API src

Found 383 results.

Related terms

Gefriertruhe, Gefrierschrank

<p>Beim Gefrierschrank den Stromverbrauch im Auge behalten</p><p>Welche Umwelttipps Sie bei Gefriergeräten beachten sollten</p><p><ul><li>Kaufen Sie Gefriergeräte mit niedrigem Stromverbrauch (auf EU-Energielabel achten).</li><li>Stellen Sie Gefriergeräte nicht neben warme Geräte wie Herd, Spülmaschine, Waschmaschine oder in die Sonne.</li><li>Öffnen Sie Gefrierschrank und -truhe jeweils nur kurz, damit möglichst wenig warme Luft einströmt.</li><li>Entsorgen Sie Ihre Altgeräte sachgerecht bei der kommunalen Sammelstelle oder beim Neukauf über den Händler.</li></ul></p><p>Gewusst wie</p><p><strong>Sparsame Geräte:</strong>Gefriergeräte laufen rund um die Uhr und gehören wie Kühlgeräte zu den größten Stromfressern im Haushalt. Die Stromkosten bewegen sich – je nach Modell und Alter – zwischen 30 und 80 Euro im Jahr. Bei einer durchschnittlichen Nutzungsdauer von 15 Jahren ergibt dies Stromkosten in Höhe von 450 bis zu 1.200 Euro. Der jährliche Stromverbrauch ist auf dem EU-Energielabel in Kilowattstunden (kWh) angegeben, das Sie im Elektromarkt und online bei jedem Gerät finden. Mit Einführung des neuen EU-Energielabels im Jahr 2021 erfolgte die Einordnung auf Basis des Energieverbrauches bzw. der Energieeffizienz in die Klassen A (geringster Verbrauch) bis G (höchster Verbrauch). Aufgrund neuer Messmethoden finden sich die aktuell effizientesten Geräte in Klasse A oder B.</p><p><strong>Neukauf</strong><strong>oder weiternutzen und reparieren?</strong>Kühl- und Gefriergeräte sollten in der Regel so lange wie möglich genutzt werden. Ein funktionierendes Gefriergerät gegen ein neues Gerät der Effizienzklasse A auszutauschen, lohnt sich nur bei sehr ineffizienten Geräten. Auch eine Reparatur lohnt in den den meisten Fällen. Wenn Sie wissen möchten, ob Sie ihr vorhandenes Gerät weiterbetreiben oder bei einem Defekt reparieren lassen sollten, dann messen Sie den Verbrauch mit einem Energiekosten-Messgerät. Nur wenn Ihr Gefrierschrank mehr als rund 430 kWh im Jahr verbraucht, wäre es klimafreundlicher, ihn gegen ein neues A-Gerät auszutauschen. Bei einer Kühl-Gefrier-Kombination lohnt der Austausch ab rund 340 kWh im Jahr. Im Fall einer Reparatur lohnt sich der Austausch schon bei einem etwas geringeren Jahresverbrauch. Für die Haushaltskasse lohnt der Austausch erst bei noch höheren Werten für den Stromverbrauch. Weitere Hinweise finden Sie in der Abbildung weiter unten.</p><p>Die Grafik zeigt, ob sich der Weiterbetrieb oder die Reparatur von Kühl- und Gefriergeräten ökologisch und ökonomisch lohnt – betrachtet über 10 Jahre. Ein Austausch funktionierender Geräte gegen Klasse-A-Modelle lohnt meist nicht. Ausnahmen: Kühlschrank ab 460 kWh (ökonomisch) bzw. 240 kWh (ökologisch), Kühl-Gefrier-Kombi ab 560 kWh/340 kWh, Gefrierschrank ab 570 kWh/430 kWh. Reparaturen lohnen in der Regel, außer bei hohem Verbrauch: Kühlschrank ab 360 kWh/220 kWh, Kühl-Gefrier-Kombi ab 450 kWh/320 kWh, Gefrierschrank ab 460 kWh/420 kWh. Berechnungen basieren auf 10-jähriger Nutzung nach Reparatur (Kosten: 365 €) und einem Klasse-A-Neugerät. Verbrauch lässt sich mit Strommessgerät ermitteln; Größe und Effizienz sind unabhängig.</p><p><strong>Die richtige Größe:</strong>Bei Gefriergeräten gilt die Erfahrung, dass sich das Einfrierverhalten der Gerätegröße anpasst: Je größer das Gerät, umso größer wird die persönliche Vorratshaltung. Früher galt der Grundsatz, dass mit der Größe des Gerätes der Stromverbrauch steigt. Bei den aktuellen Geräten gilt das nicht mehr. Die Stiftung Warentest gibt als Faustregel für das Gefriervolumen 40 bis 80 Liter pro Person an. Wichtig: Bei separatem Gefriergerät ist ein Gefrierfach im Kühlschrank überflüssig. Wenn möglich, sollte das Gefriergerät an einen kühlen Ort (z.&nbsp;B. Keller) gestellt werden.</p><p><strong>Richtig entsorgen:</strong>Weitere Informationen zur richtigen Entsorgung Ihres Gefriergerätes und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA-Umwelttipp<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/alte-elektrogeraete-richtig-entsorgen">"Alte Elektrogeräte richtig entsorgen"</a>.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p>Seit 1995 ist es in Deutschland verboten, vollhalogenierte, die Ozonschicht schädigende Kohlenwasserstoffen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=FCKW#alphabar">FCKW</a>⁠) als Kälte- und Schäumungsmittel in Kühlgerätenzu verwenden. Seit dem 1. Januar 2015 dürfen in der EU auch keine Haushaltskühl- und gefriergeräte mehr in Verkehr gebraucht werden, &nbsp;die teilfluorierte Kohlenwasserstoffe (HFKW) mit einem Treibhauspotenzial von 150 oder mehr enthalten. Ab dem 1. Januar 2026 dürfen gar keine Geräte mehr in Verkehr gebracht werden, die fluorierte Treibhausgase enthalten. Bei einer durchschnittlichen Lebensdauer von 15 bis 20 Jahren sind aber immer noch viele Geräte mit HFKW oder sogar FCKW im Einsatz. Durch illegal entsorgte Gefrierschränke können FCKW oder HFKW unkontrolliert in die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ entweichen und zur weiteren Zerstörung der Ozonschicht und zur Erwärmung der Erdatmosphäre beitragen.</p><p>In Haushaltsgeräten wird heute zumeist Isobutan (R 600a) als Kältemittel und Pentan (R 601) als Schäumungsmittel eingesetzt. Diese halogenfreien Kohlenwasserstoffe haben kein Ozonabbaupotenzial und nur ein sehr geringes Treibhauspotenzial.</p><p>Weitere Informationen finden Sie auf unseren Themenseiten:</p>

Klimaschutz

Mit dem Projekt 'Klimaschutz' wird die Arbeit von Prof. Dr. Peter Hennicke als Sachverstaendigen in der Enquete-Kommission 'Vorsorge zum Schutz der Erdatmosphaere' wissenschaftlich unterstuetzt. Die Unterstuetzung erfolgt prinzipiell auf den zwei Gebieten 'Energie' (Kohlendioxid) und 'Chemie' (v.a. Ozonabbau/FCKW), jeweils durch Beratung, Teilnahme und Vorbereitung von Anhoerungen und durch Erstellung von Positionspapieren bzw. Klein-Gutachten. Diese werden erst im Laufe des Projektes genauer bestimmt.

Bestimmung von sehr geringen Konzentrationen an HCl in Troposphaere und Stratosphaere

Aus Untersuchungen einer amerikanischen Arbeitsgruppe geht hervor, dass Fluorchlorkohlenwasserstoffe die die Erde umgebende Ozonschicht abbauen. Ueber das Mass dieses Abbaus lassen sich keine exakten Angaben machen, da zu viele Konzentrationen beteiligter Reaktanden und Gleichgewichts bzw. Geschwindigkeitskonstanten nur ungenuegend bekannt sind. Eine sehr grosse Bedeutung kommt bei den Berechnungen der HCl-Konzentration in der Troposphaere und Stratospaere zu. Das analytische Problem HCl-Konzentrationen, die kleiner als 0,01 ppbv sind, in der Troposphaere zu bestimmen, laesst sich nur durch neue Methoden loesen. Zur Zeit sind wir deshalb mit der Ausarbeitung von zwei Methoden beschaeftigt. Bei der ersten Methode wird zunaechst traegerfreies CrO3 durch Kernreaktionen hergestellt. Anschliessend erfolgt mit dem zu bestimmenden HCl eine Umsetzung und das gebildete CrO2Cl2 wird verfluechtigt und durch Bestimmung der Aktivitaet eine HCl-Bestimmung durchgefuehrt. Bei dem zweiten Verfahren wird die Selektivitaet eines EC-Detektors fuer bestimmte Substanzen ausgenutzt. HCl wird entweder mit halogenierten Epoxiden umgesetzt oder perfluorierte organische Verbindungen werden gespalten. Die entstehenden Verbindungen werden gaschromatographisch abgetrennt und mit hoher Nachweisempfindlichkeit mit einem EC-Detektor nachgewiesen.

Quantifizierung des Einflusses der stratosphärischen Zirkulation auf die Abschätzung troposphärischer Emissionen

Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

IBÖ-11: DeTox - Bio-katalytisch aktive Oberflächenbeschichtungen zur Degradierung von gasförmigen Schadstoffen

Informationen zu ausgewählten Abfallarten Mineralische Abfälle Textilabfälle POP-haltige Abfälle Verpackungsabfälle Bioabfälle Lebensmittelabfälle Abfälle aus Behandlungsanlagen Elektroaltgeräte Altmedikamente

Abfälle sind nach Herkunft und Zusammensetzung verschieden, wodurch ihre Entsorgungsmöglichkeiten wesentlich beeinflusst werden. Mineralische Abfälle stellen mit ca. 55 % (ca. 230 Mio. Tonnen) den mit Abstand größten Abfallstrom in Deutschland dar. Im Kontext nachhaltiger Wirtschafts- und Lebensweise ist ihre verstärkte Nutzung als Roh- oder Baustoff ein Schlüsselelement gelungener Kreislaufwirtschaft. Sie bieten ein hohes Potenzial wiederverwendet, recycelt oder stofflich verwertet und als Mineralische Ersatzbaustoffe eingesetzt zu werden. Seit dem 1. Januar 2025 gilt deutschlandweit eine Getrenntsammlungspflicht fürTextilabfälle. Das Bundesumweltministerium hat hierzu Fragen und Antworten veröffentlicht. Informationen über Entsorgungsmöglichkeiten vor Ort können auch die jeweiligen öffentlich-rechtlichen Entsorgungsträger Sachsen-Anhalts geben. Abfälle, die persistente organische Schadstoffe (POP) enthalten, unterliegen besonderen Anforderungen an die Entsorgung nach Artikel 7 der Verordnung (EU) Nr. 2019/1021 . Danach sind die POP in Abfällen bei Überschreiten der Grenzwerte des Anhangs IV dieser Verordnung grundsätzlich zu zerstören. Die Einstufung POP-haltiger Abfälle als gefährlich richtet sich nach Nr. 2.2.3 der Einleitung zur Abfallverzeichnis-Verordnung . Für bestimmte als nicht gefährlich eingestufte POP-haltige Abfälle regelt die POP-Abfall-Überwachungs-Verordnung Getrennthaltungs-, Nachweis- und Registerpflichten. Damit können die Anforderungen an die Zerstörung der POP-Bestandteile im Abfall nachvollzogen werden. Für die Einstufung HBCD-haltiger Abfälle gelten zusätzliche Hinweise des LVwA . Hilfreiche Informationen zu POP-haltigen Abfällen sind auch auf den Seiten des Umweltbundesamts verfügbar. Informationen des LAU Untersuchungen zur Relevanz von neuen persistenten organischen Schadstoffen in Abfällen und deren Auswirkungen auf die Abfalleinstufung und die Entsorgungswege in Sachsen-Anhalt (Kurzbericht) Hersteller, Importeure und Vertreiber von gebrauchten Verpackungen haben im Rahmen der Produktverantwortung Rücknahme- und Verwertungspflichten für ihre Verpackungen. Insbesondere bei Verkaufs- und Umverpackungen, die typischerweise beim privaten Endverbraucher anfallen, besteht eine Systembeteiligungspflicht. Für Anfallstellen, die den privaten Haushalten gleichgestellt sind, kann die Pflicht zur Beteiligung an dualen Systemen entfallen, wenn sie an einer Branchenlösung teilnehmen. Die in Sachsen-Anhalt festgestellten Dualen Systeme finden Sie hier . Die zuständige Behörde für die Genehmigung ist das Landesamt für Umweltschutz . Die Stiftung Zentrale Stelle Verpackungsregister übernimmt die in § 26 VerpackG genannten Aufgaben. Dazu gehören u.a. die Hersteller von systembeteiligungspflichtigen Verpackungen in einem Verpackungsregister zu führen, Datenmeldungen wie die bisherigen Vollständigkeitserklärungen und weitere Meldungen von Herstellern und dualen Systemen zu plausibilisieren, Anzeigen von Branchenlösungen entgegen zu nehmen und Marktanteile der dualen Systeme und Branchenlösungen zu berechnen und zu veröffentlichen. Bestimmte Verpackungen für Einweggetränke unterliegen seit 2005 bzw. 2006 der Pfandpflicht. Fachinformation des LAU "Pfand- und Rücknahmepflichten für Einweggetränkeverpackungen" Bei der Verwertung von Bioabfall sind Vorgaben zur Hygiene der Komposte und Gärrückstände sowie zur Güteüberwachung zu beachten. Um einen bundesweit einheitlichen Vollzug der Bioabfallverordnung zu gewährleisten, wurden Hinweise für die Vollzugsbehörden erarbeitet und veröffentlicht. Aktion Biotonne Deutschland Warum Plastiktüten oder -teile, Gummibänder oder ähnliche Fremdstoffe nicht in die Biotonne gehören? Diese Materialien, meist aus Erdöl hergestellt, benötigen viel Zeit um sich zu zersetzen. Sie werden aber kaum biologisch abgebaut. Übrig bleiben Reste und Mikrobestandteile, die über den Boden oder Tiere in die Nahrungskette gelangen, das Grundwasser oder die Weltmeere verunreinigen. Mehr Informationen Lebensmittelabfälle und -verluste zu reduzieren, ist ein erklärtes Ziel auf globaler, europäischer und nationaler Ebene. Initiativen und Projekte, die zu einer Verringerung der Lebensmittelverschwendung beitragen, werden in der Initiative "Zu gut für die Tonne" vorgestellt. Studie zur Vermeidung von Lebensmittelabfällen in Sachsen-Anhalt Zur besseren Überwachung der Entsorgung von Abfällen aus der mechanischen Behandlung wurden Recherchen und Untersuchungen an Abfallbehandlungsanlagen in Sachsen-Anhalt durchführt. Bewertungskriterien zur Optimierung der behördlichen Überwachung wurden herausgearbeitet. Ausgediente Elektro- und Elektronikaltgeräte, Batterien und Akkumulatoren gehören nicht in den Müll sondern in die Sammel- oder Rücknahmestelle. Sie enthalten viele Wertstoffe (Metalle, Kunststoffe, Glas), die wiederverwendet werden können. In ihnen können sich aber auch Schadstoffe wie Schwermetalle, bromierte Flammschutzmittel, FCKW oder Asbest befinden. Diese müssen getrennt gesammelt und umweltgerecht entsorgt werden. Kommunale Sammelstellen oder Rücknahmestelle im Handel sichern ein hochwertiges Recycling in dafür spezialisierten Entsorgungsunternehmen. Faltblatt des LAU "Wohin mit dem Elektroschrott" (pdf 5 MB) Sammelstellenfinder Altbatterien und Akkumulatoren richtig entsorgen: Informationen des Umweltbundesamts (UBA) Hinweise zur richtigen Entsorgung von Altmedikamenten finden Sie in diesem Flyer . (2 MB) Das Bundesumweltministerium, das Bundeslandwirtschaftsministerium sowie 13 Bundesländer, Verbände und Unternehmen haben eine Gemeinsame Erklärung zum Ausbau der Phosphor-Rückgewinnung aus Klärschlamm verabschiedet. Ziel ist, den Ausbau der Anlagenkapazitäten zu forcieren und die den Fortschritt bei der Phosphor-Rückgewinnung zu begleiten. mehr Informationen des Landesamtes für Umweltschutz Der Stand zu Klärschlammaufkommen, Klärschlammentsorgung und den Möglichkeiten einer Phosphorrückgewinnung wurden in einem Projekt des LAU erfasst. Die zukünftige Entwicklung des Aufkommens und der Entsorgung von Klärschlämmen in Sachsen-Anhalt wurden prognostiziert. Die Ergebnisse sind im Bericht "Klärschlammentsorgung in Sachsen-Anhalt - Stand und Prognose 2022" (pdf-Dateien, 9,5 MB, barrierefrei) dargestellt.

Statistischer Bericht - Umweltökonomische Gesamtrechnungen (UGR) - Luftemissionsrechnung - 2006 bis 2023

Mensch und Umwelt stehen zueinander in einer dynamischen Beziehung. Zum Beispiel nutzt der Mensch einerseits Ressourcen der Umwelt, wie zum Beispiel fossile Energieträger und andere Rohstoffe, für die Herstellung von Konsum- und Investitionsgütern. Zugleich werden durch die Verarbeitung und Nutzung von Materialien auch Rest- und Schadstoffe wie etwa Treibhausgase, Schwefeldioxid oder Feinstaub an die Umwelt abgegeben. Das Leistungspotential der Umwelt als Senke für Schadstoffe ist jedoch begrenzt und die Abgabe von Emissionen in die Luft hat Auswirkungen auf das globale Klima und auf die Gesundheit der Menschen. Die Luftemissionsrechnung gibt Auskunft darüber, in welchem Umfang inländische wirtschaftliche Akteure Emissionen von Treibhausgasen und Schadstoffen in die Luft verursachen. Sie stellt somit die anthropogenen Luftemissionen dar. Zu den für den Klimawandel verantwortlich gemachten sogenannten Treibhausgasen zählen gemäß Kyoto-Protokoll die Stoffe Kohlendioxid (CO2), Distickstoffmonoxid (Lachgas, N2O) und Methan (CH4) sowie die fluorierten Treibhausgase (F-Gase). Zu den fluorierten Treibhausgasen gehören die vollfluorierten Kohlenwasserstoffe (FKW), die teilfluorierten Kohlenwasserstoffe (HFKW), Schwefelhexafluorid (SF6) und Stickstofftrifluorid (NF3). Der Statistische Bericht enthält Inhalte der bisherigen Publikation " Anthropogene Luftemissionen ", welche letztmalig mit den Daten für 2000 bis 2020 veröffentlicht wurde. Aufgrund methodischer Änderungen beginnen die Zeitreihen ab dem Jahr 2006. Die Inhalte dazu finden sie künftig über das Datenbankangebot GENESIS-Online im Themenbereich 85111 . Ältere Ausgaben dieser Publikation finden Sie in der Statistischen Bibliothek.

Statistik bestimmter ozonschichtschädigender und klimawirksamer Stoffe

Erfassung der Stoffe die laut Anhang I d. Verordnung (EWG) Nr. 594/91 des Rates vom 4.3.1991 zu einem Abbau der Ozonschicht führen und von klimawirksamen Stoffen, jeweils nach Art und Menge. Erhebung von Angaben bei Unternehmen, die solche Stoffe herstellen, einführen oder ausführen, oder in Mengen von mehr als 50 kg pro Stoff und Jahr zur Herstellung, Instandhaltung oder Reinigung von Erzeugnissen verwenden.

Nachhaltige Kälte- und Wärmeversorgung urbaner Räume mittels Fernkälte- bzw. Fernwärmenetzen unter dem Einsatz energieeffizienter und HFKW-freier Techniken

Durch den Klimawandel steigt der Bedarf an Komfortklimakälte auch in Deutschland stetig an. Viele Bestandsgebäude werden mit Klimatechnik auf- oder nachgerüstet, Neubauten im Nichtwohngebäudebereich werden selten ohne maschinelle Klimatisierung errichtet. Der Bedarf wird meist gebäudeindividuell ermittelt und die entsprechende Technik installiert. Durch den Anschluss an ein Fernkältenetz entfallen wesentliche Komponenten wie Kältemaschine(n) und Rückkühlwerk, was nicht nur den Raum zur Aufstellung dieser einspart, sondern die Kunden auch von der Einhaltung der damit verbundenen Verordnungen (z.B. 42. BImSchV, F-Gas-V) befreit. Ähnliches gilt analog für Fernwärmenetze. Durch die zentrale Bereitstellung von Kaltwasser ergeben sich mehrere positive Umwelt- und Wirtschaftlichkeitseffekte: Der aggregierte Energiebedarf ist abzüglich der Leitungsverluste ca. 40-50% niedriger gegenüber der gebäudeindividuellen Lösung. Die Spitzenlast eines Fernkältenetzes ist niedriger als die der Gebäude mit eigenem System aufsummiert, dementsprechend fällt die installierte Leistung niedriger aus (Ressourcen- und Investitionskostenersparnis). Lastverschiebungen durch Eisspeicher sind in zentralen Einrichtungen mit dem nötigen Fachpersonal einfacher und effizienter zu betreiben als in den einzelnen Gebäuden. Weiterhin sind in Fernkältezentralen oftmals verschiedene Techniken zur Deckung des Kältebedarfs (Kompressionskälte, Absorptionskälte, Nutzung von natürlicher Kälte (Flüsse, Stadtbäche, Seen, Brunnenkühlung)) installiert, die je nach Situation nahe am optimalen Betriebspunkt eingesetzt werden können. Die Hürden, Kältemaschinen mit umweltfreundlichen natürlichen Kältemitteln wie z.B. Ammoniak und Kohlenwasserstoffe einzusetzen, sind in Fernkältezentralen deutlich niedriger als in den Einzelgebäuden (insbesondere im Bestand).

1 2 3 4 537 38 39