oberflächen durch die der Jahreszeit entsprechend erst gegen 6.00 Uhr MEZ aufgegangene Sonne hat materialabhängig zum Zeitpunkt der Überfliegung gegen 10.30 Uhr zu einem quasi nur als Zwischenstand differenzierten Thermalbild geführt. In vielen Fällen verhalten sich die Einzelflächen spiegelbildlich zur Nachtaufnahme und sollen daher hier nur kurz erwähnt werden. Analog zur Nachtaufnahme stellen die offenen Flächen der abgeernteten Äcker und die Wiesen sowie vergleichbare Nutzungen die auffälligsten Standorte dar. Ihre rasche Erwärmung ist auf den hohen Wärmeumsatz an der Oberfläche infolge verminderter Wärmeleitung in den Untergrund und geringen Wärmespeichervermögens zurückzuführen. Das vergleichsweise hohe Luftvolumen der trockenen Böden isoliert die Bodenoberfläche von den tieferen Bodenschichten, der Wärmeübergang zwischen den einzelnen Bodenbestandteilen wird stark erschwert. Zwischen der Tag- und Nachtüberfliegung ergeben sich dadurch Temperaturdifferenzen von mehr als 20 °C. Die Gewässer dagegen besitzen lediglich einen flachen Oberflächentemperatur-Gradienten, der selbst bei geringen Wassertiefen und damit erhöhtem Wärmeumsatz zwischen Tag und Nacht nur 2 – 3 °C beträgt. Zur hohen Wärmespeicherkapazität tritt am Tage wie auch bei anderen Feuchtstandorten der temperaturmindernde Effekt der hohen Verdunstungsraten. Sie zählen damit zu den kühlsten Standorten. Ebenfalls sehr kalt erscheinen die großen Oberflächen der Flachdachkomplexe in Industrie- und Gewerbegebieten (vgl. Abendaufnahme). Für baumbestandene Parkanlagen und die Wälder gilt zum Zeitpunkt der Erfassung, dass der im Laufe der nächtlichen Abkühlungsphase erreichte Grad der Abkühlung bis in den Kronenbereich einen zunächst weiter vorhaltenden Puffer darstellt, der durch die einsetzende Evaporation der Blattmasse (Verdunstungskälte) noch verstärkt wird. Die Wälder erscheinen darüber hinaus homogener als in der Abendaufnahme, da der Effekt des Kaltluftabflusses bei Kuppenlagen nunmehr keine Rolle spielt. Der dichtbebaute Bereich kann sich aufgrund der geschilderten physikalischen Gesetzmäßigkeiten am Vormittag noch nicht in der erwarteten Weise als zentrale Wärmeinsel darstellen; hier wäre zu einem späteren Zeitpunkt mit verstärkter Abstrahlung der gespeicherten Wärme ein Annähern an die Werte der Ackerflächen und Wiesen zu erwarten. Karte 04.06.3: Oberflächentemperaturdifferenzen Abend – Morgen Für eine Bewertung der thermischen Wirksamkeit der Flächenstrukturen ist es sinnvoll, neben der qualitativen Darstellung der Temperaturdifferenzen im Tag-Nacht-Vergleich auch eine Auswertung hinsichtlich des jeweiligen Temperaturniveaus , auf dem die Schwankungen stattfinden, einzubeziehen. Abbildung 2 bezieht sich auf ausgewählte Flächentypen und Einzelstandorte und ordnet diese in eine Tag-Nacht-Temperaturmatrix ein. Hier sind Flächen(-typen) zu erkennen, die eine relativ hohe bzw. geringe Tagesamplitude aufweisen. Daneben zeichnen sich Bereiche ab, die grundsätzlich recht kühl bzw. recht warm einzustufen sind. Das ist für die Beeinflussung der über den Oberflächen lagernden Luftmassen von großer Bedeutung, wobei sich durch den horizontalen Luftaustausch Verschiebungen der Lufttemperatur ergeben können. Unterschiedliche Zuordnungen eines Flächentyps charakterisieren die Streuung der Tages- und Nachtoberflächen-temperaturen . Die niedrigen Tages- und Nachttemperaturen der Wälder, Parkanlagen, Kleingärten und locker bebauten Stadtrandsiedlungen stehen im Gegensatz zu den ganztägig hohen Oberflächentemperaturen der dicht bebauten Innenstadt und der Verkehrs- und Industrieflächen. Durch die hohe Wärmekapazität und Wärmeleitung weisen die Gewässer mit niedrigen Tages- und hohen Nachttemperaturen eine starke Dämpfung der täglichen Amplitude auf. Dies überträgt sich auch noch auf die unmittelbare Umgebung der Uferbereiche. Im Gegensatz hierzu stehen die landwirtschaftlich genutzten Flächen, Rieselfelder und auch noch die Bahnanlagen, die sich am Tage stark erwärmen, in den Nachtstunden aber ebenso stark abkühlen. Hierdurch treten an diesen Standorten die größten Tagesamplituden auf. Vergleich der Aufnahmezeitpunkte 1991 und 2000 Die Aufnahmetermine des Jahres 1991 (vgl. Karte 04.06 Ausgabe 1993) und 2000 liegen ca. einen Monat auseinander und die Wettersituationen waren somit nicht exakt vergleichbar. Dennoch lässt sich feststellen, dass das Temperaturniveau der jeweiligen Tag- und der zugehörigen Nachtszene sich bei diesen Terminen um ca. 6°C unterschied. Somit stellen die Tag-Nacht-Differenzen ein sehr ähnliches Bild dar und es liegt nahe, bei kleinflächigen Unterschieden der Differenzen zwischen 1991 und 2000 die Beziehung zu Veränderungen der Landnutzung bzw. Bebauungsstrukturen zu prüfen. Zu beiden Aufnahmezeitpunkten zeigen die Wasserflächen im Vergleich der Oberflächentemperaturen nur sehr geringe Tag-Nachtschwankungen im Bereich von ca. 1-3 Kelvin. Demgegenüber stehen die landwirtschaftlichen Nutzflächen fast aller Bearbeitungszustände, die Berliner Flughäfen oder stark versiegelte und dabei meist industriell genutzte Flächen mit Differenzen der Oberflächentemperaturen von bis zu 15 – 20 Kelvin. Die Wälder und Parks weisen flächenhaft etwas geringere Differenzwerte als die durch innerstädtische Bebauung zu charakterisierenden Bereiche auf. Zudem fallen insbesondere in den Daten mit der höheren räumlichen Auflösung aus dem Jahr 2000 einige Bereiche mit extrem niedrigen Oberflächentemperaturen sowohl am Tag als auch in der Nacht auf: Borsighallen, Krankenhaus am Messegelände Industriestandort an der Gradestraße etc. In diesen Bereichen spiegeln sich die unter Methode bereits beschriebenen Effekte besonderer Materialeigenschaften von Metalldächern wider.
Karte 04.06.1: Oberflächentemperaturen am Abend Die Überfliegung fand zum Zeitpunkt fortschreitender Abkühlung statt, die in Abhängigkeit vom Thermalverhalten der einzelnen Strukturen unterschiedlich weit erfolgt war. Der erste optische Eindruck der abendlichen Überfliegung wird von den kältesten Standorten im blau-lila Bereich bestimmt. Bis auf einzelne Standorte im inneren Stadtgebiet liegen diese Flächen ausschließlich im Stadtrandbereich und außerhalb Berlins. Dabei handelt es sich vor allem um die für die Berliner Umgebung typischen weitläufigen Äcker und (z.T. ehemaligen) Rieselfelder , die sich beinahe wie ein Kranz um die Stadt legen und im Westen (Karolinenhöhe) und Nordosten (Lübars – Blankenfelde – Wartenberg) auch noch innerhalb der Stadt liegen. Kleinere, sehr kalte und deutlich abgegrenzte Flächen stellen z.B. die Äcker des Johannisstiftes in Spandau, der Jagen 94 im Grunewald, die Ruderalfläche südöstlich des Müggelsees, aber auch die Brachflächen der Flughäfen dar. Westlich des Stadtgebietes sind zu diesen stark abkühlenden Bereichen auch die Gebiete der Döberitzer Heide (und hier besonders die Senken) zu zählen. Ihr thermisches Verhalten wird – im Gegensatz zu den Waldgebieten – zumeist unwesentlich von Reliefeinflüssen verändert. Ausschlaggebend für die genannten Flächen ist ihre Größe von mindestens mehreren Hektar Fläche sowie ihr hoher und schneller Energieumsatz im Bereich der Grenzschicht Boden/Luft. Es findet kaum oder keine Beeinflussung durch benachbarte Strukturen statt. Die trockenen Böden lassen nur eine geringe Wärmeleitung zu. Diese isolierende Wirkung zeigt sich am deutlichsten bei Sandböden mit besonders hohem Luftquantum. Moorstandorte weisen demgegenüber ähnlich der wärmespeichernden Wirkung der großen Wasserflächen eine geringere Abkühlungsrate auf; ein ähnliches Verhalten ist auch für die überstauten Bereiche in Betrieb befindlicher Rieselfelder zu erwarten. Die genannten Standorte stellen einerseits effiziente “Kaltluftproduktionsflächen” dar, sind andererseits durch die nachts sich entwickelnde Luftstagnation aber auch besonders immissionsgefährdet. Inwieweit ihre Ausgleichswirkung für den klimatisch belasteten Bereich von Berlin wirksam werden kann, hängt somit vom Emittenteneinfluss, aber auch der räumlichen Beziehung zum Belastungsgebiet ab. Gesondert betrachtet werden müssen die vereinzelt vorkommenden großflächigen Metall-Flachdachkomplexe , so z.B. an der Kanal- und Gradestraße in Neukölln, im Bereich Eichbornstraße in Reinickendorf oder am Messegelände. Blanke Metallflächen mit ihrem stark reduzierten Emissionswert unter 0,1 nehmen – wie bereits erwähnt – eine Sonderstellung ein, so dass sich aus der im Thermalbild erfassten Strahlungstemperatur nicht die “wahre” Oberflächentemperatur berechnen lässt (vgl. Methode). Sie erscheinen in der Karte zu kalt. Alle übrigen Flachdachkomplexe bieten mit ihrer weitgehend horizontalen Ausrichtung sehr effektive Ein- und Ausstrahlungsbedingungen und erreichen dementsprechend sehr hohe tägliche Temperaturmaxima und nächtliche -minima. Grundsätzlich ähnlich wie die im Außenbereich liegenden Grünland- und Ackerflächen lässt sich das thermische Verhalten auch bei den großen innerstädtischen Kleingärten und von Wiesen geprägten Parkanlagen einstufen. Jedoch ist hier die Beeinflussung durch die jeweilige Lage zum bzw. im Stadtgebiet von Bedeutung. Beispiele für offen strukturierte, vor allem durch Rasen und kleinkronige Bäume bestimmte Flächen, sind die Kolonien am Südgelände, südlich des Hohenzollernkanals, im Bereich des Britzer Gartens oder die Wiesenflächen am Wasserwerk Johannisthal. Grünbereiche mit größerem Anteil an Baumbestand zeigen demgegenüber ein thermisches Verhalten, wie es in den Waldgebieten, jedoch auch schon bei entsprechenden Parkanlagen im Stadtgebiet erkennbar ist. Am Beispiel des etwa 220 ha Großen Tiergartens soll dies näher erläutert werden: Als Parkanlage im Zentrum der Stadt ist der Große Tiergarten dem Einfluss der umgebenden dichten Bebauung ausgesetzt. Deutlich wird dies direkt im Thermalbild z.B. an dem “Wärmekeil” westlich des Brandenburger Tores. Darüber hinaus kann davon ausgegangen werden, dass – bei windschwachen Wetterlagen weniger als bei strömungsreichen – die Ausstrahlungsverluste besonders der baumbestandenen Flächen durch die warme Umgebungsluft eingeschränkt werden. Über Wiesenflächen wird relativ schnell eine der Oberfläche aufliegende Kaltluftschicht aufgebaut, deren Mächtigkeit im Laufe der Nacht zunimmt. Bei weitgehend geschlossenen baumbestandenen Flächen erfasst die Thermalaufnahme dagegen nicht den Bestandesboden, sondern die Ausstrahlung im Bereich des Kronenraumes. In den Abendstunden verhindert zunächst die im Kronen- und Stammbereich gespeicherte Wärme ein schnelles Abkühlen. Im weiteren Verlauf wird zusätzlich aus der Umgebung Warmluft zugeführt, an den Blattoberflächen abgekühlt, in den Stammraum abgeleitet und durch nachströmende Warmluft aus dem Stammraum, aber auch aus der Umgebung oberhalb des Kronenbereiches ergänzt, die wiederum den abstrahlenden Blattoberflächen Wärme zuführt. Dieser Prozess wird erst dann beendet, wenn sich vom Bestandesboden her eine Kaltluftschicht aufgebaut hat, die auch den Kronenbereich erfasst. Der zum Zeitpunkt der größten Abkühlung zu erwartende Temperaturgradient zwischen den Wiesen- und Baumflächen des Großen Tiergartens hängt daher sehr stark von der Bestandeshöhe, -art und -dichte der Bäume ab. Die Waldflächen folgen grundsätzlich dem oben genannten Abkühlungsschema. In bewegtem Gelände verzögert sich die Abkühlung aber zusätzlich durch Kaltluftabfluss bzw. Kaltluftsammlung in den Senken. Die hohen Bestandestemperaturen in Kuppenlagen (Havel- und Müggelberge, Schäferberg) lassen sich dadurch erklären, dass hier der Aufbau einer Kaltluftschicht vom Boden her durch den dem Gefälle folgenden Kaltluftabfluss verhindert wird. Umgekehrt konzentriert sich die produzierte Kaltluft in vorhandenen Senkenbereichen. Im Grenzbereich zu den Gewässern überlagern sich diese Einflüsse mit dem dortigen durch das ausgeprägte Wärmespeichervermögen von Wasser gegebenen hohen Temperaturniveau. Die Gewässer wirken sehr ausgeglichen im Tag-Nachtrhythmus; der Temperaturverlauf ist abhängig von der Gewässertiefe und damit dem “Nachschub” an gespeicherter Wärme sowie direkten anthropogenen Einflüssen. Die Rückleitungen erwärmten Kühlwassers am Heizkraftwerk Reuter und am Kraftwerk Oberhavel sind deutlich im Thermalbild zu erkennen. Der Temperaturverlauf in den bebauten Bereichen ist im Wesentlichen eine Funktion der Bebauungsstrukturen. Hoher Anteil an wärmespeichernden Materialien wie Beton, Stein, Asphalt führt erwartungsgemäß in weiten Bereichen der Innenstadt, in Kerngebietslagen ebenso wie in Industriegebieten, zu den höchsten Temperaturwerten nach den Feucht- und Gewässerstandorten. Sie können daher als eine flächenhafte Wärmequelle angesprochen werden, die den größten Einfluss auf die Ausbildung des sogenannten “Wärmeinsel-Effektes” ausübt. Beeinflusst wird die Intensität der örtlichen Abkühlung einerseits von dem Anteil der gut wärmespeichernden Baumassen im Gebäude-, Straßen- und Stadtplatzbereich sowie andererseits von den schneller und stärker wärmeabstrahlenden Flächen der Gebäudedächer und Grünbereiche. Somit ergeben sich auch für die verdichteten Innenstadtlagen noch Unterschiede zwischen den engbebauten Blockstrukturen mit hohem Anteil schlecht wärmeleitender Dachflächen und unbesonnter Innenhöfe und den mit mehr Platz- und Abstandsflächen ausgestatteten Innenstadtgebieten. Eine Einschätzung im Hinblick auf die klimatische Gesamtsituation dieser bebauten Bereiche ist ebenso wenig wie in vergleichbaren Industriegebieten abzuleiten, da im Einzelfalle immer streng in die im Thermalbild erfassten Temperaturniveaus zu unterscheiden ist. Ähnliche Phänomene hoher Abkühlungsraten auf anthropogen stark beeinflussten Standorten sind überall dort zu erwarten, wo kein fester Anschluss an den Untergrund vorhanden ist, wie etwa bei den Schotterflächen der Bahntrassen und angrenzender Flächen. Karte 04.06.2: Oberflächentemperaturen am Morgen Die Erwärmung der Oberflächen durch die der Jahreszeit entsprechend erst gegen 6.00 Uhr MEZ aufgegangene Sonne hat materialabhängig zum Zeitpunkt der Überfliegung gegen 10.30 Uhr zu einem quasi nur als Zwischenstand differenzierten Thermalbild geführt. In vielen Fällen verhalten sich die Einzelflächen spiegelbildlich zur Nachtaufnahme und sollen daher hier nur kurz erwähnt werden. Analog zur Nachtaufnahme stellen die offenen Flächen der abgeernteten Äcker und die Wiesen sowie vergleichbare Nutzungen die auffälligsten Standorte dar. Ihre rasche Erwärmung ist auf den hohen Wärmeumsatz an der Oberfläche infolge verminderter Wärmeleitung in den Untergrund und geringen Wärmespeichervermögens zurückzuführen. Das vergleichsweise hohe Luftvolumen der trockenen Böden isoliert die Bodenoberfläche von den tieferen Bodenschichten, der Wärmeübergang zwischen den einzelnen Bodenbestandteilen wird stark erschwert. Zwischen der Tag- und Nachtüberfliegung ergeben sich dadurch Temperaturdifferenzen von mehr als 20 °C. Die Gewässer dagegen besitzen lediglich einen flachen Oberflächentemperatur-Gradienten, der selbst bei geringen Wassertiefen und damit erhöhtem Wärmeumsatz zwischen Tag und Nacht nur 2 – 3 °C beträgt. Zur hohen Wärmespeicherkapazität tritt am Tage wie auch bei anderen Feuchtstandorten der temperaturmindernde Effekt der hohen Verdunstungsraten. Sie zählen damit zu den kühlsten Standorten. Ebenfalls sehr kalt erscheinen die großen Oberflächen der Flachdachkomplexe in Industrie- und Gewerbegebieten (vgl. Abendaufnahme). Für baumbestandene Parkanlagen und die Wälder gilt zum Zeitpunkt der Erfassung, dass der im Laufe der nächtlichen Abkühlungsphase erreichte Grad der Abkühlung bis in den Kronenbereich einen zunächst weiter vorhaltenden Puffer darstellt, der durch die einsetzende Evaporation der Blattmasse (Verdunstungskälte) noch verstärkt wird. Die Wälder erscheinen darüber hinaus homogener als in der Abendaufnahme, da der Effekt des Kaltluftabflusses bei Kuppenlagen nunmehr keine Rolle spielt. Der dichtbebaute Bereich kann sich aufgrund der geschilderten physikalischen Gesetzmäßigkeiten am Vormittag noch nicht in der erwarteten Weise als zentrale Wärmeinsel darstellen; hier wäre zu einem späteren Zeitpunkt mit verstärkter Abstrahlung der gespeicherten Wärme ein Annähern an die Werte der Ackerflächen und Wiesen zu erwarten. Karte 04.06.3: Oberflächentemperaturdifferenzen Abend – Morgen Wie bereits betont, wurde für die Differenzenkarte lediglich eine qualitative Abstufung des Temperaturgradienten gewählt. Aufgrund der Aufnahmezeitpunkte verbleiben große Bereiche des Erfassungsgebietes im Bereich mittlerer Temperaturgradienten. Nur die Gewässer mit ihren geringen Temperaturschwankungen im Tag-Nacht-Rhythmus sowie umgekehrt die Flächennutzungen mit maximalen Gradienten (unbewachsene oder wiesenartige Strukturen) werden repräsentativ wiedergeben. Für eine Bewertung der thermischen Wirksamkeit der Flächenstrukturen ist es sinnvoll, neben der qualitativen Darstellung der Temperaturdifferenzen im Tag-Nacht-Vergleich auch eine Auswertung hinsichtlich des jeweiligen Temperaturniveaus , auf dem die Schwankungen stattfinden, einzubeziehen. Abbildung 2 bezieht sich auf ausgewählte Flächentypen und Einzelstandorte und ordnet diese in eine Tag-Nacht-Temperaturmatrix ein. Hier sind Flächen(-typen) zu erkennen, die eine relativ hohe bzw. geringe Tagesamplitude aufweisen. Daneben zeichnen sich Bereiche ab, die grundsätzlich recht kühl bzw. recht warm einzustufen sind. Das ist für die Beeinflussung der über den Oberflächen lagernden Luftmassen von großer Bedeutung, wobei sich durch den horizontalen Luftaustausch Verschiebungen der Lufttemperatur ergeben können. Unterschiedliche Zuordnungen eines Flächentyps charakterisieren die Streuung der Tages- und Nachtoberflächentemperaturen . Die niedrigen Tages- und Nachttemperaturen der Wälder, Parkanlagen, Kleingärten und locker bebauten Stadtrandsiedlungen stehen im Gegensatz zu den ganztägig hohen Oberflächentemperaturen der dicht bebauten Innenstadt und der Verkehrs- und Industrieflächen. Durch die hohe Wärmekapazität und Wärmeleitung weisen die Gewässer mit niedrigen Tages- und hohen Nachttemperaturen eine starke Dämpfung der täglichen Amplitude auf. Dies überträgt sich auch noch auf die unmittelbare Umgebung der Uferbereiche. Im Gegensatz hierzu stehen die landwirtschaftlich genutzten Flächen, Rieselfelder und auch noch die Bahnanlagen, die sich am Tage stark erwärmen, in den Nachtstunden aber ebenso stark abkühlen. Hierdurch treten an diesen Standorten die größten Tagesamplituden auf.
Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Bewertungs- und Untersuchungsansätze Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte analog den Luftgüte-Werten des Bundes-Immissionsschutz-Gesetzes. Empfehlenden Charakter besitzt eine Richtlinie der Kommission Reinhaltung der Luft im VDI (vgl. Verein Deutscher Ingenieure (VDI) 3787 Blatt 2 1998). Diese hat das Ziel, Bewertungsverfahren der Human-Biometeorologie als Standard für die auf Menschen bezogene Berücksichtigung von Klima und Lufthygiene (Bioklima) bei der Stadt- und Regionalplanung bereitzustellen. Die Human-Biometeorologie beschäftigt sich mit den Wirkungen von Wetter, Witterung, Klima und Lufthygiene auf den menschlichen Organismus. Im vorliegenden ersten Teil dieser Richtlinie werden die human-biometeorologischen Wirkungskomplexe zusammengestellt und die empfohlenen Bewertungsmethoden für den Bereich “Klima” erläutert. Insbesondere steht hierbei der thermische Wirkungskomplex im Vordergrund, der in der Stadt- und Regionalplanung mit dem Ziel eingesetzt werden soll, gesunde Wohn- und Arbeitsbedingungen zu sichern. Mit seiner Hilfe können planerische Fragestellungen aus bioklimatologischer Sicht behandelt werden. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot (IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Indikatoren Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab. 1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb. 1). Digitale Thermalkarten Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km² ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).
Die Einbeziehung klimatologischer Gesichtspunkte in die Bewertung der Umweltsituation städtischer Ballungsgebiete und deren räumliche Planung setzt zunächst eine Definition des Begriffes Stadtklima voraus. Unter Stadtklima versteht man nach Schirmer et al. (1987) “das gegenüber dem Umland stark modifizierte Mesoklima von Städten und Industrieballungsräumen. Es umfasst das gesamte Volumen der bodennahen Luftschicht oberhalb und in unmittelbarer Umgebung der Stadt bzw. der städtischen Grenzschicht. Verursacht wird es durch die Art und Dichte der Bebauung, das Wärmespeicherungsvermögen der Baustoffe, die Versiegelung des Bodens, das Fehlen von Vegetation, durch einen veränderten Wasserhaushalt und die vermehrte Emission von Abgasen, Aerosolen und Abwärme.” Für die Bewertung der jeweiligen Klimasituation fehlen verbindliche Grenz- und Richtwerte. Als Idealzustand sollte ein Stadtklima angestrebt werden, das weitgehend frei von Schadstoffen ist und den Stadtbewohnern eine möglichst große Vielfalt an Atmosphärenzuständen unter Vermeidung von Extremen bietet (vgl. Deutsche Meteorologische Gesellschaft 1989). Zur Erfassung des städtischen Klimas bietet sich neben der Anwendung der Methoden der klassischen klimatologischen Forschung mit Messfahrten und Messgängen (vgl. Karten 04.02 – 04.05) auch die Berechnung der Temperaturen der einzelnen Oberflächenelemente (Dächer, Straßen, Baumkronen usw.) mittels Thermal-Infrarot(IR)-Rasteraufnahmen an. Dabei wird von dem physikalischen Prinzip ausgegangen, dass alle Körper entsprechend ihrer Oberflächentemperatur Wärmestrahlung abgeben (vgl. Methode). Als Steuerungsgröße für den Wärmehaushalt der Erdoberfläche kommt der Wärmestrahlung und damit der Oberflächentemperatur als Bestandteil der Strahlungsbilanz jedes Körpers eine große Bedeutung zu. Während tagsüber der kurzwellige Strahlungsbereich vor allem mit der direkten Einstrahlung der Sonnenenergie und ihrer Absorption bzw. Reflexion (Albedo, vgl. Tab.1) an der Körperoberfläche bestimmend ist, beeinflusst nachts der langwellige Bereich mit dem Bodenwärmestrom ausschließlich das thermische Ausstrahlungsverhalten eines Körpers. Je nach Art und Beschaffenheit von Oberflächen ergeben sich deshalb bei gleichen Einstrahlungs- und Ausstrahlungsbedingungen u.U. erhebliche Unterschiede in der Oberflächentemperatur (vgl. Abb.1). Für (städtische) Klimaanalysen liegt der wesentliche Nutzen von Thermalkarten in ihrem flächenhaften, digital verarbeitbaren Informationsgehalt . Es ist zu unterscheiden zwischen Infrarot-Aufnahmen mit Thermal-Scannern von Flugzeugen aus und den für die vorliegenden Karten benutzten Satellitendaten . Unter Berücksichtigung der Größe Berlins und des engeren Verflechtungsraumes von fast 2 000 km2 ermöglicht nur ein satellitengestütztes Verfahren die jeweils fast zeitgleiche Erfassung der langwelligen Eigenstrahlung der Erde (Oberflächentemperatur) in einer aufeinanderfolgenden Nacht-/Tagsituation. Andererseits sind die Überfliegungszeiten des Satelliten nicht beeinflussbar und in diesem Falle für den Berliner Raum als nicht optimal einzuschätzen (vgl. Datengrundlage). Die Interpretation der IR-Thermalbilder erlaubt es, einzelnen Oberflächenelementen und Raumeinheiten über die spezielle erfasste Situation hinaus qualitativ allgemeine thermische Eigenschaften zuzuordnen. Diese Umsetzung setzt jedoch großes klimatisches Fachwissen und die Nutzung weiterer Datengrundlagen wie Nutzungs- und Reliefkarten voraus, da die Ausprägung der Oberflächentemperatur verschiedener Nutzungsstrukturen im Rasterbild stets das Ergebnis komplexer physikalischer Prozesse ist, an denen verschiedene horizontale und vertikale Wärmeflüsse und Energieumsätze (Verdunstung, Kondensation) beteiligt sind. Unter Einbeziehung weiterer klimatologischer Parameter wie Lufttemperatur und Windgeschwindigkeit können Oberflächentemperaturkarten zusätzlich als Unterstützung für die Bestimmung von Klimafunktionsräumen herangezogen werden (vgl. Karte 04.07).
Nachfolgend wird eine gemeinsame Beschreibung für alle Einzelauswertungen der Modellrechnungen präsentiert. Zur schnelleren Orientierung im Text werden Verknüpfungen zu den einzelnen Schwerpunktbereichen angeboten: Bodennahe Temperaturen (22.00 Uhr) im Gesamtgebiet Bodennahe Temperaturen (06.00 Uhr) im Gesamtgebiet Bodennahe Temperaturen (22.00 und 06.00 Uhr) im Vertiefungsgebiet Luftaustausch und Luftmassenstrom (22.00 und 06.00 Uhr) im Gesamtgebiet Luftaustausch und Luftmassenstrom (22.00 und 06.00 Uhr) im Vertiefungsgebiet Die Modellrechnungen wurden jeweils abends zur Zeit des Sonnenunterganges gestartet und bis Sonnenaufgang des darauffolgenden Tages durchgeführt. Ausgewertet und in Form von Karten dargestellt werden für die einzelnen Klimaparameter die Zeitschnitte 22.00 Uhr und 06.00 Uhr. Der Termin 22.00 Uhr repräsentiert kurz nach Sonnenuntergang den Umschwung von der Einstrahlungs- zur Ausstrahlungssituation und steht für den Beginn einer Phase mit großer Abkühlungsdynamik in den unterschiedlich strukturierten Teilflächen im Stadtgebiet. Der 06.00 Uhr Termin steht für die maximale Abkühlung innerhalb des Stadtkörpers. Im Folgenden werden einzelne, exemplarische Ergebnisse der Modellrechnungen für das gesamte Stadtgebiet bzw. für das Vertiefungsgebiet südlicher Stadtrand – Mitte kurz dargestellt. Einen Überblick über die jeweils ausgewerteten klimatologischen Parameter gibt die Abbildung 3 . Bei der Darstellung des bodennahen Temperaturfeldes handelt es sich um das Rastermittel der Temperatur in der bodennahen Schicht der Atmosphäre (0 – 5 m über Grund). Sind innerhalb einer Rasterzelle mehrere Landnutzungen mit unterschiedlichem Flächenanteil vorhanden, so berechnet sich die gezeigte Temperatur aus der anteilsmäßigen Wichtung. Insofern sind die simulierten Temperaturwerte nur für größere Gebiete mit einheitlicher bzw. entsprechender Landnutzung mit bodengebundenen Messwerten vergleichbar. Ausschlaggebend für die Temperaturverteilung sind die landnutzungsabhängigen Boden- und Oberflächeneigenschaften sowie deren Wechselwirkungen mit den atmosphärischen Prozessen in der bodennahen Grenzschicht. Innerhalb des Erdbodens sind dabei Wärme- und Temperaturleitfähigkeit von Bedeutung. Je größer beispielsweise die Wärmeleitfähigkeit des Bodens ist, umso schneller und tiefer kann Wärme in das entsprechende Material eindringen, aber auch wieder von diesem abgegeben werden. Die Oberflächenbeschaffenheit natürlicher und künstlicher Flächen bestimmt über die Albedo (Relexionsvermögen) und die Emissivität die Menge an Energie, die im kurzwelligen und im langwelligen Bereich der Strahlung für eine Erwärmung / Abkühlung zur Verfügung steht. Schließlich spielt der Turbulenzzustand der bodennahen Atmosphäre eine große Rolle bei dem Transport von fühlbarer und latenter Energie vom Erdboden weg oder zu diesem hin. Alle genannten Prozesse sind über die Energiebilanz des Erdbodens miteinander verknüpft und bestimmen die Temperatur der Oberflächen und der darüber liegenden Luftschichten. Die Temperaturverhältnisse der bodennahen Atmosphäre um 22 Uhr im Gesamtgebiet sind in Karte 04.10.01 gezeigt. Aufgrund der großen Vielfalt landnutzungsbedingter Unterschiede dieser Einflussgrößen wird eine stark strukturierte räumliche Verteilung der bodennahen Temperatur simuliert. In den frühen Nachtstunden (22 Uhr) heben sich dabei die Hauptlandnutzungen in charakteristischer Weise gegeneinander ab. Die Waldflächen sind um diese Zeit noch etwa 1 K kühler als die umgebende Flur und deutlich kälter als die bebauten Gebiete. Die Freiflächen werden tagsüber stark aufgeheizt und kühlen sich nach Sonnenuntergang ebenso stark ab. Aufgrund der relativ hohen abendlichen Ausgangstemperatur ist zu dem gewählten Zeitpunkt diese Abkühlung noch nicht so weit fortgeschritten, dass das Niveau der kühlen Waldflächen schon erreicht wird. Urbane Gebiete heben sich deutlich durch ein insgesamt höheres Temperaturniveau von der Umgebung ab. Allerdings ist die Temperaturverteilung in den bebauten Gebieten räumlich stark differenziert, da beispielsweise Rasterzellen mit Einzelhausbebauung, Kerngebiete, Industriegebiete und Verkehrsanlagen stark unterschiedliche Boden- und Oberflächeneigenschaften aufweisen. Auch wird das im Mittel höhere Temperaturniveau durch innerstädtische Grünanlagen wie Großer Tiergarten und die Flughäfen Tempelhof bzw. Tegel unterbrochen. In Abhängigkeit von den individuellen Oberflächeneigenschaften der verschiedenen Landnutzungen kühlt sich die Erdoberfläche im Laufe der Nacht unterschiedlich stark ab, die Temperaturverteilung um 06.00 Uhr morgens zeigt die Karte 04.10.02. Während bei Wasserflächen diese Abkühlung aufgrund des guten Wärmespeichervermögens nur sehr gering ausfällt, zeigen Freiflächen wie Äcker und Wiesen einen starken Temperaturrückgang. Bei Waldflächen schützt das Kronendach die darunter liegende bodennahe Atmosphäre vor einer starken Abkühlung; daher heben sich Wälder in der Temperaturverteilung als relativ warme Gebiete hervor. In den urbanen Bereichen wird die Abkühlung durch die vorhandenen wärmespeichernden Materialien wie Beton und Stein deutlich reduziert. Zum einen trägt die tagsüber gespeicherte Wärmemenge dazu bei, dass die Temperatur nicht so stark zurückgeht. Zum anderen werden durch die niedrigen Windgeschwindigkeiten turbulenter und latenter Wärmestrom reduziert, die den Abtransport wärmerer Luft bewerkstelligen könnten. Die Stadtgebiete bleiben somit insgesamt wärmer. Während der Temperaturunterschiede zum unbebauten Umland in den Abendstunden typischerweise 2 K beträgt, wächst dieser Wert bis in die frühen Morgenstunden auf 6 K an. Diese großen horizontalen Unterschiede werden im Bereich der innerstädtischen Freiflächen nicht ganz erreicht. Hier macht sich die Nachbarschaft zu den relativ warmen bebauten Gebieten bemerkbar. Bei einer Verfeinerung der räumlichen Auflösung heben sich bei der Temperatur die einzelnen Nutzungstypen, gerade auch in bebautem Gelände, noch deutlicher gegeneinander ab (vgl. Karte 04.10.07 und Karte 04.10.08). Rasterzellen, die vollständig mit dicht bebautem Gebiet ausgefüllt sind, grenzen unmittelbar an Freiflächen und somit ergeben sich große Temperaturunterschiede auf kürzester Distanz . Diese Unterschiede werden aufgrund der stark verringerten Windgeschwindigkeit in den urbanen Gebieten nur geringfügig abgebaut und bleiben während der gesamten Nachtstunden erhalten. Die unterschiedlichen Bebauungsstrukturen in dem ausgewählten Bereich werden besonders vom Flughafen Tempelhof, dem Erholungspark Britzer Garten und den Freiflächen östlich und westlich von Lichtenrade unterbrochen. Das thermische Verhalten der einzelnen Landnutzungen unterscheidet sich nicht von den weiter oben beschriebenen Verhältnissen für das Gesamtgebiet von Berlin. In den Abendstunden sind die waldbestandenen Teile der Parks die kühlsten Flächen gefolgt von den Freiflächen. Wasserflächen weisen einen nur sehr geringen Tagesgang auf und ordnen sich vom Temperaturniveau zu diesem Zeitpunkt in die vorhandene Spannbreite der Temperatur für die unterschiedlich bebauten Gebiete ein. Bis in die frühen Morgenstunden bilden sich die landnutzungstypischen Temperaturverhältnisse aus. Während in der umgebenden Flur bei Lichtenrade die Temperatur über Wiesen und Äcker relativ stark zurückgeht, kühlen sich die innerstädtischen Freiflächen, beispielsweise im Bereich des Flughafens Tempelhof, nicht in dem entsprechenden Maße ab. Hier macht sich bemerkbar, dass das Flughafengelände in eine insgesamt wärmere Umgebung eingebettet ist. Die gute Durchlüftung von Siedlungsgebieten kann zum Abbau von humanbiometeorologischen Belastungen führen (vgl. Moriske und Turowski 2002). So kann in den Nachtstunden durch das Heranführen kühlerer Luft aus dem Umland das Temperaturniveau der in der Stadt lagernden wärmeren Luftmassen gesenkt werden, was zu einem Abbau der Wärmebelastung des Menschen in den Sommermonaten führt. Ist diese herangeführte kühlere Luft mit Luftschadstoffen unbelastet (Frischluft), so führt die Durchlüftung gleichzeitig auch zu einer Verbesserung der lufthygienischen Situation. Zur Beurteilung der Durchlüftungssituation ist folglich die geeignete Zuordnung von Belastungsräumen und Ausgleichsräumen , die die entsprechende unbelastete Luft zur Verfügung stellen, sowie ein Zirkulationssystem, welches einen Luftmassentransport bewerkstelligen kann, notwendig. Klimaökologische Ausgleichswirkungen gehen von den unbebauten Arealen aus, die in das Stadtgebiet eingestreut sind. Sie sind durch einen hohen Vegetationsanteil sowie einem geringen Versiegelungsgrad von weniger als 20% charakterisiert und verbessern die lokalklimatische Situation selbst in den dicht bebauten Kernbereichen Berlins (vgl. Karte 04.10.03 bis Karte 04.10.06 für die Gesamtstadt bzw. Karte 04.10.09 bis Karte 04.10.12 für das Vertiefungsgebiet). Die Ausgleichsleistung wird über thermisch und/oder orographisch induzierte Strömungssysteme erbracht. Um die Freiflächen, die benachbarte bebaute Bereiche mit Frisch-/Kaltluft versorgen, zu identifizieren und sie den unterschiedlichen Austauschprozessen zuordnen zu können, werden nachfolgende Abgrenzungskriterien verwendet. Bei klimaökologisch relevanten Freiflächen sollten die eigenbürtigen Ausgleichsströmungen mindestens eine Geschwindigkeit von 0,2m/s während einer austauscharmen, sommerlichen Strahlungswetternacht erreichen. Die Ausgleichströmungen können als Hang- oder Talwinde bezeichnet werden, wenn Hang- bzw. Talbodenneigungen von >1° auftreten. Thermisch induzierte Strömungssysteme sind in den nahezu ebenen Arealen zu finden (vgl. Abbildung 6). Bedeutsame Ausgleichsleistungen sind von den großen zusammenhängenden Wald- und Parkflächen zu erwarten, die vor allem in den Randbereichen Berlins flächenhaft verbreitet sind. Aufgrund der hohen Abkühlungsraten in den Abend- und Nachtstunden sind diese Bereiche als wichtige Kaltluftliefergebiete anzusprechen. Tabelle 1 zeigt die prozentualen Flächenanteile im Stadtgebiet, die an der Bildung von Flurwinden sowie Kaltluftabflüssen beteiligt sind: Somit sind, beide Prozesse zusammengenommen, über 30 % des Stadtgebietes an der Ausbildung von Ausgleichsströmungen beteiligt , wobei der Flächenanteil im Verlauf der Nacht von 30,8 % um 22.00 Uhr auf 32,0 % um 06.00 Uhr morgens geringfügig zunimmt. Diese Zunahme ist darauf zurückzuführen, dass weitere unbebaute Flächen insbesondere im Umfeld des Müggelsees sowie des Grunewaldes an der Kaltluftbildung teilnehmen. Die Folge ist, dass zum frühen Morgen zwar eine größere unbebaute Fläche an der Kaltluftentstehung mit einer Strömungsgeschwindigkeit >0,2 m/s beteiligt ist, diese sich im Vergleich zum Zeitpunkt 22.00 Uhr jedoch auf einem niedrigeren Niveau abspielt. Bei einem Vergleich der mittleren Luftaustauschrate aller Rasterzellen des gesamten Stadtgebietes fällt auf, das der mittlere Zellenwert von 7,6 (22.00 Uhr) auf 8,1 (06.00 Uhr) ansteigt. Im Gegenzug sinkt der maximale Zellenwert von 29,47 auf 22,8 ab. Insofern nimmt die mittlere Luftaustauschrate zwar insgesamt zu, die Höchstwerte des 22.00 Uhr Zeitschnittes bzw. die Intensität des Luftaustausches werden jedoch durch die zunehmende Nivellierung der Temperaturunterschiede nicht mehr erreicht. Die Ausgleichsleistung der Freiflächen erreicht große Teile der überbauten Flächen Berlins. Eine Bilanzierung für das Stadtgebiet ergibt: Etwa 65,5 % der überbauten Flächen wird zum Zeitschnitt 22.00 Uhr von autochthonen Strömungen mit einer Geschwindigkeit von mindestens 2 m/s erreicht bzw. durchdrungen Die Ausgleichsleistung der Freiflächen sinkt auf Grund der Nivellierung des Temperaturniveau – und damit Abschwächung der thermisch induzierten Strömungssysteme – im Laufe der Nacht auf eine räumliche Abdeckung von ca. 40 % der durch Bebauung geprägten Stadtareale (Zeitschnitt 06.00 Uhr). Durch die enge Verzahnung von bebauten Bereichen und Freiflächen weist Berlin insgesamt ein hohes klimaökologisches Ausgleichspotential auf . Kaltluftabflüsse haben daran aber einen vergleichsweise geringen Anteil. Sie treten flächenhaft vor allem in den folgenden Bereichen auf: Östliches Havelufer entlang des Grunewaldes Ostflanke des Grunewaldes Südlich des Großen Müggelsees im Berliner Stadtforst Bürgerheide. Als Leitbahnen für den Kaltlufttransport fungieren große, linear ausgeprägte Freiflächen mit einer verhältnismäßig geringen Oberflächenrauigkeit. Hinsichtlich dieser Funktion sind drei Bereiche des Havel- bzw. Spreetals als bedeutsam zu nennen. Zum einen der Havelabschnitt zwischen Lieper Bucht bis Ruhlebener Straße, der auf einer Länge von ca. 7 km Kaltluft nach Norden in den Stadtteil Spandau führt. Zum anderen tritt der Rummelsburger See als Teil der Spree hervor, über den Kaltluft von Alt-Treptow und vom Plänterwald aus nach Rummelsburg strömt. Darüber hinaus ist noch ein Abschnitt der Dahme entlang von Grünauer- und Regattastraße zu nennen. Diese Ergebnisse decken sich mit den Befunden eines Gutachten des Deutschen Wetterdienstes (DWD 1996). Aufgrund der wenig ausgeprägten Orographie sind solch relieforientierte Luftleitbahnen aber eher selten. Ein wesentlicher Beitrag zum Transport von Kaltluft aus dem Berliner Umland in das Stadtgebiet ist nicht zu erkennen, vielmehr treten nur Teile der Flusstäler innerhalb des Stadtgebietes als Leitbahnen in Erscheinung. Als Beispiele für die Ausgleichsleistung von Freiflächen werden unter Kartenbeschreibung / ergänzende Hinweise 3 Standorte ausführlich dargestellt, um die Dynamik des Kaltlufthaushaltes im Grenzbereich von kaltluftproduzierender Freifläche zur Bebauung zu verdeutlichen. Abschließend soll auf den Kaltlufthaushalt Berlins als Ganzes eingegangen werden. Dazu wird der Luft-Massenstrom herangezogen, wobei ausgehend von den 22.00 Uhr Werten die Kaltluftbewegung in einer Nacht von 8 Stunden quantifiziert wird. Somit werden im Stadtgebiet Berlin in einer austauscharmen, sommerlichen Strahlungswetternacht 2,18 Billionen m³ Kaltluft bewegt. Dies entspricht einem stündlichen Durchsatz von 0,27 Billionen m³. Welche Kaltluftmengen in den einzelnen Stadtteilen bewegt werden, zeigt Tabelle 2. Die stadtteilbezogenen Ergebnisse entsprechen den Erwartungen hinsichtlich Größe und Lage innerhalb des Stadtgebietes. Dabei zeigt sich, dass die Kernbereiche wie Friedrichshain – Kreuzberg sowie Mitte mit einem hohen Bebauungs- und Versiegelungsgrad einen vergleichsweise schwachen Massenstrom aufweisen. Anders ist die Situation in den Stadtteilen Pankow, Reinickendorf oder Köpenick. Zwar sind auch hier verdichtete Areale in Richtung auf das Stadtzentrum vorhanden, dies wird jedoch durch die großen, unbebauten Flächen im Verzahnungsbereich zum Umland wieder ausgeglichen. In den nicht überbauten, kaltluftbildenden Bereichen in den Randbezirken ist deshalb der größte Beitrag zum Kaltluftmassenstrom zu sehen. Nachfolgend werden anhand von ausgewählten Beispielen umfangreiche Zusatzinformationen zur Dynamik und Bedeutung des Kaltlufthaushaltes von Freiflächen angeboten. Der Text ergänzt damit die Inhalte des Kapitels Kartenschreibung. Kaltluftproduzierende Freiflächen und ihr Einfluss auf die Bebauung In Abbildung 7 sind 3 Standorte gekennzeichnet, an deren Beispiel entlang eines ausgewählten Streckenabschnitts von jeweils 9 Rasterzellen mit 1600 m Abschnittslänge (200 m Raster) bzw. 450 m (50 m Raster) näher auf den Kaltlufthaushalt eingegangen werden soll. Zur Charakterisierung der Dynamik des Kaltlufthaushaltes wurden diese Beispiele im Grenzbereich von kaltluftproduzierender Freifläche zur Bebauung platziert. Für den gebietsübergreifenden Vergleich der Werte innerhalb des 200 m Rasters wurde anschließend ein mittlerer Rasterzellenwert auf Basis der Zellen ermittelt, die sich entlang des Streckenverlaufs befinden. Als Beispiele für die Ausgleichsleistung von Freiflächen wurden Übergangsbereiche vom Grunewald nach Wilmersdorf (A) sowie im Bezirk Mahlsdorf (B) am östlichen Stadtrand Berlins herangezogen. Der südwestliche Abschnitt des Flughafens Tempelhof © repräsentiert das Vertiefungsgebiet, in dem ein feiner aufgelöstes 50 m Raster zum Einsatz kam. Der Grunewald zählt mit einer Größe von über 3000 ha zu den größten Waldflächen im Stadtgebiet. Auf einer Länge von ca. 11 km profitieren insbesondere Teile der östlich gelegenen Stadtteile Charlottenburg-Wilmersdorf und Zehlendorf-Steglitz von der hohen Kaltluftproduktivität. Abbildung 8 zeigt den Übergangsbereich vom Grunewald zur Einzelhausbebauung in Wilmersdorf, hier fällt der Luftaustausch pro Rasterzelle und Stunde mit Wechselraten von über 20 vergleichsweise hoch aus. Die entsprechend große Reichweite der Kaltluftströmung ist in Wilmersdorf um 22.00 Uhr mit bis zu 3000m am stärksten ausgeprägt und liegt in der ausgedehnten Einzelhausbebauung begründet. In Steglitz dagegen wird mit zunehmend dichterer Bebauung nur noch ein Wert von ca. 1500 m erreicht. Um 06.00 Uhr morgens dringt die Kaltluft nur noch ca. 1000 bis maximal 2200 m in die Bebauung ein. Für den 1600 m langen Abschnitt sind beispielhaft die mittlere Ausprägung des Luftaustausches pro Rasterzelle, des Massenstroms sowie die Strömungsgeschwindigkeit des Flurwindes berechnet worden (vgl. Tabelle 3). Diese Strecke beginnt in der Auerbachstraße an der Avus und führt über die Regerstraße bis zur Waldmeisterstraße. Dabei zeigt sich die Abnahme der mittleren Rasterzellenwerte im Verlauf der Nacht. Die Luftwechselrate geht von 20,13 auf 13,99 um ca. 30 % zurück. Ähnliches gilt für den Massenstrom, der sich um ca. 25 % verringert. Der Rückgang der Strömungsgeschwindigkeit des Flurwindes ist mit ca. 64 % noch stärker ausgeprägt. Das Kaltluftquellgebiet für dieses Beispiel stellt die Freifläche dar, die sich nördlich des Dahlwitzer Forstes anschließt. Sie hebt sich hierbei mit Luftwechselraten bis über 20 pro Rasterzelle und Stunde deutlich von den überbauten Flächen ab (vgl. Abb. 9). Die Reichweite dieser Luftbewegung liegt gegen 22.00 Uhr zwischen 1100 m nördlich der Bundesstraße 5 im Bereich der S-Bahntrasse und 1800 m in Richtung auf den Hönower Damm. Dort vereinigt sie sich mit dem Flurwind aus dem Kaulsdorfer Busch und fließt nach Norden, wo am Mahlsdorfer S-Bahnhof die Windgeschwindigkeit schließlich auf unter 0,2 m/s absinkt. Bis um 06:00 Uhr bleibt die Eindringtiefe nahezu erhalten. Lediglich die Strömungsrichtung ändert sich auf eine südwestliche Tendenz. Die mittleren Rasterzellenwerte übertreffen bis auf den Massenstrom die des Gebietes Wilmersdorf(A) geringfügig (vgl. Tab. 4). Der wesentliche Unterschied ist jedoch in dem schwächeren Rückgang der Werteausprägungen bis zum frühen Morgen zu sehen. Analog zu den bereits beschriebenen Untersuchungsgebieten wird auch hier die Situation anhand von 9 Rasterzellen entlang eines ausgewählten Streckenabschnittes untersucht. Für die Betrachtung des Kaltlufthaushaltes im Vertiefungsgebiet soll an dieser Stelle der südwestliche Teil des Flughafens Tempelhof dienen, wobei hier ein 450 m langer Abschnitt entlang des Tempelhofer Damms ausgewählt wurde (vgl. Abb. 10). Bei der Betrachtung des Luftaustausches pro Rasterzelle / h ist die zu durchströmende Strecke maßgeblich. Um nun einen Vergleich zwischen den zwei Rasterweiten zu ermöglichen, muss der Zellenwert des hier betrachteten 50 m Rasters durch 4 dividiert werden, um ihn mit dem 200 m-Wert vergleichbar zu machen. Hinsichtlich der Luftwechselrate sind auf dem Flughafengelände mit dem Vorfeldbereich sowie der Kreuzung Tempelhofer Damm / Autobahn A 100 zwei Areale mit vergleichsweise hoher stündlicher Austauschrate von über 80 pro Rasterzelle erkennbar. Bezogen auf das 200 m Raster, welches für das Stadtgebiet angewendet wurde, entspricht dies einem Zellenwert von 20 und ist von der Wertausprägung her mit dem Beispiel Wilmersdorf(A) vergleichbar. Trotz der auch flächenhaft hohen Austauschrate wird die Entfaltung des auf dem Vorfeld entstehenden Flurwindes sowohl um 22.00 Uhr als auch um 06.00 Uhr durch die Abfertigungsgebäude beeinträchtigt. Durch die Umsetzung der Strukturhöhen in das Rechenraster für die FITNAH-Simulation ergibt sich eine mittlere Strukturhöhe, die dazu führt, dass einzelne Hindernisse, die nominell höher als 5 m sind, überströmt werden könnten. Hingegen kann sich um 22.00 Uhr entlang des betrachteten Streckenabschnitts ein Flurwind ausbilden, der mit einer westlichen Strömung entlang der Autobahn A 100 und einer Länge von maximal 450 m im Vergleich zu den anderen Standorten eher schwach ausgeprägt ist. Ihm steht zu diesem Zeitpunkt eine ostwärts gerichtete Kaltluftbewegung aus den Kleingartenkolonien des Südgeländes Schöneberg gegenüber. Die Manteuffelstraße stellt sich dabei gewissermaßen als Trennungslinie beider Flurwinde dar. Bis zum Zeitpunkt 06.:00 Uhr ist letztgenannter Flurwind aus dem Koloniegelände nahezu zum Erliegen gekommen, während sich die Reichweite des vom Flughafen Tempelhof ausgehenden Flurwindes auf ca. 800 m verdoppelt und bis zu 200 m nach Süden in den Tempelhofer Damm eindringt (vgl. Abb. 10). Tabelle 5 fasst die Ergebnisse für den betrachteten Ausschnitt des Kerngebietes zusammen. Dabei wird deutlich, dass sich die berechneten Werte im Verlauf der Nacht geringfügig erhöhen und sich dadurch in ihrer Tendenz von den Gebieten (A) und (B) unterscheiden. Dies liegt in der hohen räumlichen Auflösung des 50 m Rasters begründet, in dem sich eine Verlagerung der Rasterzellen mit einer hohen Luftaustauschrate in Richtung auf die Bebauung abzeichnet. Für den sich westlich des betrachteten Streckenabschnitts und in Strömungsrichtung des Flurwindes anschließenden Bereich wurde das Kaltluftvolumen auf Basis des Luftaustausches ermittelt. Hierbei sind auf einer Fläche von ca. 20 Hektar die Rasterzellen berücksichtigt worden, die sich an den Streckenabschnitt westlich des Flughafens anschließen und für die eine Windgeschwindigkeit > 0,2 m/s nachgewiesen werden konnte. Die Höhe dieser bodennahen Rasterzellen beträgt 5 m, woraus sich ein Volumen von 12 500 m 3 pro Zelle ergibt. Für den genannten Bereich lässt sich ein stündlicher Luftaustausch von 5,52 Mio. m 3 beziffern. Daraus ergibt sich in diesem Teilausschnitt, hochgerechnet auf eine Nacht von 8 Stunden, ein von den Kaltluftproduktionsflächen des Flughafens induzierter Luftaustausch in der bodennahen Luftschicht (bis 5 m ü. Grund) von insgesamt 43,36 Mio. m 3 .
Origin | Count |
---|---|
Bund | 1335 |
Europa | 2 |
Land | 14 |
Type | Count |
---|---|
Förderprogramm | 1327 |
Text | 12 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 18 |
offen | 1328 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 1340 |
Englisch | 241 |
andere | 1 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Dokument | 5 |
Keine | 782 |
Unbekannt | 1 |
Webseite | 566 |
Topic | Count |
---|---|
Boden | 856 |
Lebewesen & Lebensräume | 818 |
Luft | 1349 |
Mensch & Umwelt | 1347 |
Wasser | 735 |
Weitere | 1336 |