API src

Found 240 results.

Similar terms

s/hfp/UFP/gi

Historische Lagefestpunkte

Bei historischen Lagefestpunkten handelt es sich um ehemalige Trigonometrische Hochpunkte wie z.B. Kirchturmspitzen oder Gipfelkreuze, die im Jahr 2004 als Katasterfestpunkte den örtlich zuständigen Ämtern für Digitalisierung, Breitband und Vermessung (ÄDBV) übertragen wurden. Das Trigonometrische Lagefestpunktfeld zur Realisierung des historischen Lagebezugssystems DHDN90 (Deutsches Hauptdreiecksnetz 1990) wurde in Bayern im Jahre 2004 eingestellt.

Flächennutzungsplan Stadt Bremen

Flächennutzungsplan der Stadtgemeinde Bremen: Gemäß Baugesetzbuch (BauGB) ist der Flächennutzungsplan der vorbereitende und damit der übergeordnete Bauleitplan einer Gemeinde. Das Verfahren zur Aufstellung des Flächennutzungsplanes ist im Baugesetzbuch (BauGB) geregelt. Der Flächennutzungsplan stellt die gegenwärtige und die geplante Bodennutzung, nach den voraussehbaren Bedürfnissen der Gemeinde, für das gesamte Gemeindegebiet in den Grundzügen dar. Die Darstellungen des Flächennutzungsplans bilden die Grundlage für die detaillierten Festsetzungen der Nutzung der Grundstücke, da die für Teilgebiete der Gemeinde aufzustellenden Bebauungspläne (verbindlichen Bauleitplanung) aus dem Flächennutzungsplan zu entwickeln sind. Der Flächennutzungsplan ist nur für die Gemeinde und die öffentliche Planungsträger verbindlich. Verfahrensdaten zu den Bauleitplan-Verfahren können hier abgerufen werden: https://www.bauleitplan.bremen.de

Deutsche Umweltstudie zur Gesundheit von Kindern und Jugendlichen 2014–2017 (GerES V) - Teil 2: Qualität der Innenraumluft

Der Bericht stellt Ergebnisse der Deutschen Umweltstudie zur Gesundheit 2014–2017 (GerES V) zur Schadstoffbelastung der Innenraumluft bei Kindern und Jugendlichen vor. Repräsentativ ausgewählte Haushalte wurden auf flüchtige organische Verbindungen (⁠ VOC ⁠), Aldehyde, sowie ultrafeiner Partikel in der Innenraumluft untersucht. Ein Vergleich mit toxikologisch abgeleiteten Innenraumrichtwerten ermöglicht eine gesundheitliche Einordnung der Messwerte. Der Bericht liefert Aussagen zu den vermuteten Ursachen der Schadstoffe sowie Ungleichheiten der Belastung in Abhängigkeit von Geschlecht, Wohnumständen und sozioökonomischen Faktoren. Die Daten dieser Studie stellen einen Referenzdatensatz zur Grundbelastung der Innenraumluft im Wohnumfeld in Deutschland dar. Veröffentlicht in Umwelt & Gesundheit | 01/2025.

Ultrafeine Partikel im Innenraum und in der Umgebungsluft

Fein- und Ultrafeinstäube und ihr Bezug zu Atemwegs- und Herz-Kreislauferkrankungen sind wichtiges Thema der öffentlichen Gesundheitsvorsorge. Diese Studie stellt umfangreiche Messdaten für die Innenraumluft im privaten Wohnbereich vor. Die Untersuchungen erfassen Wohnungen in städtischen wie ländlichen Bereichen und geben Aufschluss über jahreszeitliche Schwankungen. Die größenaufgelöste Charakterisierung der Fein- und Ultrafeinstäube ermöglicht eine Abschätzung der durch die Tätigkeiten der Wohnungsnutzenden freigesetzten Partikel. Die Ergebnisse sind von hoher Bedeutung für die Bestimmung der auf den Menschen einwirkenden Belastung an Fein- und Ultrafeinstäuben und mögliche Maßnahmen zur Verbesserung der Innenraumluft.

Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin

Das Projekt "Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Großflughäfen sind eine relevante Quelle kurzlebiger Luftschadstoffe. Ihr quantitativer Beitrag zur gesundheitlichen Belastung der Anwohner ist besonders dort mit Unsicherheiten behaftet, wo auch andere Verursacher existieren, bspw. in Großstädten. Feldmessungen und Modellierungen sollen den Einfluss der Emissionen des Großflughafens Berlin Tegel (TXL) und BER auf die räumliche Verteilung folgender Schadstoffe vor und nach Schließung im Herbst 2020 untersuchen: Ultrafeinstaub (UFP) und Black Carbon (Ruß) sowie PM10, PM2,5 und NO2. Es werden drei stationäre Messstationen über ca. 2 Jahre im Umfeld von BER betrieben. In Bezug auf UFP (Partikelanzahlkonzentration und -verteilung) werden der Gesamtanteil und der nichtflüchtige Anteil gemessen. Zusätzlich werden mobile Messsysteme in mehrwöchigen Messkampagnen die räumliche Verteilung der Schadstoffe in der Abluftfahne von BER bestimmen. Die Ausbreitungsmodellierung wird mit einem Raster von 500 m für den Großraum Berlin sowie feiner aufgelöst (ca. 200 m) im Umfeld TXL und zum Teil für Schönefeld (SXF) bzw. den geplanten Berliner Großflughafen BER durchgeführt werden. Bereits entwickelte modulare Modellansätze (u.a. mittels LASPORT) sollen genutzt werden: Ausbreitung von nichtflüchtigen UFP im Umfeld von Flughäfen aufgrund Straßenverkehrs- und Flughafenaktivitätsdaten mit Lagrange Modellen. Hintergrundbelastung: Chemietransportmodelle inkl. Partikelklassen bzw. -moden. Für jedes Rasterquadrat wird ein Jahresmittelwert (1 h Basis) erstellt inkl. Herkunftsanteile. Für die Standorte der Messstationen und für Messorte der Kohorten in der BEAR-Studie werden 1h-Zeitreihen bereitgestellt. Zur Validierung des Hintergrundes werden Daten der UBA Station Neuglobsow herangezogen. Außerdem beteiligt: Senatsverwaltung für Umwelt, Verkehr und Klimaschutz: für Umgebung Flughafen, Flughafen Berlin Brandenburg (FBB) für SXF Ein Begleitkreis wird gebildet.

Höhenfestpunkte

Höhenfestpunkte sind über das Land verteilte dauerhaft befestigte Vermarkungen (meist Metallbolzen) an Bauwerken, im Fels oder sonstigen Punktträgern. Das linienhaft aufgebaute amtliche Höhenfestpunktnetz 1. bis 4. Ordnung bildet die Grundlage für ein bundesweit einheitliches Höhenbezugssystem in Deutschland. Seit dem 30.06.2017 ist das Deutsche Haupthöhennetz von 2016 – DHHN2016 (EPSG: 7837) das gültige Höhenbezugssystem in allen Bundesländern. Höhenfestpunkte werden als Datenblatt (mit Skizze) oder als Punktliste (ohne Skizze) abgegeben.

Immissions- und Strahlenschutz (GB 2)

• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.

Lagefestpunkte

Über das Land verteilte, hochgenau bestimmte Lagefestpunkte bzw. Trigonometrische Punkte bilden die Grundlage für ein einheitliches Lagefestpunktfeld. Seit 2004 ist das Landesamt für Digitalisierung, Breitband und Vermessung nur noch für Lagefestpunkte der Hierarchiestufen C und D zuständig. Das Trigonometrische Lagefestpunktfeld zur Realisierung des historischen Lagebezugssystems DHDN90 (Deutsches Hauptdreiecksnetz 1990) wurde in Bayern im Jahre 2004 eingestellt. Der amtliche Geodätische Raumbezug wird seitdem durch GNSS-Messungen (Globale Navigationssatellitensysteme) im Geodätischen Grundnetz realisiert. Für alle Punkte liegen Koordinaten im ETRS89 (EPSG: 6258) vor. Lagefestpunkte können als Datenblatt (mit Skizze) oder als Punktliste (ohne Skizze) abgegeben werden.

Modeling of Nanofibers and Submicron Filtration Phenomena

Das Projekt "Modeling of Nanofibers and Submicron Filtration Phenomena" wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.Air filters in stationary building ventilation systems guarantee the protection of people as well as sensitive technical components from harmful contaminants, from ultra-fine particles to viruses and germs. At the heart of such filter systems are highly efficient filter media with corresponding particle separation performance, which can be achieved in particular by using ultra-fine synthetic, glass or nanofibers. Against the background of rising energy costs and the need for global CO2 reduction, the energy consumption of air filters is increasingly coming into focus. In order to reduce this, modern air filter media are required to have high separation efficiency and the lowest possible pressure drop. Simulation is a valuable tool in the development of filter media for specific applications. By predicting the performance of a filter medium, its microstructure can be optimized to meet specific requirements. However, this requires a correct representation of the effects occurring in this process in order to guarantee the validity of the predicted material properties. In particular, no application-oriented model approaches currently exist for the processes involved in the deposition of ultra-fine particles on ultra-fine fibers. The aim of this project is to improve the simulation models established in virtual filter media development and to extend them with regard to the consideration of submicron fibers (nanofibers). For this purpose, suitable submodels will be developed and integrated into an overall simulation model in order to take into account, in particular, the effects that have been neglected so far. The improved model will first be extensively validated. Finally, its applicability will be demonstrated by the first simulation-driven prediction of an optimized nanofiber-coated air filter medium, which will then be manufactured and tested for its performance.

Vorhersage urbaner atmosphärischer Anzahlkonzentrationen ultrafeiner Partikel mit Hilfe von Machine Learning- und Deep Learning-Algorithmen (ULTRAMADE)

Das Projekt "Vorhersage urbaner atmosphärischer Anzahlkonzentrationen ultrafeiner Partikel mit Hilfe von Machine Learning- und Deep Learning-Algorithmen (ULTRAMADE)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Ultrafeine Partikel (UFP) mit einem aerodynamischen Durchmesser kleiner als 100 nm stehen unter dem Verdacht die menschliche Gesundheit zu schädigen, allerdings fehlt bisher die abschließende wissenschaftliche Evidenz aus epidemiologischen Studien. Zur Herleitung von Expositionskonzentrationen gegenüber UFP wurden zum Teil statistische Modellierungsverfahren genutzt um UFP-Anzahlkonzentrationen vorherzusagen. Ein häufig genutztes Verfahren ist eine auf Flächennutzung basierte lineare Regression („land-use regression“, LUR). Allerdings wurden in luftqualitativen Studien auch andere, ausgefeiltere Modellansätze benutzt, z.B. „machine learning“ (ML) oder „deep learning“ (DL), die eine bessere Vorhersagegenauigkeit versprechen. Das Ziel des Projekts ist die Modellierung von UFP-Anzahlkonzentration in urbanen Räumen basierend auf ML- und DL-Algorithmen. Diese Algorithmen versprechen eine bessere Vorhersagegenauigkeit gegenüber linearen Modellansätzen. Mit unserem Modellansatz wollen wir sowohl räumliche als auch zeitliche Variabilität der UFP-Anzahlkonzentrationen abbilden. In einem ersten Schritt werden die Messergebnisse aus mobilen Messkampagnen genutzt um ein ML-basiertes LUR Modell zu kalibrieren. Zusätzlich werden urbane Emissionen aus lokalen Quellen, abseits vom Straßenverkehr, identifiziert und explizit in das Modell einbezogen. In einem zweiten Schritt wird ein DL-Modellansatz basierend auf Langzeit-UFP-Messungen mit dem ML-Modell gekoppelt um die Repräsentierung der zeitlichen Variabilität zu verbessern. Unser vorgeschlagenes Arbeitsprogramm besteht aus fünf Arbeitspaketen (WP): WP 1 beinhaltet mobile Messungen mittels eines mobilen Labors und eines Messfahrads. WP 2 besteht aus stationären Messungen, die an Stationen des German Ultrafine Aerosol Network durchgeführt werden. In WP 3 werden wichtige UFP-Emissionsquellen, insbesondere Nicht-Verkehrsemissionen, mit Hilfe von zusätzlichen kurzzeitigen stationären Messungen identifiziert und quantifiziert. In WP 4 werden ML-Algorithmen genutzt um ein statistisches Modell aufzubauen. Als Kalibrierungsdatensatz werden die Messungen aus WP 1 benutzt. Das Modell wird UFP-Anzahlkonzentrationen mit Hilfe eines Datensatzes aus erklärenden Variablen, u.a. meteorologische Größen, Flächennutzung, urbaner Morphologie, Verkehrsmengen und zusätzlichen Informationen zu UFP-Quellen nach WP 3, vorhersagen. In WP 5 werden die UFP-Anzahlkonzentrationen aus WP 2 für einen DL-Modellansatz genutzt, der die zeitliche Variabilität repräsentieren wird. Dieser wird dann mit dem ML-Modell aus WP 4 gekoppelt. Der Nutzen der Modellkopplung wird mit dem Datensatz aus WP 3 validiert. Aus unserem Projekt wird ein Modell hervorgehen, das in der Lage ist die räumliche und zeitliche Variabilität urbaner UFP-Anzahlkonzentrationen in einer hohen Genauigkeit zu repräsentieren. Damit wird unsere Studie einen Beitrag zur Quantifizierung von Expositionskonzentrationen gegenüber UFP z.B. in epidemiologischen Studien leisten.

1 2 3 4 522 23 24