Bei dem Pilotvorhaben der OCER Energie GmbH im niedersächsischen Zetel (Kreis Friesland/Niedersachsen), wird die im Grundwasser gespeicherte Erdwärme genutzt, um Gewächshäuser einer Gärtnerei ganzjährig, kontinuierlich mit Wärme zu versorgen. Damit kann im Vergleich zu einer herkömmlichen Erdgasheizung rund die Hälfte des Brennstoffs eingespart werden. Der Ausstoß an klimaschädlichem Kohlendioxid wird um rund 368 Tonnen pro Jahr verringert. Die im Rahmen des Vorhabens benötigte Wärmeenergie soll mittels erdgasbetriebener Wärmepumpen Brunnenwasser aus rund 30 Meter Tiefe, das ganzjährig ca. 10 Grad Celsius warm ist, gewonnen werden. Zusätzlich soll auch die Abwärme der Gasmotoren genutzt werden. Da an sonnenscheinreichen Tagen eine Beheizung der Gewächshäuser nicht nötig ist, wird die Wärme in dieser Zeit in Wassertanks gespeichert und je nach Bedarf zugeführt. Das Vorhaben kann ein Modell für eine Vielzahl von anderen Gärtnereien und Einrichtungen sein, bei denen die benötigte Energie oft die größten Kosten verursacht und Grundwasser in ausreichender Menge zur Verfügung steht.
Die EU Ecodesign-Richtlinie hat das Ziel, die Umweltauswirkungen mit dem Schwerpunkt Energieverbrauch von in der EU verkauften Produkten zu reduzieren. Für die niederländische Umweltorganisation Natuur en Milieu hat Ecofys das mit der Richtlinie verbundene Umweltschutz- und Wirtschaftspotenzial ermittelt. Die Umsetzung der EU Ecodesign-Richtlinie würde jährliche Einsparungen von bis zu 600 TWh Strom und 600 TWh Wärme im Jahr 2020 einbringen. Zusätzlich zu dem Nutzen für die Umwelt zeigt die Studie wichtige wirtschaftliche Vorteile auf wie: - Nettoeinsparungen für europäische Verbraucher und Unternehmen von 90 Mrd. Euro pro Jahr (1 Prozent des europäischen BIP) im Jahr 2020 - Durch Reinvestition dieser Einsparungen in andere Wirtschaftssektoren könnten eine Million Arbeitsplätze geschaffen werden - Die Abhängigkeit von Energieimporten könnte für Erdgas um 23 Prozent bzw. für Kohle um 37 Prozent verringert werden. Dieses hätte zur Folge, dass die EU Erdgasimporte aus Russland um die Hälfte kürzen und auf die Einfuhr von Kohle aus Russland ganz verzichtet werden könnte.
Zielsetzung: Bereits 1987 wurde in einem Firmengebaeude in Wetzlar erstmals der Erdsondenteil einer erdgekoppelten Waermepumpe als Kaeltespeicher benutzt und direkt zur Kuehlung eines Konferenzraumes im Sommer herangezogen. Nunmehr sollen durch weitere Untersuchungen die Einsatzfaehigkeit und Auslegungskriterien fuer derartige energiesparende Raumkuehlungsanlagen festgestellt werden. Arbeiten und bisherige Ergebnisse: In zwei Gebaeuden (Technorama, Duesseldorf, und Betriebsgebaeude Geotherm, Linden) wird eine Raumkuehlung mit Kaeltespeicherung im Erdreich betrieben. Dabei ist in Linden nur die direkte Kaelterueckgewinnung vorgesehen, waehrend in Duesseldorf zur Deckung des Spitzenbedarfs reversible Waermepumpen zugeschaltet werden koennen. Beide Anlagen haben im Sommer 1991 voll zufriedenstellend gearbeitet. Studien fuer den Einsatz in anderen Gebaeuden liegen vor; fuer die Auslegungsrechnung wurden PC-Programme der Universitaet Lund, Schweden, eingesetzt. In einem eigenen Projekt wurde ein Bericht zum Stand der Technik erstellt.
Dezentrale Pumpen in Anlagen der Heizungstechnik können zur spürbaren Einsparung von Heiz- und Elektroenergie führen. Dazu werden umfangreiche gekoppelte Gebäude- und Anlagensimulationen durchgeführt und ausgewertet.
Within the framework of the GEOSTOR Project, the CO2 storage potential of the Jurassic succession in the German Central Graben was analysed. Twelve potential trap structures were initially mapped along the base of the Kimmeridge Clay Formation, which serves as the primary seal for potential reservoir sandstones within the Central Graben Subgroup. The Kimmeridge Clay Formation is generally continuously distributed across the German Central Graben, with only localized penetrations by rising salt diapirs. In contrast, the Central Graben Subgroup, serving as a potential reservoir unit, exhibits an uneven distribution across the area, limiting the presence and continuity of reservoir rocks within each trap structure. To further delineate the spatial extent of the mapped reservoir structures, the base of the Central Graben Subgroup was used as an additional reference layer. Due to the intermittent nature of Jurassic sandstones within the Central Graben Subgroup, a subsequent analysis classified each structure based on borehole data to confirm the presence of reservoir sands. Structures were categorized as ‘proven,’ ‘not present,’ or ‘uncertain’ depending on sandstone availability and continuity within the trap. All mapped reservoir structures are buried at depths ranging from 2225 to 3043 meters (apex depth) and are considered closed systems, situated within a complex structural network of salt diapirs, faults, and pinch-outs. Capacity calculations were conducted following the method outlined by Fuhrmann et al. (2024), and the horizons used for mapping are based on the work of Müller et al. (2023) and Thöle et al. (2021). Fuhrmann, A., Knopf, S., Thöle, H., Kästner, F., Ahlrichs, N., Stück, H.L., Schlieder-Kowitz, A., Kuhlmann, G., (2024). CO2 storage potential of the Middle Buntsandstein Subgroup-German sector of the North Sea. International Journal of Greenhouse Gas Control 136. Müller, S.M., Jähne-Klingberg, F., Thöle, H., Jakobsen, F.C., Bense, F., Winsemann, J. & Gaedicke, C. (2023). Jurassic to Lower Cretaceous tectonostratigraphy of the German Central Graben, southern North Sea. – Netherlands Journal of Geosciences, 102: e4. DOI:10.1017/njg.2023.4 Thöle, H., Jähne-Klingberg, F., Doornenbal, H., den Dulk, M., Britze, P. & Jakobsen F. (2021). Deliverable 3.8 – Harmonized depth models and structural framework of the NL-GER-DK North Sea. GEOERA 3DGEO-EU; 3D Geomodeling for Europe; project number GeoE.171.005. Report.
Diese Karte stellt die mittlere Wärmeleitfähigkeit mit Wassergehalten als Differenz aus Feldkapazität (FK) und Permanentem Welkepunkt (pF 4,2) dar. Sie veranschaulicht die wassergehaltsabhängigen Unterschiede zwischen saisonal höchster und niedrigster Wärmeleitfähigkeit und vermittelt einen Eindruck der zu erwartenden jahreszeitlichen Dynamik der Wärmeleitfähigkeit an einem Standort. Die Differenzen werden in folgende Klassen unterteilt: Differenz λFK - λPWP [W/m*K] sehr gering ≤ 0,2 gering 0,21 - 0,40 mittel 0,41 - 0,65 hoch 0,66 - 0,91 sehr hoch 0,92 - 1,20 Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden.
Diese Karten basieren auf den Legendeneinheiten der Bodenübersichtskarte (BÜK300) mit entsprechender Zuordnung von parametrisierten Flächenbodenformen. Diese stellen je Legendeneinheit eine Bodenformengesellschaft dar. Die einzelnen Flächenbodenformen (FBF) wurden mit bodenphysikalischen Kennwerten belegt, die durch Gelände-und Laboruntersuchungen bestimmt wurden. Dazu wurden für gleiche Horizont-Substrat-Kombinationen (HSK) die Kennwerte Bodenart Trockenrohdichte, Gesamtporenvolumen, Wassergehalt bei Feldkapazität (FK) und Permanentem Welkepunkt (PWP), Humusgehalt statistisch abgeleitet (i.d.R. Medianwerte). Die Wärmeleitfähigkeit (λ) bestimmt die Eigenschaft des Bodens, thermische Energie durch Konduktion zu transportieren. Sie ist die entscheidende Kenngröße für die Nutzung des Bodens als Wärmequelle und -speicher und muss u.a. bei der Anwendung oberflächennaher Geothermie (Erdwärmekollektoren) oder beim Bau erdverlegter Stromkabel berücksichtigt werden. Zur Berechnung der Wärmeleitfähigkeit wurde die Pedotransferfunktion (PTF) nach Markert et al. (2017) unter Berücksichtigung der oben genannten Kennwerte verwendet. Diese PTF basiert auf umfangreichen Messungen der Wärmeleitfähigkeit für ein weites Spektrum der in Brandenburg vorkommenden Böden. Für jede HSK ist die Wärmeleitfähigkeit für die Wassergehalte bei FK und PWP bis in eine Tiefe von 2m berechnet worden. Bei HSK im Einflussbereich des Grundwassers (Gr-Horizonte) wurde die Wärmeleitfähigkeit für volle Wassersättigung veranschlagt. Auf Grund der Parametrisierung der PTF für ausschließlich mineralische Böden wurden folgende Anpassungen vorgenommen: für organische HSK (Torfe) wurde mit einer Wärmeleitfähigkeit von λFK = 0,4 W/m*K und λPWP = 0,2 W/m*K gerechnet (Vgl. Messwerte von Markert et al. 2017; VKR 1.32 AG Boden 2010), für tonige Böden sind auf Grund der geringen Datenlage die Parameter der lehmigen Böden verwendet worden, der Humusgehalt wurde durch λhumos = λmineralisch – Humusgehalt*0,05 berücksichtigt. Für HSK mit anthropogenem Ausgangsgestein war auf Grund unzureichender Messwerte und fehlender Angaben in der Literatur keine Berechnung der Wärmeleitfähigkeit möglich. Die Wärmeleitfähigkeit je Flächenbodenform ist in diesem Fall als gewichtetes harmonisches Mittel unter Berücksichtigung der Mächtigkeit aller Horizonte ermittelt worden. Zur besseren Übersichtlichkeit und Interpretierbarkeit der Ergebnisse wurden die gewichteten harmonischen Mittelwerte der Wärmeleitfähigkeiten in die folgenden 6 Klassen eingeteilt: Wärmeleitfähigkeit [W/m*K] extrem gering ≤ 0,4 sehr gering 0,41 - 0,90 gering 0,91 - 1,40 mittel 1,41 - 1,90 hoch 1,91 - 2,40 sehr hoch 2,41 - 2,90 Für die grafische Darstellung als Karte wurden je Legendeneinheit (LE) die Flächenbodenformen mit gleicher Wärmeleitfähigkeitsklasse zusammengefasst, deren Flächenanteile nach Tab. 66 (AG Boden 2005) je LE addiert und als eine aggregierte dominante, sowie eine aggregiert subdominante λ-FBF ausgewiesen. Bei einigen wenigen Flächen mit sehr heterogener Zusammensetzung der Flächenbodenformen sind drei λ-FBF angegeben.
„Geothermie“ oder „Erdwärme“ ist die unterhalb der Oberfläche der festen Erde gespeicherte Energie in Form von Wärme und zählt zu den regenerativen Energien. Diese beruht im Wesentlichen auf der von der Sonne eingestrahlten Wärmeenergie und dem nach oben gerichteten, terrestrischen Wärmestrom. Die von der Sonne eingestrahlte und von der Erdoberfläche an die Atmosphäre wieder abgegebene Wärmeenergie beeinflusst hierbei maßgeblich die Temperaturen im oberflächennahen Bereich bis etwa 15 bis 20 Metern Tiefe. Hier finden jahreszeitlich bedingte Temperaturschwankungen statt. In größerer Tiefe ist nur noch der terrestrische Wärmestrom maßgebend. Ursache ist die bei der Erdentstehung freigewordene Energie und der Zerfall radioaktiver Isotope. Mit der Tiefe nehmen die Temperaturen hier um durchschnittlich etwa 3 °C pro 100 Meter Tiefe zu. Man spricht auch von der „geothermischen Tiefenstufe“ oder dem „geothermischen Gradienten“. In einer Tiefe von etwa 20 m ist eine unbeeinflusste Temperatur von ca. 9 °C zu erwarten, in 100 m 12 °C und in 1.000 m etwa 40 °C. Der Transport der Wärme erfolgt durch Wärmeleitung von Teilchen zu Teilchen (Konduktion), aber auch durch bewegte Teilchen, also durch Grundwasserfluss (Konvektion). Berlin hat sich vorgenommen, bis spätestens im Jahr 2045 klimaneutral zu werden. Um dies zu erreichen, gilt es, gerade auch die Wärmeversorgung in der Stadt auf erneuerbare Energiequellen umzustellen. Denn fast die Hälfte des gesamten Berliner Endenergiebedarfs entfällt auf die Raumwärme und Warmwasserversorgung von Gebäuden. Bereitgestellt wird diese Wärme derzeit noch zu mehr als 90 Prozent über fossile Energieträger, also Kohle, Erdgas und Öl. Dies muss sich schnellstmöglich ändern. Dabei kann die Tiefe Geothermie – die emissionsfreie Förderung und Nutzung heißen Wassers aus tiefen Bodenschichten – eine wichtige Rolle spielen. Das genaue Potenzial im Berliner Untergrund ist noch unklar und muss erst präzise erkundet werden. Doch schon jetzt schätzen Geologen auf Grundlage bisheriger Erkenntnisse, dass bis zu einem Fünftel der benötigten Wärme mit Hilfe Tiefer Geothermie zur Verfügung gestellt werden könnte, etwa in Nah- und Fernwärmenetzen, über die Berliner Haushalte versorgt werden. Die Technik dazu ist bewährt und wird deutschlandweit in Dutzenden von Anlagen erfolgreich angewandt. Bild: SenMVKU Tiefe Geothermie. Erdwärme für Berlin Tiefe Geothermie, also Wärme, die in den Tiefen der Erde verfügbar ist, soll ein essenzieller Teil der Berliner Wärmeversorgung werden. Wir haben die wichtigsten Details für Sie zusammengestellt. Weitere Informationen Um das geothermische Potenzial von Berlin zu ermitteln, wurde in den Jahren 2009 bis 2012 die „Potenzialstudie zur Nutzung der geothermischen Ressourcen des Landes Berlin“ aufgeteilt in drei Module erarbeitet. Die Ergebnisse zu Modul 1, Grundlagenermittlung , und zu “Modul 2, Ermittlung des geothermischen Potenzials und dessen Darstellung, bildeten Grundlagen für die Darstellung der Potenzialkarten . Die Arbeiten zu Modul 3, Thermisch-hydraulische Modellierung, sind in der Zusammenfassung der Berichte (Modul 1 bis 3) enthalten, die nachfolgend als Download zur Verfügung steht. Im Jahr 2023 wurde eine aktualisierte Potenzialstudie zur Mitteltiefen Geothermie in Berlin erstellt, welche die Ergebnisse aus verschiedenen Forschungsprojekten der vorangegangenen 10 Jahren berücksichtigt. Aus dem Verbundprojekt „TUNB – Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken“ ist ein dreidimensionales Modell des Norddeutschen Beckens verfügbar, welches für den Raum Berlin mittels zusätzlicher Daten aus 2D/3D-Seismik und Bohrungen verfeinert wurde. Anschließend erfolgte eine geothermische Parametrisierung der potenziellen Nutzhorizonte, wobei vor allem auf die Ergebnisse der Verbundprojekte Sandsteinfazies, GeoPoNDD und MesoTherm zurückgegriffen wurde. Die aktualisierte Potenzialstudie und die Daten des 3D-Untergrundmodells stehen nachfolgend als Download zur Verfügung. Im Ballungsraum von Berlin ist die Temperatur des Untergrundes durch den Menschen tiefgreifend erwärmt. Der Anstieg der durchschnittlichen Oberflächentemperatur durch die globale Klimaerwärmung hat diesen Prozess zusätzlich noch verstärkt. Dies zeigen langjährige Temperaturmessungen in Grundwassermessstellen unter einer Tiefe von 20 m unter Gelände, unterhalb der jahreszeitliche Temperatureinflüsse durch die Sonne ausgeschlossen sind. In einigen Innenstadtgebieten sind Temperaturbeeinflussungen bis in über 80 m nachgewiesen. Die flächenhaft im Untergrund des Landes Berlin durchgeführten Temperaturmessungen zeigen deutlich, dass im zentralen Innenstadtbereich die Durchschnittstemperatur des Untergrundes und damit auch des Grundwassers z. T. um mehr als 4 °C gegenüber den dünner besiedelten Randbereichen anthropogen bedingt erhöht ist. Die Temperaturmessungen belegen auch, dass sich dieser Temperaturanstieg zunehmend auch flächenhaft in größeren Tiefen bemerkbar macht. Dies zeigt die Karte für den Bezugshorizont 0 m NHN (Normalhöhennull), das entspricht je nach Lage im Stadtgebiet einer Tiefen von 35 bis 55 m Tiefe. Näheres zu dieser Thematik kann dem Umweltatlas Berlin und der Veröffentlichung zur Veränderung des Temperaturfeldes von Berlin ( BRB Henning & Limberg ) entnommen werden. Grundsätzlich ist die Art und Weise der Nutzung geothermischer Energie von der Temperatur des Vorkommens abhängig. Die oberflächennahe Erdwärme (z.B. bis 100 m) lässt sich derzeit wegen ihrer geringen Temperatur von 8 bis 12 °C nur in Verbindung mit einer Wärmepumpe nutzen, die die erforderliche Wärme für die Raumheizung und die Wassererwärmung erzeugt. Da mit zunehmender Tiefe die Temperatur des Untergrundes ansteigt, kann ab einer bestimmten Tiefe (ab etwa 1.000 m) die Untergrundwärme auch direkt (ohne Wärmepumpe) genutzt werden. Ist eine Stromerzeugung mit Dampfturbinen beabsichtigt, sind in der Regel Temperaturen von über 100 °C notwendig. Die dafür geeigneten Nutzungshorizonte liegen in unserer Region i. d. R. drei bis fünf Kilometer unter der Erdoberfläche. In Berlin wird fast ausschließlich die oberflächennahe Geothermie genutzt, d. h. bis zu einer maximalen Tiefe von 100 m. Dafür steht ein ganzes Spektrum von technischen Möglichkeiten zur Verfügung. Alle diese Verfahren benötigen eine Wärmepumpe, die in der Lage ist, die relativ niedrige Temperatur des Untergrundes bzw. des Grundwassers in diesen Tiefen von 8 – 12 °C mit Hilfe von elektrischer Energie auf ein für Heizzwecke geeignetes höheres Temperaturniveau zu bringen. Weitere Informationen zur Erdwärmenutzung Zur Erhöhung der Planungssicherheit dieser Erdwärmesondenanlagen werden im Umweltatlas Berlin Potenzialkarten zur spezifischen Wärmeleitfähigkeit und speziell für Einfamilienhäuser zur spezifischen Entzugsleistung dargestellt. Hierin sind die dafür maßgeblichen geologischen und hydrogeologischen Verhältnisse subsummiert. Da der Einbau von Erdwärmesondenanlagen in den Untergrund potenziell mit einem Risiko der Grundwassergefährdung verknüpft ist, werden zum Schutz des Grundwassers bei der Errichtung einer solchen Anlage hohe wasserrechtliche Anforderungen an das Bohrverfahren, die anschließende Bohrlochabdichtung, Drucktests, Dokumentation etc. gestellt. Neuere Forschungsergebnisse, Schadensfälle sowie die stark gestiegene Anzahl der Erdwärmesondenanlagen bestätigen diese Gefährdung immer wieder. Weitere Informationen zur Anzeigepflicht für Bohrungen Da Berlin sein Trinkwasser zu 100 % aus dem Grundwasser und fast ausschließlich aus dem eigenen Stadtgebiet bezieht, werden deshalb bei der Errichtung einer Erdwärmesondenanlage in dem dafür erforderlichen wasserbehördlichen Erlaubnisverfahren zum Schutz des Grundwassers besonders hohe Anforderungen gestellt. Näheres kann dem Leitfaden Erdwärmenutzung in Berlin entnommen werden. Pflichtenheft zur Methodik und Dokumentation thermohydrodynamischer Modellierungen im Rahmen des wasserrechtlichen Erlaubnisverfahrens zum Betrieb von Erdwärmesondenanlagen mit einer Heizleistung von >30 kW Kartenwerke zur Grundwassertemperatur Kartenwerke zum Geothermischen Potenzial Geothermisches Potenzial – Karten aktualisiert im Geoportal verfügbar Auf der Basis von ca. 14.950 Bohrungen der Bohrungsdatenbank der AG Landesgeologie der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt wurden zwölf Karten neu berechnet. Die verfeinerten Planungshilfen für die Auslegung von Erdwärmesondenanlagen stehen für die Tiefenklassen 0-40 m, 0-60 m, 0-80 m und 0-100 m zur Verfügung. Weitere Informationen Karten im Umweltatlas Berlin
Diese ungefilterte aber geprüfte Datentabellle stellt alle ab 1989 verfügbaren Seehund und Kegelrobben-Daten aus Zählflügen im Bereich des Nationalparks Schleswig-Holsteinischen Wattenmeer zur Verfügung. Es handelt sich bei den Daten einerseits um Erfassungen die während der Seehund-Flüge in den Monaten Mai - Juli (Wurfzeit) und August - September (Haarwechselzeit) durchgeführt werden, andererseits aber auch um Daten, die während der Kegelrobben-Flüge in den Monaten November - April erfasst wurden. Da es sich um eine UIG entsprechende vollständige Weitergabe der aufbereiteten Rohdaten handelt, wurde keine methodische oder biologische Filterung der Daten vorgenommen. Daher sind die Daten für eine Bestandsberechnung nur nach ansprechender Filterung möglich.
Origin | Count |
---|---|
Bund | 1889 |
Kommune | 13 |
Land | 202 |
Schutzgebiete | 1 |
Wissenschaft | 44 |
Type | Count |
---|---|
Daten und Messstellen | 43 |
Ereignis | 14 |
Förderprogramm | 1616 |
Taxon | 2 |
Text | 132 |
Umweltprüfung | 19 |
unbekannt | 191 |
License | Count |
---|---|
geschlossen | 158 |
offen | 1800 |
unbekannt | 57 |
Language | Count |
---|---|
Deutsch | 1751 |
Englisch | 398 |
Resource type | Count |
---|---|
Archiv | 103 |
Bild | 6 |
Datei | 99 |
Dokument | 127 |
Keine | 1047 |
Unbekannt | 2 |
Webdienst | 54 |
Webseite | 734 |
Topic | Count |
---|---|
Boden | 1274 |
Lebewesen und Lebensräume | 1249 |
Luft | 910 |
Mensch und Umwelt | 2006 |
Wasser | 891 |
Weitere | 1967 |