During the research cruises BE03/2016 (08.03.2016), BE10/2016 (19.10.2016), BE10/2018 (23.10.2018), BE03/2019 (15.03.2019), L23-13 (13.09.2023 - 15.09.2023), Sagitta24-1 (16.09.2024), Sagitta24-2 (23.09.2024), Hai24VE2 (24.09.2024), L25-2b (09.02.2025 - 17.02.2025) and EMB374 (04.09.2025 - 13.09.2025), CTDs were deployed and sediment corers were retrieved at 99 stations in Kiel Bight in the southwestern Baltic Sea. Water column oxygen concentrations were determined using oxygen sensors attached to the CTD framework. At selected water depths, water samples were collected with Niskin bottles for the analysis of nitrate concentrations using an autoanalyzer. Short sediment cores (<50cm) were recovered using a Multicorer (MUC), Minicorer (MIC) or Rumohrlot (RL). Bottom waters were sampled from the supernatant water in the sediment cores. Solid phase sediment samples were analyzed for total organic carbon using an element analyzer. Porewater was extracted from the sediment cores using rhizones and analyzed for total alkalinity (titration), ammonium (photometer), sulfate (ion chromatography), hydrogen sulfide (photometer), dissolved iron (ICP-OES) and dissolved manganese (ICP-OES). The collected data will be used to (i) determine the spatial and temporal variability of hydrogen sulfide in bottom waters of the Kiel Bight, (ii) identify the controlling factors governing the accumulation of hydrogen sulfide at the seafloor, and (iii) establish an early warning system of sulfidic seafloor conditions for regional stakeholders in the Baltic Sea.
Die Untersuchungen haben zum Ziel, ein Verfahren zu entwickeln, bei dem sich nach Konzentrierung der Schwefeloxide durch Sorption ein Wiederaufheizen der Abgase eruebrigt. Die Reaktionssubstanzen sollen nach der Regeneration, bei der fluessiger Schwefel als Produkt erzeugt wird, erneut verwendbar sein. Die Untersuchungen gliedern sich in 1. die Ermittlung von Ab- bzw. Adsorptionsdaten fuer SO2, 2. die Erzeugung von H2S aus Methan und Schwefel, wobei anfallender CS2 durch Hydrolyse in H2S ueberfuehrt wird, und 3. die Umsetzung von SO2 mit H2S zu elementarem Schwefel.
Offene Verbrennung von Pflanzenmaterial verschiedener Herkunft. Dabei Messung von Temperatur, Flussrate, Gewichtsverlust und Spurengaskonzentrationen im Abgas. Gemessene Spurengase: CO, CO2, CH4, C2-C10-Kohlenwasserstoffe, NO, N2O, NH3, HCN, CH3CN, SO2, H2S, CS2, COS.
Im Fokus des Projektes 'Aufwertung CO2-reicher Gasströme biogenen Ursprungs zu Wertstoffen für die chemische Industrie durch Schwefelwasserstoffabtrennung' steht die Entwicklung eines ökonomisch effizienten und gleichzeitig ökologisch vorteilhaften Prozesses zur Abscheidung von geringen Schwefelwasserstoff-Gehalten aus kohlendioxid-haltigen Gasströmen. Solche Stoffgemische fallen in großen Mengen bei der Reinigung gasförmiger Produkte aus Anlagen zur Biomasse-Vergärung und Biomasse-Vergasung an. Die vollständige Abtrennung des Schwefelwasserstoffs ist essentiell für den späteren Einsatz der gasförmigen Produkte (Biogas, Synthesegas, Kohlenstoffdioxid) als wertvollem Energieträger und Rohstoff für die chemische Industrie. In den nachgelagerten Prozessen wirkt H2S sonst als Störstoff bzw. Katalysatorgift und verhindert als Beimengung die weitere Verwendung der Produkte. Die zentrale Fragestellung des Vorhabens ist daher die Entwicklung eines effizienten Prozesses für die Abscheidung kleiner H2S-Mengen aus CO2-reichen Gasströmen, um die Rückführung und Nutzung des gebundenen Kohlenstoffs zu ermöglichen. Dabei liegt der Fokus auf dem Einsatz besonders umweltfreundlicher Oxidationsmittel. Das Erreichen hoher Schwefelwasserstoffumsätze bei minimaler Kohlenstoffdioxid-Absorption durch gezielten Einsatz von pH, Temperatur, Druck und Katalysatoren steht dabei im Mittelpunkt. Zentrale Entwicklungsziele sind die Identifikation eines geeigneten Reaktionssystems und verfahrenstechnischen Apparats, die Simulation und Pilotierung des Verfahrens sowie die ökologische und ökonomische Bewertung.
1
2
3
4
5
…
75
76
77