API src

Found 408 results.

Related terms

Autoklimaanlage

Klimaanlage im Auto richtig bedienen und Energie sparen Was Sie für eine nachhaltige Klimatisierung im Auto tun können Achten Sie schon beim Kauf des Pkw auf den Kraftstoffverbrauch der Klimaanlage. Beachten Sie Tipps zum sparsamen und gesunden Klimatisieren. Denken Sie an eine regelmäßige Wartung in einer Werkstatt. Gewusst wie Die Autoklimaanlage ist neben dem Motor der größte Verbraucher im Auto. Ein durchschnittlicher Mehrverbrauch von zehn bis 15 Prozent gegenüber der Fahrt ohne Klimaanlage ist zu erwarten. Worauf Sie beim Kauf achten sollten: Achten Sie auf einen geringen Kraftstoffverbrauch der Klimaanlage. Bisher beinhalten die Verbrauchsangaben der Autohersteller nicht die Verbräuche der sogenannten Nebenaggregate, wie die der Klimaanlage (siehe Grafik: Kraftstoff-Mehrverbrauch durch Nebenaggregate). Auch beim Elektroauto kann der Energieverbrauch für die Klimatisierung im Sommer sehr hoch sein. Dazu kommt der zusätzliche Verbrauch für die Heizung im Winter, da Elektroautos nicht ausreichend Abwärme für die Kabinenheizung bereitstellen. Ein System mit Wärmepumpe kann hier helfen, den Heizenergiebedarf etwas zu verringern. Sparen Sie nicht an der falschen Stelle. Der Kraftstoffverbrauch von Klimaanlagen kann sehr unterschiedlich sein. Manuell geregelte Klimaanlagen mit ungeregeltem Kompressor verbrauchen in der Regel mehr Kraftstoff als Systeme mit Klimaautomatik und modernem elektronisch geregeltem Kompressor (siehe Grafik: Mehrverbrauch von Klimaanlagen mit unterschiedlichen Regelungssystemen bei 25°C Außentemperatur). Sonnenschutzverglasung kann die Wärme, die in das Auto gelangt, vermindern. Mittlerweile gibt es sogar durchsichtige Scheiben, die das Sonnenlicht gut reflektieren. Auch eine nicht allzu schräg geneigte Frontscheibe vermindert den Wärmeeinfall. Autos mit hellen oder speziellen wärmereflektierenden Außen- und Innenoberflächen erhitzen sich etwas weniger. Als Kurzstrecken- oder Wenigfahrer können Sie möglicherweise auch ganz auf eine Klimaanlage im Auto verzichten, sofern der Hersteller dies als Option anbietet. Denn mittlerweile haben die meisten Neuwagen standardmäßig eine Klimaanlage. Tipps zum Energiesparen und Gesundbleiben: Parken Sie Ihr Auto im Sommer möglichst im Schatten. Lassen Sie insbesondere bei hohen Temperaturen niemals Kinder oder Tiere im Auto zurück. Lüften Sie das Auto im Sommer vor dem Start einige Minuten, um heiße, angestaute Luft herauszulassen. Halten Sie die Fenster bei der Fahrt möglichst geschlossen, offene Seitenfenster erhöhen den Spritverbrauch. Kühlen Sie die Fahrerkabine gegenüber der Außentemperatur nur wenig ab, höchstens sechs Grad Celsius Unterschied. Nutzen Sie, wenn möglich, den Umluftbetrieb. Schalten Sie die Anlage nur ein, wenn sie den Innenraum abkühlen wollen, denn generell gilt: Die Nutzung der Klimaanlage erhöht den Kraftstoffverbrauch. Klimaanlage auf Kurzstrecken gar nicht erst einschalten: Bis die Klimaanlage wirksam kühlt, sind Sie längst da. Im Stadtverkehr verbraucht die Klimaanlage zudem mehr Treibstoff verglichen mit dem Überlandverkehr. Schalten Sie die Klimaanlage schon vor Fahrtende aus und lassen sie nur den Lüfter an, das verhindert einen Pilzbefall der Anlage durch Restfeuchte. Auch im Winter sollten Sie die Klimaanlage ab und zu einschalten. Überschüssige Feuchtigkeit im Innenraum, zum Beispiel sichtbar an beschlagenen Scheiben, wird reduziert und die Anlage bleibt gut geschmiert und damit dicht und funktionstüchtig. Klimaanlage nicht zu kühl einstellen. Die übliche Wohlfühltemperatur liegt zwischen 21 und 23 Grad Celsius. Den kalten Luftstrom nicht auf den Körper richten, und vor allem nicht direkt auf unbekleidete Körperpartien. Am besten den Luftstrom mit den Lufteintrittsdüsen über die Schultern der vorne sitzenden Personen leiten. Lassen Sie die Luftfilter mindestens alle zwei Jahre wechseln, für Allergiker, empfindliche Personen, Vielfahrer oder bei hoher Pollenbelastung öfter, zum Beispiel jedes Jahr. In der Werkstatt: Die Empfehlung vom Klimaanlagenexperten ist: regelmäßige Wartung etwa alle zwei Jahre. Das erhöht auch die Lebensdauer der Anlage. Wenn die Kälteanlage nicht mehr richtig kühlt, zeitweise einen unangenehmen Geruch freisetzt oder bei anderen Auffälligkeiten sollten Sie die Anlage umgehend in einer geeigneten Werkstatt prüfen lassen. Versuchen Sie sich nicht selbst an der Reparatur. Eingriffe in den Kältekreislauf der Klimaanlage dürfen nur von geschultem Personal durchgeführt werden. Die Werkstatt besitzt die Ausrüstung und Sachkunde für den Klimaservice und kennt die speziellen Vorgaben des Pkw-Herstellers zu Wartung und Reparatur. Der Mechaniker prüft die Klimaanlage, wechselt den Luftfilter und desinfiziert die Anlage. Bevor der Mechaniker Kältemittel in eine Anlage einfüllt, die eine über das Maß hinausgehende Kältemittelmenge verloren hat, sucht er das Leck und repariert es. Nach einem Eingriff in die Anlage prüft er vor der Wiederbefüllung mit Kältemittel die Anlage auf Dichtheit. Achten Sie auch darauf, dass bei Eingriff in die Anlage (Austausch von Bauteilen) der Filtertrockner und die entsprechenden Dichtungsringe auch erneuert werden. Autoklimaanlage und andere Nebenaggregate: Verbrauch an Treibstoff Quelle: TÜV Nord/ Bundesanstalt für Straßenwesen (BASt) (2011) Mehrverbrauch von Auto-Klimaanlagen im Vergleich (bei 25 °C) Messergebnisse des Mehrverbrauchs in Liter bei einem Testfahrzeug (Skoda Octavia) Quelle: ADAC e.V. 07/2012 Messergebnisse des Mehrverbrauchs in Liter bei einem Testfahrzeug (Skoda Octavia) Hintergrund Umweltsituation: Neben dem Energieverbrauch ist das in der Klimaanlage enthaltene Kältemittel umweltrelevant. Viele ältere Pkw-Klimaanlagen enthalten das Kältemittel R134a (Tetrafluorethan), das ein hohes Treibhauspotenzial hat. Seit 2017 dürfen in Europa neue Pkw und kleine Nutzfahrzeuge nur noch zugelassen werden, wenn die Klimaanlagen mit einem Kältemittel mit einem kleinen Treibhauspotential befüllt sind. Die europäische Pkw-Industrie verwendet heute hauptsächlich das brennbare Kältemittel R1234yf (Tetrafluorpropen) als Ersatz für R134a. R134a wird jedoch auch heute in bestehenden Pkw-Klimaanlagen und auch weltweit verwendet. Kältemittel werden aus Pkw-Klimaanlagen technisch bedingt bei der Erstbefüllung, beim Betrieb und bei der Wartung freigesetzt. Auch durch Leckagen im Kältekreis durch Alterung oder Steinschlag und bei Unfällen gelangen Kältemittel aus der Klimaanlage in die ⁠Atmosphäre⁠. In der ⁠ Atmosphäre ⁠ wirkt 1 kg des fluorierten Treibhausgases R134a so stark auf die Erderwärmung wie 1.430 kg CO 2 . Fluorierte Gase (wie R134a oder R1234yf) werden in der Atmosphäre zu Fluorverbindungen abgebaut. Bedenkliches Abbauprodukt ist zum Beispiel die persistente, d.h. sehr schwer abbaubare Trifluoressigsäure (TFA). Das brennbare Ersatzkältemittel R1234yf (Tetrafluorpropen) ist zwar weniger klimaschädlich als R134a, bildet in der Atmosphäre aber noch 4 bis 5 Mal mehr Trifluoressigsäure als R134a. Fluorfreie Kältemittel wie Kohlendioxid (CO 2 ) oder einfache Kohlenwasserstoffe wie Propan würden im Gegensatz zu R1234yf keine solchen Abbauprodukte bilden. Seit dem Spätsommer 2020 bietet die Volkswagen AG für bestimmte Elektroautos eine CO 2 -Anlage mit Wärmepumpenfunktion als Sonderausstattung an. Auch Systeme mit einfachen Kohlenwasserstoffen wie Propan werden in Betracht gezogen. Gesetzeslage: Zur Begrenzung der Treibhausgasemissionen erließ die Europäische Union bereits im Jahr 2006 die Richtlinie 2006/40/EG über Emissionen aus Klimaanlagen in Kraftfahrzeugen. Diese Richtlinie fordert, dass in Europa Klimaanlagen neuer Pkw und kleiner Nutzfahrzeuge seit 2017 nur noch Kältemittel mit einem relativ geringen Treibhauspotenzial (kleiner 150) enthalten dürfen. Das bedeutet, dass das bisherige Kältemittel R134a mit einem Treibhauspotenzial von 1.430 in Klimaanlagen neuer Pkw und kleiner Nutzfahrzeuge in Europa nicht mehr eingesetzt werden darf. Das Treibhauspotenzial (GWP) beschreibt, wie stark ein ⁠ Stoff ⁠ zur Erderwärmung beiträgt im Vergleich zur gleichen Menge Kohlendioxid (GWP=1). Hinweis: Eine Klimaanlage ist jeweils nur für ein bestimmtes Kältemittel zugelassen. Ein Wechsel des Kältemittels einer bestehenden Klimaanlage ist zu unterlassen. Dies kann zu technischen und Sicherheits-Problemen führen, ebenso sprechen rechtliche Gründe dagegen, es sei denn, die Umstellung wird vom Pkw-Hersteller ausdrücklich unterstützt und sachkundig begleitet. Marktbeobachtung: Bereits seit dem Verbot der für die Ozonschicht schädlichen ⁠ FCKW ⁠ in den 1990er Jahren (bei Pkw war es das FCKW R12) begann die Suche nach geeigneten Ersatzstoffen. Als umweltfreundliche Lösung waren Klimaanlagen mit dem natürlichen Kältemittel CO 2 (Kohlendioxid, Kältemittelbezeichnung R744) im Jahr 2003 CO 2 als Lösung für die Pkw-Klimatisierung identifiziert worden. An der Umsetzung wurde bis 2009 in Europa aktiv gearbeitet. Parallel dazu bot seit 2007 die chemische Industrie das brennbare, fluorierte Kältemittel R1234yf – Tetrafluorpropen an. Durch seine chemische Ähnlichkeit mit dem herkömmlichen R134a versprach R1234yf weniger Aufwand bei der Umstellung und setzte sich daher durch, und die Entwicklung von CO 2 Klimaanlagen wurde zunächst eingestellt. Die Brennbarkeit von R1234yf wurde schon länger, auch vom Umweltbundesamt, als kritisch für die Sicherheit im Pkw eingeschätzt. Im Herbst 2012 zeigten Versuche von Autoherstellern, dass sich R1234yf im Pkw bei Unfällen entzünden kann und dabei vor allem giftige Flusssäure freigesetzt wird. Die Daimler AG und die AUDI AG boten daraufhin ab den Jahr 2016 einzelne Modelle mit CO 2 -Klimaanlagen an, stellten dies Produktion aber wieder ein, da der übrige Markt der Entwicklung nicht folgte. Damit wurde der brennbare Stoff R1234yf zum neuen Standardkältemittel. Seit dem Spätsommer 2020 bietet die Volkswagen AG für bestimmte Elektroautomodelle CO 2 -Anlagen mit Wärmepumpenfunktion als Sonderausstattung an. Das Kältemittel CO 2 ist für Pkw-Klimaanlagen eine nachhaltige Lösung. Es ist weder brennbar noch toxisch, hat keine umweltbedenklichen Abbauprodukte und ist weltweit zu günstigen Preisen verfügbar. CO 2 -Klimaanlagen kühlen das Fahrzeug schnell ab und sind energieeffizient zu betreiben. Im Sommer ist der Mehrverbrauch in Europa geringer. Im Winter kann die Klimaanlage als Wärmepumpe geschaltet werden und so effizient bis zu tieferen Temperaturen heizen. Dies bietet sich insbesondere für die Anwendung in Fahrzeugen mit elektrischen Antrieben an. Eine interessante Entwicklung ist, dass für Elektro-Pkw jetzt auch ein Klimatisierungskonzept mit einfachen Kohlenwasserstoffen wie Propan zum Kühlen und Heizen vorgestellt wurde. Die Protoptyp-Klimaanlage im UBA-Dienstwagen wurde 2015 ertüchtigt. Seit dem Frühsommer 2015 kühlt der UBA-Dienstwagen mit einem neuen CO₂-Kompressor.

Statistik bestimmter ozonschichtschädigender und klimawirksamer Stoffe

Erfassung der Stoffe die laut Anhang I d. Verordnung (EWG) Nr. 594/91 des Rates vom 4.3.1991 zu einem Abbau der Ozonschicht führen und von klimawirksamen Stoffen, jeweils nach Art und Menge. Erhebung von Angaben bei Unternehmen, die solche Stoffe herstellen, einführen oder ausführen, oder in Mengen von mehr als 50 kg pro Stoff und Jahr zur Herstellung, Instandhaltung oder Reinigung von Erzeugnissen verwenden.

Bestimmung von sehr geringen Konzentrationen an HCl in Troposphaere und Stratosphaere

Das Projekt "Bestimmung von sehr geringen Konzentrationen an HCl in Troposphaere und Stratosphaere" wird/wurde gefördert durch: Bundesministerium für Forschung und Technologie. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Institut für Anorganische Chemie, Fachgebiet Analytische Chemie.Aus Untersuchungen einer amerikanischen Arbeitsgruppe geht hervor, dass Fluorchlorkohlenwasserstoffe die die Erde umgebende Ozonschicht abbauen. Ueber das Mass dieses Abbaus lassen sich keine exakten Angaben machen, da zu viele Konzentrationen beteiligter Reaktanden und Gleichgewichts bzw. Geschwindigkeitskonstanten nur ungenuegend bekannt sind. Eine sehr grosse Bedeutung kommt bei den Berechnungen der HCl-Konzentration in der Troposphaere und Stratospaere zu. Das analytische Problem HCl-Konzentrationen, die kleiner als 0,01 ppbv sind, in der Troposphaere zu bestimmen, laesst sich nur durch neue Methoden loesen. Zur Zeit sind wir deshalb mit der Ausarbeitung von zwei Methoden beschaeftigt. Bei der ersten Methode wird zunaechst traegerfreies CrO3 durch Kernreaktionen hergestellt. Anschliessend erfolgt mit dem zu bestimmenden HCl eine Umsetzung und das gebildete CrO2Cl2 wird verfluechtigt und durch Bestimmung der Aktivitaet eine HCl-Bestimmung durchgefuehrt. Bei dem zweiten Verfahren wird die Selektivitaet eines EC-Detektors fuer bestimmte Substanzen ausgenutzt. HCl wird entweder mit halogenierten Epoxiden umgesetzt oder perfluorierte organische Verbindungen werden gespalten. Die entstehenden Verbindungen werden gaschromatographisch abgetrennt und mit hoher Nachweisempfindlichkeit mit einem EC-Detektor nachgewiesen.

Entwicklung und Erprobung eines Trommelwaeschetrockners mit FCKW- und FKW-freier Waermepumpe

Das Projekt "Entwicklung und Erprobung eines Trommelwaeschetrockners mit FCKW- und FKW-freier Waermepumpe" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Lare GmbH Kältetechnik.

Klimaschutz

Das Projekt "Klimaschutz" wird/wurde gefördert durch: Öko-Institut. Institut für angewandte Ökologie e.V.. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..Mit dem Projekt 'Klimaschutz' wird die Arbeit von Prof. Dr. Peter Hennicke als Sachverstaendigen in der Enquete-Kommission 'Vorsorge zum Schutz der Erdatmosphaere' wissenschaftlich unterstuetzt. Die Unterstuetzung erfolgt prinzipiell auf den zwei Gebieten 'Energie' (Kohlendioxid) und 'Chemie' (v.a. Ozonabbau/FCKW), jeweils durch Beratung, Teilnahme und Vorbereitung von Anhoerungen und durch Erstellung von Positionspapieren bzw. Klein-Gutachten. Diese werden erst im Laufe des Projektes genauer bestimmt.

Untersuchung der Einsatzmoeglichkeiten von FCKW-freien Kaeltemitteln mit minimalem Treibhauseffekt im Bereich der Milchkuehlung

Das Projekt "Untersuchung der Einsatzmoeglichkeiten von FCKW-freien Kaeltemitteln mit minimalem Treibhauseffekt im Bereich der Milchkuehlung" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Impulsa AG.

Nachhaltige Kälte- und Wärmeversorgung urbaner Räume mittels Fernkälte- bzw. Fernwärmenetzen unter dem Einsatz energieeffizienter und HFKW-freier Techniken

Das Projekt "Nachhaltige Kälte- und Wärmeversorgung urbaner Räume mittels Fernkälte- bzw. Fernwärmenetzen unter dem Einsatz energieeffizienter und HFKW-freier Techniken" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: IREES GmbH - Institut für Ressourceneffizienz und Energiestrategien.Durch den Klimawandel steigt der Bedarf an Komfortklimakälte auch in Deutschland stetig an. Viele Bestandsgebäude werden mit Klimatechnik auf- oder nachgerüstet, Neubauten im Nichtwohngebäudebereich werden selten ohne maschinelle Klimatisierung errichtet. Der Bedarf wird meist gebäudeindividuell ermittelt und die entsprechende Technik installiert. Durch den Anschluss an ein Fernkältenetz entfallen wesentliche Komponenten wie Kältemaschine(n) und Rückkühlwerk, was nicht nur den Raum zur Aufstellung dieser einspart, sondern die Kunden auch von der Einhaltung der damit verbundenen Verordnungen (z.B. 42. BImSchV, F-Gas-V) befreit. Ähnliches gilt analog für Fernwärmenetze. Durch die zentrale Bereitstellung von Kaltwasser ergeben sich mehrere positive Umwelt- und Wirtschaftlichkeitseffekte: Der aggregierte Energiebedarf ist abzüglich der Leitungsverluste ca. 40-50% niedriger gegenüber der gebäudeindividuellen Lösung. Die Spitzenlast eines Fernkältenetzes ist niedriger als die der Gebäude mit eigenem System aufsummiert, dementsprechend fällt die installierte Leistung niedriger aus (Ressourcen- und Investitionskostenersparnis). Lastverschiebungen durch Eisspeicher sind in zentralen Einrichtungen mit dem nötigen Fachpersonal einfacher und effizienter zu betreiben als in den einzelnen Gebäuden. Weiterhin sind in Fernkältezentralen oftmals verschiedene Techniken zur Deckung des Kältebedarfs (Kompressionskälte, Absorptionskälte, Nutzung von natürlicher Kälte (Flüsse, Stadtbäche, Seen, Brunnenkühlung)) installiert, die je nach Situation nahe am optimalen Betriebspunkt eingesetzt werden können. Die Hürden, Kältemaschinen mit umweltfreundlichen natürlichen Kältemitteln wie z.B. Ammoniak und Kohlenwasserstoffe einzusetzen, sind in Fernkältezentralen deutlich niedriger als in den Einzelgebäuden (insbesondere im Bestand).

Entwicklung einer Milchkuehltechnologie mit umweltfreundlichen Kaeltemitteln

Das Projekt "Entwicklung einer Milchkuehltechnologie mit umweltfreundlichen Kaeltemitteln" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: ITEC Gesellschaft.

Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets

Das Projekt "Tripelelement-Stabilisotopensignaturen zur Untersuchung des atmosphärischen Chlormethanbudgets" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Die stratosphärische Ozonschicht absorbiert die UV-C und UV-B Sonnenstrahlung und schützt damit Pflanzen, Tiere und Menschen vor Strahlenschäden. Durch anthropogen emittierte Fluorchlorkohlenwasserstoffe (FCKWs) wird die Ozonschicht abgebaut. Da FCKWs seit dem Montrealer Protokoll stark zurückgegangen sind, werden halogenierte Verbindungen wie Chlormethan (CH3Cl), die aus natürlichen Quellen freigesetzt werden, für den Abbau der Ozonschicht in der Stratosphäre zunehmend relevant. CH3Cl ist das am häufigsten vorkommende chlorhaltige Spurengas in der Erdatmosphäre, das für etwa 17% der durch Chlor katalysierten Ozonzerstörung in der Stratosphäre verantwortlich ist. Daher wird CH3Cl vornehmlich die zukünftigen Gehalte an stratosphärischem Chlor bestimmen. Die aktuellen Schätzungen des globalen CH3Cl-Budgets und die Verteilung der Quellen und Senken sind sehr unsicher. Ein besseres Verständnis des atmosphärischen CH3Cl-Budgets ist daher das Hauptziel dieses Projektes.Die Analyse stabiler Isotopenverhältnisse von Wasserstoff (H), Kohlenstoff (C) und Chlor (Cl) hat sich zu einem wichtigen Werkzeug zur Untersuchung des atmosphärischen CH3Cl-Budgets entwickelt. Das zugrundeliegende Konzept besteht darin, dass das atmosphärische Isotopenverhältnis einer Verbindung wie CH3Cl gleich der Summe der Isotopenflüsse aus allen Quellen angesehen werden kann, korrigiert um den gewichteten durchschnittlichen kinetischen Isotopeneffekt aller Abbauprozesse. Dadurch ist es möglich, die Bedeutung wichtiger Quellen und Senken mit bekannten Isotopensignaturen zu entschlüsseln. Eine Grundvoraussetzung für detaillierte Hochrechnungen des globalen Budgets ist die Bestimmung der durchschnittlichen Isotopenverhältnisse von H, C und Cl des troposphärischen CH3Cl. Aufgrund der relativ geringen Konzentration von atmosphärischem CH3Cl von ~550 ppbv stellt dies eine große messtechnische Herausforderung dar. Daher liegt der Schwerpunkt dieses Antrags auf der erfolgreichen Entwicklung von Dreifachelement-Isotopenmethoden zur genauen Messung von atmosphärischem CH3Cl.Im ersten Schritt wird ein Probenahmesystem für große Luftmengen konstruiert und für die Messungen der stabilen Isotopenverhältnisse von CH3Cl optimiert. Das Probenahmegerät wird zunächst im Labor getestet und dann zum Sammeln von Luftproben an drei verschiedenen Orten eingesetzt: an der Universität Heidelberg, am Hohenpeißenberg und im Schneefernerhaus. Die Probenahmen werden über einen Zeitraum von einem Jahr durchgeführt, um möglichst auch saisonale Schwankungen zu erfassen. Die Isotopenverhältnisse der Proben werden mit modernsten massenspektrometrischen Methoden im Labor gemessen. Die Ergebnisse aller Standorte und Zeitpunkte werden in der Gesamtheit evaluiert, um die durchschnittlichen stabilen H-, C und Cl-Isotopenwerte einschließlich ihrer saisonalen Schwankungen darzustellen. Abschließend werden die Daten hinsichtlich ihrer Anwendbarkeit für komplexe numerische Modelle kritisch diskutiert.

Quantifizierung des Einflusses der stratosphärischen Zirkulation auf die Abschätzung troposphärischer Emissionen

Das Projekt "Quantifizierung des Einflusses der stratosphärischen Zirkulation auf die Abschätzung troposphärischer Emissionen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Neue Studien zeigen, dass die Emissionen eines der wichtigsten Fluochlorkohlenwasserstoffe (FCKWs), des CFC--11, seit 2012 wieder ansteigen, was eine ernste Bedrohung für die Ozonschicht bedeutet. Allerdings sind die Abschätzungen der FCKW Emissionen mit großen Unsicherheiten behaftet. Die größte Unsicherheit stammt von Änderungen der stratosphärischen Zirkulation und deren Darstellung in derzeitigen atmosphärischen Modellen und Reanalysen. Die Methodiken, um diese Zirkulationsänderungen in Modellen besser einzuschränken, sind unzureichend.Ziel des Projekts ist es den Einfluß von Jahr-zu-Jahr Variabilität und dekadischen Änderungen im stratosphärischen Transport auf troposphärische Änderungen langlebiger Spurenstoffe, mit Fokus auf FCKWs, besser zu verstehen. Dazu werden neue Methodiken entwickelt und verbessert, um das stratosphärische Altersspektrum abzuleiten, die Verteilung der Transportzeit durch die Stratosphäre. In einem ersten Schritt wird die Methoden-Evaluierung im Modell durchgeführt. Drei verschiedene Methodiken zur Berechnung des Altersspektrums aus Mischungsverhältnissen chemischer Spezies werden verglichen. Diese Methodiken basieren auf (i) einer inversen Gauss-Funktions Parametrisierung, (ii) einer verbesserten Parametrisierung, und (iii) einer direkten Inversions-Methode. Für einen "proof of concept" werden die Resultate aller drei Methoden mit Altersspektren aus dem Lagrangeschen Atmosphären-Modell CLaMS verglichen, die im Modell exakt mit einer Pultracer-Methode berechnet werden. Im zweiten Schritt werden die Methodiken angewendet auf hochaufgelöste in-situ Spurengas-Messdaten aus Luftproben von Flugzeug-Messungen und von neuesten AirCore Messungen. Die Kombination von neuartigen Simulations- und Berechnungs-Methoden mit neuesten Messdaten zur Bestimmung des stratosphärischen Altersspektrums wird zu bisher nicht dagewesenen Einschränkungen des stratosphärischen Transports in Modellen führen. Durch Vergleich der Modell-Altersspektren aus Simulationen die mit verschiedenen meteorologischen Reanalysen angetrieben wurden, einschließlich der neuesten ERA5 Reanalyse und älterer Produkte (ERA-Interim, MERRA-2, JRA-55), soll die Robustheit der Modell-Darstellung stratosphärischer Transportänderungen abgeschätzt werden. Schließlich werden die Variabilitäten im stratosphärischen Transport untersucht und quantifiziert, sowie die Effekte dieser Variabilität auf die Spurengaszusammensetzung der unteren Stratosphäre und auf troposphärische Trends. Die aus dem Projekt resultierenden verbesserten Methodiken zur Abschätzung troposphärischer Spurenstoff-Budgets sollen der wissenschaftlichen Community zugänglich gemacht werden, und werden einen wichtigen Schritt darstellen hin zu einer verbesserten Berechnung von Emissionen langlebiger ozonzerstörender Substanzen und Treibhausgase.

1 2 3 4 539 40 41