API src

Found 91 results.

Related terms

Emissionen und Emissionsminderung bei Kleinfeuerungsanlagen

Kleinfeuerungsanlagen für feste Brennstoffe sind eine wesentliche Quelle von Luftbelastungen. Bei winterlichen Inversionswetterlagen sowie in Tal- und Kessellagen kommt es zusätzlich zur bestehenden Hintergrundbelastung zur Belastung der Atemluft mit Feinstaub und anderen Luftschadstoffen. Vor allem unsachgemäße Bedienung und unsachgemäße Brennstoffbeschaffenheit führen zu hohen Emissionen. Feinstaub-Emissionen aus Kleinfeuerungsanlagen Kleinfeuerungsanlagen erzeugen durch das Verbrennen von Erdgas, Heizöl, Holz oder Kohle Heizwärme oder erwärmen das Brauchwasser. Überwiegend handelt es sich um Heizkessel, die ganze Wohnungen oder Häuser beheizen, etwa Festbrennstoff-, Öl- oder Gasheizungen. Bei Feuerungsanlagen, die einzelne Zimmer beheizen, wie Kamin- oder Kachelöfen, handelt es sich um Einzelraumfeuerungsanlagen, die meist mit Holz oder Kohle befeuert werden. Im Folgenden werden unter Kleinfeuerungsanlagen alle Anlagen mit einer Feuerungswärmeleistung unter 1.000 kW verstanden, die in der Ersten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere Feuerungsanlagen - 1. BImSchV) geregelt sind. Die im Folgenden dargelegten Emissionsdaten stammen aus dem nationalen Emissionsinventar für Luftschadstoffe, Submission 2025, und spiegeln den Stand für das Jahr 2023 wider. Die Staubemissionen werden hierbei in den Größenklassen ⁠ PM10 ⁠ (Partikel mit einem aerodynamischen Durchmesser ≤ 10 µm) und ⁠ PM2,5 ⁠ (Partikel mit einem aerodynamischen Durchmesser ≤ 2,5 µm) angegeben. Feinstaub (PM2,5) ist aus gesundheitlicher Sicht relevanter und sollte im Hinblick auf die Empfehlungen der Weltgesundheitsorganisation prioritär reduziert werden. Die Feinstaub-Emissionen (PM10) aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) liegen bei 17,3 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM10) aus Kleinfeuerungsanlagen“). Hiervon machen die Emissionen aus Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 15,7 Tsd. t den größten Anteil der Feinstaub-Emissionen aus (Nationales Emissionsinventar für Luftschadstoffe, Submission 2025). Bei der Feinstaubfraktion (PM2,5) liegen die Emissionen aus allen Kleinfeuerungsanlagen (Öl, Gas, Kohle und Holz) bei 16,3 Tausend Tonnen (Tsd. t) (siehe Abb. „Feinstaub-Emissionen (PM2,5) aus Kleinfeuerungsanlagen“). Auch hier machen Holzfeuerungen (Holzkessel und Einzelraumfeuerungsanlagen) mit 14,9 Tsd. t den größten Anteil der Feinstaub-Emissionen aus ( Nationales Emissionsinventar für Luftschadstoffe, Submission 2025 ). Die Verbrennung von Holz in privaten Haushalten sowie in gewerblich genutzten Gebäuden ist somit eine wesentliche Quelle der Feinstaubemissionen in Deutschland. Die Emissionen von Kleinfeuerungsanlagen sind stark von der ⁠ Witterung ⁠ während der Heizperiode abhängig: Bei niedrigen Außentemperaturen in der Heizperiode ergeben sich höhere Emissionen aufgrund des höheren Brennstoffeinsatzes. Bei höheren Außentemperaturen in der Heizperiode ergeben sich geringere Emissionen aufgrund des gesunkenen Brennstoffeinsatzes. Außerdem ist die Verwendung ordnungsgemäßer Brennstoffe sowie eine sachgerechte Bedienung und regelmäßige Wartung der Anlagen notwendig, um die Emissionen so gering wie möglich zu halten. Weitere Informationen zur Organisation und Methodik der Luftschadstoff- Emissionsberichterstattung erhalten Sie hier . Feinstaub-Emissionen (PM10) aus Kleinfeuerungsanlagen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Feinstaub-Emissionen (PM2,5) aus Kleinfeuerungsanlagen Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Emissionen unterschiedlicher Feuerungssysteme Bei Holzfeuerungen in privaten Haushalten ist zwischen Einzelraumfeuerungsanlagen wie Kamin- oder Kachelöfen, die einzelne Räume beheizen, und Zentralheizungskesseln, die Wohnungen oder Häuser mit Wärme versorgen, zu unterscheiden. Einzelraumfeuerungsanlagen verbrennen meist entweder Scheitholz oder Kohle die von Hand in die Feuerungsanlage eingebracht werden oder Holzpellets, die mechanisch der Feuerungsanlage zugeführt werden. Bei Festbrennstoffkesseln gibt es neben Pellet-, Scheitholz- und Kohlekesseln auch noch automatisch betriebene Hackschnitzelkessel. Dabei werden die Holzhackschnitzel mechanisch dem Brennraum zugeführt. Ein Problem für die Luftreinhaltung stellen die – zumeist älteren – Einzelraumfeuerungen dar. Diese verursachen bei gleichem (Primär-) Energieeinsatz um ein Vielfaches höhere Feinstaub-Emissionen als moderne Festbrennstoffkessel. Wie hoch diese Emissionen tatsächlich sind, hängt nicht nur von Art und Alter der Anlage ab. Auch die Art der Brennstoffzufuhr (automatisch oder manuell), der Wartungszustand der Anlage, die Bedienung sowie die Auswahl und Qualität des genutzten Holzes haben einen großen Einfluss auf die Emissionen. Gas- und Ölfeuerungen stoßen bei gleichem Energiebedarf sehr viel weniger Feinstaub aus als Festbrennstoffkessel: So liegen die ⁠ PM10 ⁠- bzw. ⁠ PM2,5 ⁠ -Emissionen aller Gasheizungen, die in der 1. ⁠ BImSchV ⁠ geregelt sind, bei 35 t (inklusive Flüssiggas mit 1 t) und die PM10 bzw. PM2,5 -Emissionen aller Ölheizungen bei 380 t ( Nationales Emissionsinventar für Luftschadstoffe, Submission 2025 ). Anforderungen an Holzfeuerungsanlagen Für die Begrenzung der Emissionen aus Kleinfeuerungsanlagen gilt in Deutschland die 1. Bundesimmissionsschutzverordnung ( 1. BImSchV). Sie gibt vor, welche Emissionsgrenzwerte Feuerungsanlagen der Haushalte und Kleinverbraucher einhalten müssen und welche Brennstoffe in solchen Anlagen zulässig sind. Diese Vorschrift wurde im Jahr 2010 novelliert. Für Feuerungsanlagen, die ab 2015 errichtet wurden, gelten Emissionsgrenzwerte, die nur mit moderner Technik eingehalten werden können. Auch für kleinere Heizkessel ab vier Kilowatt (kW) gelten Emissionsgrenzwerte und Überwachungspflichten abhängig vom Errichtungsjahr. Alte Öfen und Kessel mit hohen Emissionen müssen die Betreiber*innen nach entsprechenden Übergangsfristen nachrüsten oder stilllegen. Angesichts des hohen Ausstoßes an Feinstaub sollte bei Holzfeuerungen nur modernste Anlagentechnik mit möglichst niedrigen Emissionen zum Einsatz kommen. Relativ niedrige Emissionsgrenzwerte gelten für Holzpelletheizungen. Besonders emissionsarme Holzfeuerungen erfüllen die Anforderungen des Umweltzeichens „Blauer Engel“ oder erhalten im Rahmen der „Bundesförderung für effiziente Gebäude - Einzelmaßnahmen“ ( BEG EM ) einen Bonus (sog. Emissionsminderungs-Zuschlag). Eine weitere Minderung der Emissionen kann durch eine Kombination aus Nutzung einer erneuerbaren Energiequelle (Sonne, Erd- oder Luftwärme) zur Abdeckung der Grundlast und der Holzfeuerung zur Abdeckung von Zeiten hohen Energiebedarfs erreicht werden. Auf das Verbrennen von Holz ausschließlich aus Behaglichkeitsgründen sollte nach Möglichkeit verzichtet werden. Anteil an den Stickstoffoxid-Emissionen Die Emissionen von Stickstoffoxiden aus Kleinfeuerungsanlagen machten 2023 mit rund 67 Tausend Tonnen etwa 8 % der Gesamtemissionen in Deutschland aus ( Nationales Emissionsinventar für Luftschadstoffe, Submission 2025 ). Hier bestehen zwischen Anlagen mit unterschiedlichen Brennstoffen geringere Unterschiede als bei den Feinstaubemissionen. Kohlendioxid-Emissionen aus Kleinfeuerungsanlagen Die Kohlendioxid-Emissionen fossiler Energieträger (Heizöl, Erdgas, Flüssiggas, Kohle) aus Kleinfeuerungsanlagen lagen im Jahr 2023 mit 100 Millionen Tonnen etwas niedriger als im Vorjahr (Nationales Treibhausgasinventar, Submission 2025) . Weitere Informationen zur Organisation und Methodik der Treibhausgas-Emissionsberichterstattung erhalten Sie hier . Anteil an den Emissionen gasförmiger organischer Luftschadstoffe (ohne Methan) Die Emissionen von gasförmigen organischen Luftschadstoffen ohne Methan (sog. ⁠ NMVOC ⁠) aus Kleinfeuerungsanlagenmachten 2023 mit rund 36 Tausend Tonnen etwa 3,7 % der Gesamtemissionen in Deutschland aus ( Nationales Emissionsinventar für Luftschadstoffe, Submission 2025 ). Weitere Informationen zur Organisation und Methodik der Emissionsberichterstattung für Treibhausgase und Luftschadstoffe erhalten Sie hier ( Treibhausgase bzw. Luftschadstoffe ).

H2Giga: HTEL-Stacks Ready for Gigawatt, Teilvorhaben: Entwicklung von Anlagentechnik für die Großserienfertigung von Zellen und Stacks auf Basis existierender Kleinserien-Produktionsprozesse.

Rollout-fähigEs Multimodales EnergiemAnagement für SUpermäRktE

Zur Erfüllung der nationalen und europäischen Klimaziele muss die erneuerbare fluktuierende Stromerzeugung schnell ausgebaut und effizient genutzt werden. Neben dem kostenintensiven Ausbau der Energienetze und Speicherkapazitäten können vorhandene lokale Energiesysteme genutzt werden, um mittels multimodaler Lastverschiebung die Nachfrage in Abhängigkeit vom Angebot an erneuerbarer Energie zu verschieben. Es wird eine schnell umsetzbare, skalierbare und wirtschaftliche Lösung benötigt. Supermärkte sind von großem Interesse, da die entsprechenden Energiesysteme weitestgehend standardisiert sind. Sie sind weiterhin flächendeckend mit Messtechnik ausgestattet und weisen einen hohen Automatisierungsgrad auf. Ein Lastverschiebepotential ist durch die Flexibilität des lokalen Kältenetzes des Supermarktes im Zusammenspiel mit den steuerbaren Kälteverbrauchern, wie z.B. Kühltruhen oder Kältekammern vorhanden. Energiesysteme von modernsten Supermärkten werden aktuell typischerweise anhand statischer Regeln rein bedarfsorientiert betrieben. Ein solcher Betrieb ist nicht zielführend, da das Angebot von fluktuierenden, erneuerbaren Energien nicht berücksichtigt wird und somit nicht effizient genutzt werden kann. Ziel des Projektes ist es zu untersuchen, ob eine effiziente Nutzung von fluktuierenden, erneuerbaren Energien durch multimodale Lastverschiebung, insbesondere im Hinblick auf die Kälteversorgung von Supermärkten, möglich ist. Dabei werden sowohl dynamische Strompreise, als auch Vorhersagen von dynamischen Randbedingungen, wie beispielsweise elektrische und thermische Grundlasten, berücksichtigt. Die technische Machbarkeit wird in der Simulation aufgezeigt und im realen Betrieb eines Pilot-Supermarktes validiert. Dabei soll der Aufwand für die Installation des Energiemanagementsystems und die evtl. notwendige Ertüchtigung des Energiesystems, z.B. durch zusätzliche Messgeräte oder Anpassungen in der Automatisierung, so gering wie möglich gehalten werden.

Rollout-fähigEs Multimodales EnergiemAnagement für SUpermäRktE, Teilvorhaben: Modelprädiktive multimodale Lastverschiebung im Pilot-Supermarkt

Zur Erfüllung der nationalen und europäischen Klimaziele muss die erneuerbare fluktuierende Stromerzeugung schnell ausgebaut und effizient genutzt werden. Neben dem kostenintensiven Ausbau der Energienetze und Speicherkapazitäten können vorhandene lokale Energiesysteme genutzt werden, um mittels multimodaler Lastverschiebung die Nachfrage in Abhängigkeit vom Angebot an erneuerbarer Energie zu verschieben. Es wird eine schnell umsetzbare, skalierbare und wirtschaftliche Lösung benötigt. Supermärkte sind von großem Interesse, da die entsprechenden Energiesysteme weitestgehend standardisiert sind. Sie sind weiterhin flächendeckend mit Messtechnik ausgestattet und weisen einen hohen Automatisierungsgrad auf. Ein Lastverschiebepotential ist durch die Flexibilität des lokalen Kältenetzes des Supermarktes im Zusammenspiel mit den steuerbaren Kälteverbrauchern, wie z.B. Kühltruhen oder Kältekammern vorhanden. Energiesysteme von modernsten Supermärkten werden aktuell typischerweise anhand statischer Regeln rein bedarfsorientiert betrieben. Ein solcher Betrieb ist nicht zielführend, da das Angebot von fluktuierenden, erneuerbaren Energien nicht berücksichtigt wird und somit nicht effizient genutzt werden kann. Ziel des Projektes ist es zu untersuchen, ob eine effiziente Nutzung von fluktuierenden, erneuerbaren Energien durch multimodale Lastverschiebung, insbesondere im Hinblick auf die Kälteversorgung von Supermärkten, möglich ist. Dabei werden sowohl dynamische Strompreise, als auch Vorhersagen von dynamischen Randbedingungen, wie beispielsweise elektrische und thermische Grundlasten, berücksichtigt. Die technische Machbarkeit wird in der Simulation aufgezeigt und im realen Betrieb eines Pilot-Supermarktes validiert. Dabei soll der Aufwand für die Installation des Energiemanagementsystems und die evtl. notwendige Ertüchtigung des Energiesystems, z.B. durch zusätzliche Messgeräte oder Anpassungen in der Automatisierung, so gering wie möglich gehalten werden.

Rollout-fähigEs Multimodales EnergiemAnagement für SUpermäRktE, Teilvorhaben: Simulative Bewertung von Betriebsstrategien

Zur Erfüllung der nationalen und europäischen Klimaziele muss die erneuerbare fluktuierende Stromerzeugung schnell ausgebaut und effizient genutzt werden. Neben dem kostenintensiven Ausbau der Energienetze und Speicherkapazitäten können vorhandene lokale Energiesysteme genutzt werden, um mittels multimodaler Lastverschiebung die Nachfrage in Abhängigkeit vom Angebot an erneuerbarer Energie zu verschieben. Es wird eine schnell umsetzbare, skalierbare und wirtschaftliche Lösung benötigt. Supermärkte sind von großem Interesse, da die entsprechenden Energiesysteme weitestgehend standardisiert sind. Sie sind weiterhin flächendeckend mit Messtechnik ausgestattet und weisen einen hohen Automatisierungsgrad auf. Ein Lastverschiebepotential ist durch die Flexibilität des lokalen Kältenetzes des Supermarktes im Zusammenspiel mit den steuerbaren Kälteverbrauchern, wie z.B. Kühltruhen oder Kältekammern vorhanden. Energiesysteme von modernsten Supermärkten werden aktuell typischerweise anhand statischer Regeln rein bedarfsorientiert betrieben. Ein solcher Betrieb ist nicht zielführend, da das Angebot von fluktuierenden, erneuerbaren Energien nicht berücksichtigt wird und somit nicht effizient genutzt werden kann. Ziel des Projektes ist es zu untersuchen, ob eine effiziente Nutzung von fluktuierenden, erneuerbaren Energien durch multimodale Lastverschiebung, insbesondere im Hinblick auf die Kälteversorgung von Supermärkten, möglich ist. Dabei werden sowohl dynamische Strompreise, als auch Vorhersagen von dynamischen Randbedingungen, wie beispielsweise elektrische und thermische Grundlasten, berücksichtigt Die technische Machbarkeit wird in der Simulation aufgezeigt und im realen Betrieb eines Pilot-Supermarktes validiert. Dabei soll der Aufwand für die Installation des Energiemanagementsystems und die evtl. notwendige Ertüchtigung des Energiesystems, z.B. durch zusätzliche Messgeräte oder Anpassungen in der Automatisierung, so gering wie möglich gehalten werden.

Großräumige Integrierte Gesamt-Analyse des tiefengeothermischen Potentials und seiner synergetischen Nutzung im Großraum München, Teilprojekt: Bewertungsmodell und Management zur synergetischen Reservoirnutzung

Großräumige Integrierte Gesamt-Analyse des tiefengeothermischen Potentials und seiner synergetischen Nutzung im Großraum München, Teilprojekt: TUM: Bewertungsmodell und Management zur synergetischen Reservoirnutzung

Großräumige Integrierte Gesamt-Analyse des tiefengeothermischen Potentials und seiner synergetischen Nutzung im Großraum München, Teilprojekt: SWM: Reservoirmanagement, 3Dseismische Erkundung und Interpretation, Extended Reach Drilling-Konzept, Abbau Nicht-Technischer Barrieren

Großräumige Integrierte Gesamt-Analyse des tiefengeothermischen Potentials und seiner synergetischen Nutzung im Großraum München, Teilvorhaben: LHM

Antrag auf immissionsschutzrechtliche Genehmigung nach §§ 4 und 19 BImSchG zum Betrieb des Biomasseheizkraftwerkes zur Erzeugung von Wärme und Strom auf dem Grundstück Fl. Nr. 523/11 der Gemarkung Ascha, Fassbinderstraße 5 in 94347 Ascha durch die Bayernwerk Natur GmbH

Die Nahwärme Ascha GmbH betreibt auf dem o.g. Grundstück ein Heizkraftwerk zur Versorgung der Gemeinde mit Wärme. Die Anlage setzt sich aus einem Blockheizkraftwerk (BHKW, Grundlast), einem Spitzenlastkessel (Heizöl EL) und einem Biomassekessel (Hackschnitzel) zusammen. Außerdem gehören zur Gesamtanlage ein Hackschnitzel- und ein Pelletlager, ein Holzvergaser inkl. Notfackel, ein Pflanzenöltank und ein Heizhaus mit Pufferspeicher und Netzpumpen. Das BHKW-Modul (Zündstrahlmotor) wird in Kombination mit dem Holzvergaser mit naturbelassenen Holzpellets und Pflanzenöl betrieben, die Feuerungswärmeleistung beträgt ca. 590 kW. Der mit Heizöl betriebene Spitzenlastkessel weist eine Feuerungswärmeleistung von 857 kW auf. Für den Biomassekessel mit einer Feuerungswärmeleistung von 722 kW werden naturbelassene Hackschnitzel als Brennstoff verwendet. Die Abgase der drei Feuerungsanlagen werden über einzelne Abgaskamine abgeleitet. Der Holzvergaser verfügt über eine Notfackel mit einer Höhe von etwa 10,4 Metern. Die Notfackel kommt im bestimmungsgemäßen Betrieb nicht zum Einsatz. Gemäß § 1 Abs. 3 der 4. BImSchV handelt es sich bei den Teilanlagen (BHKW-Modul, Biomassekessel und Ölkessel) um eine gemeinsame Anlage. Unter Anwendung der Additionsregel unterliegt die Anlage dem Anwendungsbereich der 4. BImSchV und ist somit immissionsschutzrechtlich genehmigungsbedürftig.

1 2 3 4 58 9 10