Halogenradikale spielen eine Schlüsselrolle in der Chemie der polaren Grenzschicht. Alljährlich im Frühjahr beobachtet man riesige Flächen von mehreren Millionen Quadratkilometern mit stark erhöhten Konzentrationen von reaktivem Brom, welches von salzhaltigen Oberflächen in der Arktis und Antarktis emittiert werden. Dieses Phänomen ist auch als Bromexplosion bekannt. Des Weiteren detektieren sowohl boden- als auch satellitengestützte Messungen signifikante Mengen von Jodoxid über der Antarktis, jedoch nicht in der Arktis. Die Gründe für diese Asymmetrie sind nach wie vor unbekannt, aber das Vorhandensein von nur wenigen ppt reaktiven Jods in der antarktischen Grenzschicht sollte einen signifikanten Einfluss auf das chemische Gleichgewicht der Atmosphäre haben und zu einer Verstärkung des durch Brom katalysierten Ozonabbaus im polaren Frühjahr haben. Der Schwerpunkt der Aktivitäten im Rahmen von HALOPOLE III wird auf der Untersuchung von wichtigen Fragestellungen liegen, die im Rahmen der Vorgängerprojekte HALOPOLE I und II im Bezug auf die Quellen, Senken und Transformationsprozesse von reaktiven Halogenverbindungen in Polarregionen aufgetreten sind. Basierend sowohl auf der synergistischen Untersuchung der bislang gewonnen Daten aus Langzeit - und Feldmessungen sowie auf neuartigen Messungen in der Antarktis sind die wesentlichen Schwerpunkte: (1) Die Untersuchung einer im Rahmen von HALOPOLE II aufgetretenen eklatanten Diskrepanz zwischen aktiven und passiven Messungen DOAS Messungen von IO. (2) Eine eingehende Analyse der DOAS Langzeitmessungen von der Neumayer Station und Arrival Heights (Antarktis) sowie Alert (Kanada) bezüglich Meteorologie, Ursprung der Luftmassen, Vertikalverteilung, sowie des Einflusses von Schnee, Meereis und Eisblumen auf die Freisetzung von reaktiven Halogenverbindungen. (3) Die Untersuchung der kleinskaligen räumlicher und zeitlichen Variation von BrO auf der Basis einer detaillierten Analyse der flugzeuggebundenen MAX-DOAS Messungen während der BROMEX 2012 Kampagne in Barrow/Alaska. (4) Die Analyse der kürzlich in der marginalen Eiszone der Antarktis auf dem Forschungsschiff Polarstern durchgeführten Messungen im Hinblick auf die horizontale und vertikale Verteilung von BrO und IO, sowie den Einfluss der Halogenchemie auf den Ozon- und Quecksilberhaushalt. (5) Weitere detaillierte Untersuchungen des Einflusses von Halogenradikalen, insbesondere Chlor und Jod, auf das chemische Gleichgewicht der polaren Grenzschicht auf der Basis einer Messkampagne in Halley Bay, Antarktis. (6) Detailliertere Langzeit-Messungen von Halogenradikalen und weiteren Substanzen auf der Neumayer Station mittels eines neuen Langpfad-DOAS Instruments welches im Rahmen dieses Projektes entwickelt wird. Zusätzlich zu den bereits existierenden MAX-DOAS Messungen werden diese eine ganzjährige Messungen des vollen Tagesganges sowie die Untersuchung nicht nur der Brom- und Jodchemie, sondern auch der Chlorchemie ermöglichen.
Die Erforschung von Artbildungs- und Anpassungsprozessen ist zentral, um zu verstehen, wie Biodiversität entsteht und auf wechselnde Umweltbedingungen reagiert.. Ein idealer Ort für solche Studien ist das Südpolarmeer: Es beherbergt eine reiche und hochgradig endemische Fauna. Neuere Studien zeigen, dass viele benthische Arten aus Gruppen von genetisch distinkten Kladen bestehen, die als früher übersehene Arten pleistozänen Ursprungs interpretiert werden. Diese kryptischen Arten können durch molekulare Methoden (z. B. DNA-Barcoding) und z.T. auch durch morphologische Analysen unterschieden werden. Es wird angenommen, dass die Artbildung per Zufall erfolgte, als ehemals große Populationen während glazialer Maxima in kleinen allopatrischen Refugien isoliert wurden, wo sie starker genetischer Drift ausgesetzt waren. Alternative Artbildungsmodelle wurden bislang wegen fehlender molekularer Methoden kaum erforscht. Studien aus anderen Ökosystemen zeigen, dass ökologische Artbildung, d.h. Aufspaltungsereignisse durch unterschiedliche Selektion, ein naheliegendes alternatives Artbildungsmodell ist. In dem hier vorgestellten Projekt sollen erstmals hochauflösende genomische Methoden zusammen mit morphologischen Analysen benutzt werden, um konkurrierende Artbildungsmodelle für das Südpolarmeer zu testen. Als Fallstudie sollen hierfür Muster genetischer Drift und Selektion in einer besonders erfolgreichen Gruppe benthischer Arten des Südpolarmeeres untersucht werden, den Asselspinnen (Pycnogonida). Aufbauend auf vorangehenden Studien sollen genomische Muster neutraler und nicht neutraler Marker bei zwei Artkomplexen untersucht werden: Colossendeis megalonyx und Pallenopsis patagonica. Diese beiden Artkomplexe von Asselspinnen sind aufgrund mehrerer Merkmale hervorragende Modelle für die Themen dieses Antrages: 1) Es existieren zahlreiche genetisch divergente kryptische Arten, 2) erste morphologische Unterschiede wurden gefunden, 3) die weite Verbreitung der Vertreter sowohl auf dem antarktischen Kontinentalschelf als auch in weniger von den Vereisungen betroffenen subantarktischen Regionen, 4) ihre geringe Mobilität. Sollte eine durch genetische Drift bedingte allopatrische Artbildung in glazialen Refugialpopulationen der Hauptantrieb der Evolution sein, ist zu erwarten, dass Zufallsfixierung neutraler Allele und Signaturen von Populations-Bottlenecks in stark vereisten Gebieten am höchsten sind. Wenn andererseits natürliche Selektion der Hauptantrieb der Artbildung war, so sind starke Signaturen von Selektion auf Geno- und Phänotyp zu erwarten. Diese sollte am stärksten bei sympatrischen Arten sein (Kontrastverstärkung). Die Variation entlang von Genomen soll untersucht werden, um das Ausmaß zufälliger bzw. nicht zufälliger Variation einzuschätzen. Das vorgeschlagene Projekt wird ein wichtiger erster Schritt einer systematischen Erforschung der relativen Bedeutung von genetischer Drift und Selektion für die Evolution im Südpolarmeer sein.
<p>Der Europäische Emissionshandel ist seit 2005 das zentrale Klimaschutzinstrument der EU. Ziel ist die Reduktion der Treibhausgas-Emissionen der teilnehmenden Energiewirtschaft und der energieintensiven Industrie. Seit 2012 nimmt der innereuropäische Luftverkehr teil und seit 2024 auch der Seeverkehr.</p><p>Teilnehmer, Prinzip und Umsetzung des Europäischen Emissionshandels</p><p>Der Europäische Emissionshandel (EU-ETS 1) wurde 2005 zur Umsetzung des internationalen Klimaschutzabkommens von Kyoto eingeführt und ist das zentrale europäische Klimaschutzinstrument. Neben den 27 EU-Mitgliedstaaten haben sich auch Norwegen, Island und Liechtenstein dem EU-Emissionshandel angeschlossen (EU 30). Das Vereinigte Königreich Großbritannien und Nordirland (kurz: Großbritannien/GB) nahm bis zum 31.12.2020 am EU-ETS 1 teil. Seit dem 01.01.2021 ist dort ein nationales Emissionshandelssystem in Kraft. Im EU-ETS 1 werden die Emissionen von europaweit rund 9.000 Anlagen der Energiewirtschaft und der energieintensiven Industrie erfasst. Zusammen verursachen diese Anlagen fast 40 % der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen in Europa.</p><p>Seit 2012 ist der innereuropäische Luftverkehr in den EU-ETS 1 einbezogen und seit 2024 der Seeverkehr. Seit 2020 ist das System außerdem mit dem Schweizer Emissionshandelssystem <a href="https://www.dehst.de/SharedDocs/downloads/DE/luftverkehr/schweiz.pdf">verlinkt</a>. Ab 2027 wird ergänzend zum EU-ETS 1 ein europäischer Emissionshandel für Brennstoffe eingeführt (EU-ETS 2), der insbesondere im Verkehrs- und Gebäudebereich zur Anwendung kommt. </p><p>Der EU-ETS 1 funktioniert nach dem Prinzip des sogenannten „Cap & Trade“. Eine Obergrenze (Cap) legt fest, wie viele Treibhausgas-Emissionen von den emissionshandelspflichtigen Anlagen insgesamt ausgestoßen werden dürfen. Die Mitgliedstaaten geben eine entsprechende Menge an Emissionsberechtigungen an die Anlagen aus – teilweise kostenlos, teilweise über Versteigerungen. Eine Berechtigung erlaubt den Ausstoß einer Tonne Kohlendioxid-Äquivalent (CO2-Äq). Die Emissionsberechtigungen können auf dem Markt frei gehandelt werden (Trade). Hierdurch bildet sich ein Preis für den Ausstoß von Treibhausgasen. Dieser Preis setzt Anreize bei den beteiligten Unternehmen ihre Treibhausgas-Emissionen zu reduzieren.</p><p>Infolge wenig ambitionierter Caps, krisenbedingter Produktions- und Emissionsrückgänge und der umfangreichen Nutzung von internationalen Projektgutschriften hatte sich seit 2008 eine große Menge überschüssiger Emissionsberechtigungen im EU-ETS 1 angesammelt. Diese rechnerischen Überschüsse haben wesentlich zu dem bis 2017 anhaltenden Preisrückgang für europäische Emissionsberechtigungen (EUA) beigetragen, sodass der Emissionshandel in diesem Zeitraum nur eine eingeschränkte Lenkungswirkung entfaltet konnte. Zwischenzeitlich wurde mit unter 3 Euro das niedrigste Niveau seit dem Beginn der zweiten Handelsperiode (2008-2012) erreicht. Seit Mitte 2017 sind die EUA-Preise in Folge der letzten beiden Reformpakete zum EU-ETS 1 deutlich gestiegen. Der bemerkenswerte Preisanstieg zeigt, dass die Reform des EU-ETS 1 Vertrauen in den Markt zurückgebracht hat. Zwischen Mitte 2017 und Februar 2023 hatte sich der EUA-Preis von rund 5 Euro auf zwischenzeitlich knapp über 100 Euro verzwanzigfacht, den höchsten Stand seit Beginn des EU-ETS 1 im Jahr 2005. Seit dem Rekordhoch im Februar 2023 befindet sich der EUA-Preis jedoch in einer Konsolidierungsphase und bewegt sich eher seitwärts. Aktuell notiert der EUA-Preis bei rund 70 Euro (Stand 30.06.2025) (siehe Abb. „Preisentwicklung für Emissionsberechtigungen (EUA) seit 2008).</p><p>Vergleich von Emissionen und Emissionsobergrenzen (Cap) im EU-ETS 1</p><p>In den ersten beiden Handelsperioden (2005-2007 und 2008-2012) hatte jeder Mitgliedstaat der EU sein Cap in Abstimmung mit der Europäischen Kommission selbst festgelegt. Das gesamteuropäische Cap ergab sich dann aus der Summe der nationalstaatlichen Emissionsobergrenzen. Innerhalb dieser Zeiträume standen in jedem Jahr jeweils die gleichen Mengen an Emissionsberechtigungen für den Emissionshandel zur Verfügung. Ab der dritten Handelsperiode (2013-2020) wurde erstmals eine europaweite Emissionsobergrenze (Cap) von insgesamt 15,6 Milliarden Emissionsberechtigungen festgelegt, wobei Berechtigungen auf die acht Jahre der Handelsperiode derart verteilt wurden, dass sich ein sinkender Verlauf des Caps ergab (siehe blaue durchgezogene Linie in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“). Dies dient der graduellen Verknappung des Angebots und wurde in der aktuell laufenden, 4. Handelsperiode (2021 – 2030) fortgesetzt, ab 2024 mit stärkeren jährlichen Absenkungen (siehe unten zum „Fit for 55“-Paket).</p><p>Zusätzlich zu den Emissionsberechtigungen konnten die Betreiber im EU-ETS 1 bis zum Ende der dritten Handelsperiode in einem festgelegten Umfang auch internationale Gutschriften aus CDM- und JI-Projekten (CER/ERU) nutzen. Durch diese internationalen Mechanismen wurde das Cap erhöht (siehe blaue gestrichelte Linie in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“). Die Abbildung zeigt deutlich, dass mit Ausnahme des Jahres 2008 die Emissionen im EU-ETS 1 (siehe hellblaue Säulen) bislang immer unterhalb des Caps lagen: So unterschritten die Emissionen im EU-ETS 1 bereits im Jahr 2014 den Zielwert für das Jahr 2020. Damit haben sich das Cap und die Emissionen im EU-ETS 1 strukturell auseinanderentwickelt. Durch das sog. Backloading (Zurückhalten von für die Versteigerung vorgesehenen Emissionsberechtigungen) in den Jahren 2014 bis 2016 und ab 2019 durch die sogenannte Marktstabilitätsreserve (MSR) wurde dieser Überschuss an Emissionsberechtigungen schrittweise abgebaut.</p><p>Das „Fit for 55“ Paket ist maßgeblich durch eine Stärkung des Europäischen Emissionshandels (EU-ETS 1) geprägt. Nach einer politischen Einigung im Dezember 2022 zwischen Mitgliedsstaaten, Kommission und dem EU-Parlament sind die Änderungen an der Emissionshandelsrichtlinie am 16. Mai 2023 im Amtsblatt der Europäischen Union veröffentlicht worden. Neben der Einbeziehung des Seeverkehrs ab 2024 (siehe im nächsten Absatz) wird vor allem die Klimaschutzambition für die laufende vierte Handelsperiode (2021-2030) deutlich erhöht. Das Minderungsziel in den ETS 1-Sektoren für 2030 wurde von aktuell 43 auf 62 % gegenüber 2005 verschärft. Dieses Ziel soll durch eine Erhöhung des linearen Reduktionsfaktors (LRF) von 2,2 auf 4,3 % ab 2024 und auf 4,4 % ab 2028 erreicht werden. Außerdem wird zu zwei Zeitpunkten (2024 und 2026) eine zusätzliche Reduktion des Caps (verfügbare Menge an Emissionszertifikaten im EU-ETS 1) durchgeführt. Für das Jahr 2024 wurde das Cap zusätzlich um 90 Mio. Emissionsberechtigungen abgesenkt und im Jahr 2026 um weitere 27 Mio. Berechtigungen (siehe schwarze Linie in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“).</p><p>Diese schwarze Linie stellt dabei den Cap-Anteil dar, der auf die stationären Anlagen entfällt. Ab 2024 wurde zudem der Seeverkehr vollständig in den EU-ETS 1 integriert, weshalb das Cap im Jahr 2024 um 74,5 Mio. Emissionsberechtigungen erhöht wurde. Für den Seeverkehr ist keine kostenloseZuteilung vorgesehen, womit eine Vollversteigerung gilt.</p><p>Für den Luftverkehr wird die kostenlose Zuteilung bis 2026 auslaufen und durch die Versteigerung aller für den Luftverkehr vorgesehenen Emissionsberechtigungen ersetzt werden. Zwar wird hier weiterhin ein eigenes Cap berechnet (27,6 Millionen EUA für das Jahr 2024), da die Emissionsberechtigungen ab 2025 jedoch frei zwischen allen EU-ETS 1-Sektoren gehandelt und zur Erfüllung der Abgabepflichten genutzt werden können, ergibt sich daraus ein gemeinsames Cap für alle Sektoren des EU-ETS 1.</p><p>In Summe betrug dieses Cap (siehe Linie im Farbverlauf in Abb. „Cap und Emissionen im Europäischen Emissionshandel 1“) für alle Sektoren des EU-ETS 1 im Jahr 2024 rund 1,41 Milliarden EUA.</p><p>Die Abbildung „Cap und Emissionen im Europäischen Emissionshandel 1“ weist somit die Emissionen und das Cap auf Basis der tatsächlichen Anwendungsbereiche in den jeweiligen Handelsperioden aus. Dies ist bei der Interpretation der Daten zu berücksichtigen. So wurde der Anwendungsbereich des EU-ETS 1 im Jahr 2013 ausgeweitet, seitdem müssen auch Anlagen zur Metallverarbeitung, Herstellung von Aluminium, Adipin- und Salpetersäure, Ammoniak und andere Anlagen der chemischen Industrie ihre Emissionen berichten und eine entsprechende Menge an Emissionsberechtigungen abgeben. Weiterhin gilt seit der dritten Handelsperiode die Berichts- und Abgabepflicht nicht mehr nur für Kohlendioxid, sondern zusätzlich sowohl für die perfluorierten Kohlenwasserstoff-Emissionen der Primäraluminiumherstellung als auch für die Distickstoffmonoxid-Emissionen der Adipin- und Salpetersäureherstellung. Bei Berücksichtigung der (geschätzten) Emissionen dieser Anlagen (sogenannte „scope-Korrektur“) würden die Emissionen zwischen 2012 und 2013 nicht steigen, sondern sinken. Die scope-Korrektur ist ein Schätzverfahren der Europäischen Umweltagentur. Außerdem ist Großbritannien ab der vierten Handelsperiode nicht mehr in den angegebenen Werten für das Cap und die Emissionen enthalten.</p><p>Entwicklung der Treibhausgas-Emissionen im stationären EU-ETS 1 EU-weit</p><p>Nach Angaben der Europäischen Kommission sanken die Emissionen aller am EU-ETS 1 teilnehmenden stationären Anlagen (in den 27 EU-Mitgliedstaaten und Island, Liechtenstein, Norwegen) 2024 deutlich gegenüber dem Vorjahr: von etwa 1,09 auf 1,03 Milliarden Tonnen <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Äq, also um etwa 6,5 %. Gegenüber dem Beginn des europäischen Emissionshandels im Jahr 2005 liegt der Emissionsrückgang deutscher Anlagen im EU-ETS 1 bei etwa 47 %. Europaweit gingen die Emissionen im EU-ETS 1 sogar etwas stärker um 51 % zurück. Sie haben sich damit seit dem Beginn des EU-ETS 1 mehr als halbiert (siehe Abb. „Minderungen im EU-ETS seit 2005“).</p><p>Um die Emissionen der ersten (2005-2007), zweiten (2008-2012), dritten (2013-2020) und vierten Handelsperiode (2021-2030) vergleichbar zu machen, wurden die Ergebnisse eines Schätzverfahrens der Europäischen Umweltagentur zur Bereinigung der verschiedenen Anwendungsbereiche im EU-ETS 1 genutzt (sogenannte „scope-Korrektur“). Außerdem wurden die Emissionen Großbritanniens von den Werten aller Jahre seit 2005 abgezogen. Die Abbildung „Minderungen im EU-ETS seit 2005“ zeigt so die relative Emissionsentwicklung auf Basis des Anwendungsbereichs der stationären Anlagen der laufenden vierten Handelsperiode.</p><p>Treibhausgas-Emissionen deutscher Energie- und Industrieanlagen im Jahr 2024</p><p>Die Emissionen der 1.716 in Deutschland vom EU-ETS 1 erfassten stationären Anlagen sanken gegenüber 2023 um 5,5 % auf 273 Mio. t. CO2-Äq. Die Entwicklung verlief dabei in den Sektoren Energie und Industrie gegenläufig.</p><p>Die Emissionen der Energieanlagen sanken im Vergleich zum Vorjahr von 188 um rund 18 Mio. t. CO2-Äq (9,5 %) auf 171 Mio. t. CO2-Äq. Von 2023 auf 2024 sank die <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromerzeugung#alphabar">Bruttostromerzeugung</a> der Braunkohlekraftwerke um rund 8 %, der Steinkohlekraftwerke um rund 27 %. Dagegen erhöhte sich die Bruttostromerzeugung der Erdgaskraftwerke um rund 5 % (AGEB 2025). Dabei wird die im Emissionshandel geltende Abgrenzung zwischen Industrie und Energie zugrunde gelegt (siehe Abb. „Verhältnis zwischen den Emissionshandels-Sektoren Energie und Industrie“).</p><p>Die Emissionen der 838 deutschen Anlagen der energieintensiven Industrie (siehe Tab. „Emissionen der Anlagen in Deutschland nach Branchen“) betrugen im Jahresdurchschnitt der dritten Handelsperiode 2013 bis 2020 knapp 124 Mio. t. CO2-Äq. 2019 sanken sie erstmals unter dieses Niveau auf 120 Mio. t. CO2-Äq und lagen seitdem darunter. Im Jahr 202 sanken die Emissionen erneut deutlich um 10 % auf 101 Mio. t. CO2-Äq, auf den niedrigsten Stand seit 2013, als mit Beginn der dritten Handelsperiode der derzeitige Anwendungsbereich eingeführt wurde. 2024 lagen sie mit 102 Millionen Tonnen CO2-Äq – mit einem leichten Plus von 1,1 % – auf dem Niveau des Vorjahres.</p><p>Die Entwicklungen im Jahr 2024 auf Ebene der Branchen gegenüber dem Vorjahr 2023 sind sehr heterogen. Während 2023 alle Branchen rückläufige Emissionen verzeichneten, nahmen die Emissionen 2024 vor allem in der Nichteisenmetallindustrie (15 %) und der chemischen Industrie (9 %) stark zu. Leichte Anstiege der Emissionen zwischen 1,5 bis knapp 3 % konnten bei den Raffinerien, der Eisen- und Stahlindustrie, Industrie- und Baukalk und der Papier- und Zellstoffindustrie verzeichnet werden. Einzig bei der Zementklinkerherstellung ist ein Rückgang um 10 % zu verzeichnen.</p><p>In der Tabelle „Emissionen der Anlagen in Deutschland nach Branchen“ sind die Kohlendioxid-Emissionen der emissionshandelspflichtigen Anlagen der Jahre 2019 bis 2024, sowie der Jahresdurchschnitt der zweiten Handelsperiode (2008 bis 2012) und dritten Handelsperiode (2013 bis 2020) für die Sektoren Energie und Industrie sowie für die einzelnen Industriebranchen angegeben. Für die ausgewiesenen Emissionen im Gesamtzeitraum 2008 bis 2023 wird der tatsächliche Anlagenbestand des jeweiligen Jahres zugrunde gelegt. Das heißt die Emissionen stillgelegter Anlagen werden berücksichtigt. Von der Erweiterung des Anwendungsbereichs des Emissionshandels sind bis auf die Papier- und Zellstoffindustrie sowie die Raffinerien sämtliche Industriebranchen voll oder teilweise betroffen. Dies ist beim Vergleich der Emissionen aus der zweiten und dritten Handelsperiode zu beachten (zum Beispiel nehmen seit 2013 Anlagen zur Nichteisenmetallverarbeitung und zur Herstellung von Aluminium am EU-ETS 1 teil).</p><p>Luftverkehr im Emissionshandel </p><p>Seit Anfang 2012 ist auch der Luftverkehr in den Europäischen Emissionshandel (EU-ETS 1) einbezogen. 2021 ist die Einführung des Systems zur Kompensation und Minderung von Kohlenstoffemissionen der Internationalen Luftfahrt (Carbon Offsetting and Reduction Scheme for International Aviation, kurz <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CORSIA#alphabar">CORSIA</a>) erfolgt. CORSIA ist eine von der Internationalen Zivilluftfahrtorganisation (ICAO) erarbeitete globale marktbasierte Maßnahme.</p><p>Durch die Reform der Emissionshandelsrichtlinie (EHRL) im Rahmen von „Fit for 55“ werden auch für den Sektor Luftverkehr die Regeln deutlich ambitionierter. Dies geschieht zum einen dadurch, dass das Cap durch den angehobenen linearen Reduktionsfaktor deutlich reduziert wird, sowie durch das schnelle Auslaufen der kostenlosen Zuteilung bis Ende 2025. Ab 2026 werden alle Emissionsberechtigungen, mit Ausnahme der antragsbasierten, kostenlosen Zuteilung von bis zu 20 Mio. Berechtigungen für die Nutzung von nachhaltigen Flugkraftstoffen (Sustainable Aviation Fuels, SAF), versteigert. Diese Zertifikate dienen Luftfahrzeugbetreibern zur Kompensation ihrer Mehrkosten durch die verpflichtende Beimischquote nachhaltiger Kraftstoffe ab 2024 (ReFuelEU Aviation). Darüber hinaus werden ab 2025 die sogenannten Nicht-CO2-Effekte des Luftverkehrs, zunächst über ein Monitoring, später voraussichtlich auch mit einer Abgabepflicht von Emissionsberechtigungen in den EU-ETS 1 einbezogen. Zudem wird CORSIA für die Flüge von und zu sowie zwischen Drittstaaten im Rahmen der EHRL im europäischen Wirtschaftsraum (EWR) implementiert. </p><p>Die Abbildung „Luftverkehr (von Deutschland verwaltete Luftfahrzeugbetreiber), Entwicklung der emissionshandelspflichtigen Emissionen 2013 bis 2024“ zeigt die Emissionen der von Deutschland verwalteten Luftfahrzeugbetreiber zwischen 2013 und 2024. Die Emissionen der von Deutschland verwalteten Luftfahrzeugbetreiber summierten sich 2024 auf rund 9,0 Mio. t. CO2-Äq. Sie sind damit im Vergleich zum Vorjahr deutlich um etwa 1,2 Mio. t. CO2-Äq oder rund 15,9 % gestiegen. Damit erreicht das Emissionsniveau 2024 nahezu das Vor-Pandemie-Niveau aus dem Jahr 2019 von rund 9 Millionen Tonnen CO2. Der Wachstumstrend ab 2021 setzt sich somit fort, nachdem die Emissionen 2020 rapide auf unter 4 Millionen Tonnen gesunken sind. Der Anstieg der Emissionen ist einerseits mit der fortschreitenden Erholung des Luftverkehrs von den Folgen der COVID-19-Pandemie verbunden. Andererseits ist der Anstieg ab dem Jahr 2024 auch teilweise auf die zusätzlichen Berichts- und Abgabepflichten im veränderten Anwendungsbereich zurückzuführen.</p><p>Seeverkehr im Emissionshandel</p><p>Der Seeverkehrssektor ist ab 2024 in den EU-ETS 1 integriert, wobei für den Seeverkehr keine kostenlose Zuteilung vorgesehen ist und damit eine Vollversteigerung gilt. Allerdings gibt es eine bis 2026 reichende Einführungsphase. Im Gegensatz zum Luftverkehr wurde für den Seeverkehr kein gesondertes Cap eingeführt (siehe Abschnitt „Vergleich von Emissionen und Emissionsobergrenzen (Cap) im EU-ETS 1„).</p><p>Die CO2-Emissionen von Schiffen mit einer Bruttoraumzahl (BRZ) von mindestens 5.000 einer Berichts- und Abgabepflicht im EU-ETS 1. Dabei sind 100 % der Emissionen in den Häfen eines Mitgliedsstaates, sowie 100 % der Emissionen von Fahrten zwischen Häfen des Europäischen Wirtschaftsraums (EWR) emissionshandelspflichtig. Für Emissionen auf Strecken zwischen EWR-Häfen und Häfen außerhalb des EWR besteht eine Abgabepflicht von 50 %. Die Integration des Seeverkehrs in den EU-ETS 1 erfolgt schrittweise: So sind 2024 nur 40 % und 2025 dann 70 % der geprüften CO2-Emissionen abgabepflichtig. Ab 2026 werden zudem die <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Äquivalente von Methan (CH4) und Lachgas (N2O) berücksichtigt und es müssen für 100 % der geprüften Treibhausgasemissionen Berechtigungen abgegeben werden. Die CO2-Emissionen im Seeverkehr entsprachen 2022 mit 135,5 Millionen Tonnen CO2 einem Anteil von etwa 4 % der gesamten CO2-Emissionen der EU.</p><p>Aufgrund der komplexen Strukturen im Seeverkehr (Registrierung, Verifizierung, Berichtsabgabe sowohl auf Schiffs- als auch auf Unternehmensebene) sowie Verzögerungen und Problemen bei der Bereitstellung zentraler Software konnten noch nicht alle Schifffahrtsunternehmen bis zum entsprechenden Stichtag ihre Vorjahresemissionen im Register eintragen oder die jeweiligen Emissionsberichte einreichen. Mit Stand 14.04.2025 sind circa 1.200 Schifffahrtsunternehmen Deutschland zugeordnet, von denen zum Stichtag am 31.03.2025 ungefähr 470 Emissionsberichte auf Unternehmensebene fristgerecht vorlagen. Bei den Emissionsberichten auf Schiffsebene wurden knapp 1.200 von circa 2.300 zu erwartenden Berichten fristgerecht eingereicht. Eine belastbare Auswertung der Emissionen im Seeverkehr für das Jahr 2024 ist zum aktuellen Zeitpunkt daher nicht möglich ist.</p>
<p>Viele Einzugsgebiete der großen Nordseezuflüsse sind dicht besiedelt, stark industrialisiert und werden intensiv landwirtschaftlich genutzt. Sie sind damit Hauptquellen der Nähr- und Schadstoffbelastung für die Nordsee.</p><p>Die Nordsee ist ein etwa 570.000 Quadratkilometer (km²) großes, meist flaches Schelfmeer am Rand des Atlantischen Ozeans. Zu ihr zählen der Ärmelkanal im Westen und der Skagerrak und Kattegat im Osten (lt. <a href="http://www.ospar.org/">OSPAR </a>und <a href="http://www.helcom.fi/">HELCOM </a>gehört das Kattegat sowohl zur Nord- als auch zur Ostsee). Das Wassereinzugsgebiet der Nordsee hat eine Fläche von rund 842.000 km² und umfasst die Küstenstaaten Belgien, Dänemark, Deutschland, Frankreich, Niederlande, Norwegen, Schweden und das Vereinigte Königreich von Großbritannien und Nordirland sowie die Tschechische Republik, die Slowakische Republik, die Schweiz und Luxemburg. Auf dieser Fläche leben rund 184 Millionen Einwohnerinnen und Einwohner. <br><br>Jährlich fließen zwischen 300 und 350 Milliarden Kubikmeter (Mrd. m³) Flusswasser in die Nordsee. Die starken jährlichen Schwankungen wirken sich auch auf den Transport von Nähr- und Schadstoffen in die Nordsee aus. Das Schmelzwasser, das nach der Schneeschmelze in Norwegen und Schweden in die Nordsee fließt, stellt allein fast 40 % der gesamten Flusswasserzufuhr. Ein weiterer beträchtlicher Teil gelangt über große Zuflüsse wie Elbe, Weser, Ems, Rhein, Maas, Schelde, Seine, Themse und Humber in die Nordsee. Große Teile der Einzugsgebiete dieser Nordseeflüsse sind dicht besiedelt, hoch industrialisiert und werden intensiv landwirtschaftlich genutzt. Sie zählen daher zu den wichtigsten Schadstoff- und Nährstoffquellen für die Nordsee.</p>
Holcim (Süddeutschland) GmbH wird in dem Vorhaben der Erstanwender der sogenannten 'CycloneCC-Technologie' als 'End-of-Pipe'-Lösung innerhalb der Zementindustrie im industriellen Maßstab sein. Im Projekt PRIDE-ID wird ein Versuch der Technologie zur Abscheidung unvermeidbarer CO2-Emissionen mittels realer Prozessgase in einem Zementwerk erfolgen. Die CycloneCC-Technologie, welche eine CO2-Ab-trennung mittels Rotating Packed Bed-Komponente einsetzt, ist als innovative, kostengünstige CO2-Abscheidungstechnologie von dem Unternehmen Carbon Clean entwickelt worden (eingebunden als Unter-auftragnehmer). Carbon Clean ist ein innovatives Unternehmen mit Hauptsitz in Großbritannien, das sich auf Kohlendioxid-Rückgewinnungstechnologie für industrielle Zwecke spezialisiert hat. Zudem ist im Rah-men des zu fördernden Vorhabens die Universität Stuttgart als Projektpartner eingebunden, welche den Einsatz der CycloneCC-Technologie wissenschaftlich begleiten wird. Als weiterer wissenschaftlicher Part-ner charakterisiert das Institut für Nichtklassische Chemie e.V. die Wirkkomponenten und deren Alterungsprodukte in der Aminlösung und identifiziert die Mechanismen der Alterungsreaktionen. Ziel des Projekts ist die Installation einer Versuchsanlage zur CO2-Abtrennung mit der CycloneCC-Technologie im Zementwerk Dotternhausen, um 10 TPD CO2 aus dem Gasstrom des Zementwerks abzuscheiden.
Tendenzen am internationalen Altpapiermarkt lassen befürchten, dass die zukünftig von der europäischen Papierindustrie benötigten Altpapiermengen nicht in der erforderlichen Menge und in der gewohnten Qualität zur Verfügung stehen und dass sich diese Entwicklung negativ auf die Wirtschaftlichkeit des Altpapiereinsatzes auswirkt. Vor diesem Hintergrund gewinnt die Erschließung nationaler Reserven für das Aufkommen an Altpapier in den Ländern der Europäischen Gemeinschaft einen höheren Stellenwert. Während in Deutschland mit 75 Prozent die weltweit höchste Rücklaufquote von Altpapier erreicht wurde, liegt diese Kennziffer in Ländern mit einem hohen Papierverbrauch wie Großbritannien, Italien, Frankreich und Spanien derzeit lediglich zwischen 47 und 54 Prozent. Durch die Einführung geeigneter Sammelsysteme kann sowohl Einfluss auf die Menge als auch auf Qualitätsparameter des erfassten Altpapiers genommen werden. Dies trägt zur Senkung der Sortierkosten bei. Ziel des Projektes ist eine Leistungsbewertung von Systemen zur Erfassung von Altpapieren aus haushaltnahen Anfallstellen in Deutschland. Durch die Projektbearbeitung werden Kennziffern für die realisierbaren Erfassungsmengen und die stoffliche Zusammensetzung der erfassten Altpapiere (grafische Altpapiere, sonstige Altpapiere, papierfremde Bestandteile) in Abhängigkeit von der Besiedlungsstruktur der Entsorgungsgebiete ermittelt und miteinander verglichen. Weiterhin wird untersucht, ob Sammelsystem und Besiedlungsstruktur unterschiedliche Einflüsse auf ausgewählte technologische Gebrauchswerteigenschaften der erfassten Altpapiere ausüben. Die Effizienz der Erfassungssysteme und die Qualität des dort erfassten Altpapiers werden bewertet. Daraus können Empfehlungen für Steigerungsmöglichkeiten abgeleitet werden.
Im Hobrechtswald leben Robustrinderrassen wie Schottische Hochlandrinder und Galloways. Neben Rindern wurden auch Robustpferderassen, vor allem Koniks und einzelne Fjordpferde, angesiedelt. Die robusten Weidetiere im Hobrechtswald bleiben ganzjährig im Freien und ernähren sich hauptsächlich von Gräsern und Kräutern, aber auch von Zweigen der Bäume und Sträucher. Schottisches Hochlandrind Herkunft: Nordwesten Schottlands Größe: 130 cm (Stier) bzw. 120 cm (Kuh) Gewicht: 700 kg (Stier) bzw. 500 kg (Kuh) Fell: dichtes, langes und zotteliges Fell; meist einfarbig rot, braun oder gelb, selten schwarz, weiß, gestromt, gescheckt Körperbau: kleinrahmiger Körper, kurzer, breiter Kopf; kurze, stämmige Beine; lange Hörner Galloway Herkunft: Südwesten Schottlands Größe: 136 cm (Stier) bzw. 124 cm (Kuh) Gewicht: 900 kg (Stier) bzw. 600 kg (Kuh) Fell: doppelschichtiges Fell mit langem, gewelltem Deckhaar und feinem, dichtem Unterhaar; meist einfarbig “black” (schwarz), aber auch anderere Färbungen Körperbau: kleinrahmiger Körper, kurzer, breiter Kopf; kurze, stämmige Beine; hornlos Uckermärker Rind Herkunft: Uckermark Größe: 150 cm (Stier) bzw. 140 cm (Kuh) Gewicht: 1250 kg (Stier) bzw. 850 kg (Kuh) Fell: einfarbig weiß bis cremefarben, gescheckt in den Farbabstufungen helles Gelb bis Rotbraun auf weißem Grund Körperbau: rahmiger Körper mit viel Länge, Breite und Tiefe; gehörnt oder genetisch hornlos Englisches Parkrind Herkunft: Großbritannien Größe: 145 cm (Stier) bzw. 130 cm (Kuh) Gewicht: 950 kg (Stier) bzw. 630 kg (Kuh) Fell: weiß, dunkle Pigmentierung an Maul und Ohren Körperbau: mittelrahmig mit auffallender Brusttiefe und gerader Oberlinie; stark ausgeprägte, sehr lange Hörner Konik Herkunft: Polen Größe: ca. 135 cm Gewicht: 330 bis 360 kg Fell: braun, mausgrau mit Aalstrich oder Schimmel Körperbau: Kleinpferd; langer Rumpf; tief angesetzter Schweif; kleine Hufe; mittellanger Hals; kurze Maulpartie; kleine Ohren Fjordpferd Herkunft: Westliches Norwegen Größe: ca. 135 – 150 cm Gewicht: 400 bis 500 kg Fell: ausschließlich Falben in verschiedenen Farbtönen (heller Körper mit dunkler Mähne, Aalstrich, Schweif und unterschiedlich ausgeprägten Zebrastreifen an den Beinen); zweifarbiges Langhaar Körperbau: kräftig mit einer breiten Brust, einem tragfähigen Rücken; kurze, starke Beine; großer, gerader Kopf mit breiter Strin; große Nüstern; kleine; spitze Ohren** Das Betreten des Waldes und der Weideflächen erfolgt auf eigene Gefahr. Die an den Weidetoren angebrachten Verhaltenshinweise sind unbedingt zu beachten.
Küstendünen haben hohe ökonomische Werte und ökologische Funktionen und bieten einen natürlichen Küstenschutz gegen die See, besonders bei Stürmen. Im Unterschied zu Strand-Dünen Systemen an ausgedehnten gleichmäßigen Küsten führen benachbarte Elemente der Küstenmorphologie (Ebbdeltas, Tiderinnen) zu einer komplexen morphologischen Reaktion der Dünen auf veränderte Randbedingungen. Im Rahmen des Projekts sollen die Auswirkungen von Stürmen auf drei unterschiedliche Dünensysteme untersucht werden: 1) Isolierte Dünensysteme (IDS), 2) Barriere Insel Dünensystem (BDS) und 3) Ästuarine Dünensysteme (EDS). Ein neuartiger Ansatz verwendet eine schematisierte Darstellung der exemplarischen Dünensysteme von Hütelmoor (IDS), Norderney (BDS) in Deutschland und der Sefton-Küste (EDS) in Großbritannien, die durch unterschiedliche Exposition und Energieeintrag auszeichnen (Gezeitenbereich, Wellenhöhe). Numerische Modellexperimente mit XBeach-, Delft3D- und SWAN-Modellen werden mit unterschiedlichen Schematisierungen mit zunehmender Komplexität der Dünensysteme durchgeführt. Im ersten Jahr des Projekts wird zunächst eine morphodynamisch relevante Sturmdefinition für die numerischen Experimente erstellt und zur Festlegung der zuvor eingetretenen Sturmereignisse an den drei Dünensystemen eingesetzt. Dann werden Strandprofile modelliert und analysiert, um die Erosionsempfindlichkeit auf die topographischen Parameter wie Dünenneigung und Dünenbreite zu untersuchen. Im zweiten Jahr werden flächenhafte Simulationen durchgeführt, um die Auswirkung von Stürmen und den Einfluss der erwähnten morphologischen Elemente zu untersuchen. Im dritten Jahr wird ein Modell eines BDS für langperiodische (dekadische) Simulationen entwickelt. Dieses wird dann für die Auswirkungen von zwei Klimawandel-Szenarien (Meeresspiegelanstieg und Sturmhäufigkeit) auf die Erosion an den Dünen zu untersuchen. Die Forschungsergebnisse werden über Zeitschriftenartikel (Climatic Change) und Tagungsberichte veröffentlicht.Die Dauer des Projekts beträgt 3 Jahre und es soll am Zentrum für Marine Umweltwissenschaften (MARUM) der Universität Bremen durchgeführt werden. Die Forschung wird in enger Zusammenarbeit mit internen und externen Kollegen durchgeführt (MARUM: Bremen, NOC: Liverpool, UNESCO-IHE: Delft, IOW: Warnemünde und CRS: Norderney). Zusätzlich sollen jährliche Treffen mit Experten einberufen werden, um Erkenntnisse zu diskutieren und Feedback zu erhalten.
Ziel des Vorhabens ist es, die in Großbritannien vorliegenden Erfahrungen mit interaktiven multimedialen Informations- und Kommunikationssystemen zur Planung und Entscheidungsunterstützung für die Entwicklung solcher Systeme in Deutschland nutzbar zu machen und die vorliegenden Konzepte gemeinsam weiterzuentwickeln. Interaktive multimediale Systeme zur Planungsunterstützung sind DV-gestützte Systeme, die eine GIS-Komponente mit einer Multimedia-Komponente und einer Internet-Komponente verbinden. Ihre Aufgabe in der Umweltplanung ist die Erhöhung der Transparenz und Zugänglichkeit von Informationen und Entscheidungsabläufen zur Umweltentwicklung für eine breite Palette von Adressaten. Entwicklung und Einsatz solcher Systeme stehen bisher in Deutschland noch am Anfang. Deshalb sollen Erfahrungen aus GB genutzt werden. Gegenwärtig wird dort ebenfalls an der Entwicklung interaktiver, multimedialer Systeme gearbeitet. Zur Erreichung der Forschungsziele sollen die Ziele und Rahmenbedingungen des Einsatzes solcher Instrumente in Großbritannien geklärt werden. Besonderes Augenmerk wird dabei den Ansprüchen der Adressaten gewidmet. Vor diesem Hintergrund sollen bestehende Konzepte interaktiver, multimedialer Systeme in GB und die dort vorliegenden Erfahrungen mit der Akzeptanz durch die Nutzer analysiert werden. Unter Nutzung der Erfahrungen aus beiden Ländern werden in Kooperation mit britischen Wissenschaftlern vorliegende Konzepte und Bausteine weiterentwickelt. Der Schwerpunkt der Forschungsarbeit liegt dabei nicht auf der technischen Implementation, sondern auf der Bestimmung von Einsatzbereichen, der Akzeptanz der Adressaten und daraus folgenden Konsequenzen für die Konzeption solcher Systeme.
CLEAR hat zum Ziel, eine interdisziplinäre Methodik zur Erleichterung der datenbasierten kooperativen Landschaftsplanung zu entwickeln, um Agrobiodiversität zu charakterisieren und die Resilienz und Multifunktionalität von landwirtschaftlichen Betrieben auf Landschaftsebene zu verbessern. Der Schwerpunkt liegt dabei auf der Integration von agrarökologischen und sozioökonomischen Perspektiven. Dies soll durch eine Konzentration auf standortspezifische Daten in fünf regionalen Fallstudien in Frankreich, Deutschland, Polen und Großbritannien erreicht werden. Das ZALF wird einen Beitrag zu dem Projekt leisten, indem es Datenerhebungen und -analysen für die deutsche Fallstudie durchführt, georäumliche Analysen der aktuellen Landnutzung und möglicher Ergebnisse zukünftiger Landnutzungsszenarien leitet und die Projektkoordination übernimmt.
| Origin | Count |
|---|---|
| Bund | 263 |
| Land | 42 |
| Wissenschaft | 20 |
| Zivilgesellschaft | 9 |
| Type | Count |
|---|---|
| Ereignis | 23 |
| Förderprogramm | 101 |
| Lehrmaterial | 1 |
| Taxon | 21 |
| Text | 103 |
| Umweltprüfung | 1 |
| unbekannt | 60 |
| License | Count |
|---|---|
| geschlossen | 182 |
| offen | 128 |
| Language | Count |
|---|---|
| Deutsch | 307 |
| Englisch | 82 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 9 |
| Datei | 31 |
| Dokument | 109 |
| Keine | 119 |
| Multimedia | 3 |
| Unbekannt | 3 |
| Webseite | 110 |
| Topic | Count |
|---|---|
| Boden | 150 |
| Lebewesen und Lebensräume | 191 |
| Luft | 129 |
| Mensch und Umwelt | 293 |
| Wasser | 133 |
| Weitere | 310 |