Solarzellen aus III-V Halbleitern erreichen heute weltweit die höchsten Umwandlungseffizienzen von bis zu 46% und finden industrielle Anwendung sowohl für Weltraumanwendungen, als auch für terrestrische PV Systeme (hier insbesondere CPV). Aktuell werden Solarzellen aus III -V Halbleitern auch für erste Anwendungen im Automotive -Bereich in Erwägung gezogen. Etwa die Hälfte der sehr hohen Epitaxiekosten für III-V Mehrfachsolarzellen entfällt dabei auf die metallorganischen Ausgangsstoffe, wie zum Beispiel Trimethylindium und Trimethylgallium (so genannte 'Metallorganika'). Im Gesamtprojekt KoReMO-2.0 soll nun im Verbund der Projektpartner nachgewiesen werden, dass diese Kosten durch die Nutzung einer neuartigen Indium -Quelle und einem neuen Zuführsystem, signifikant gesenkt werden können. Ferner sollen durch das neuartige Zuführsystem höhere Wachstumsraten erreicht werden. Diese technologischen Verbesserungen werden am Ende des Projektes anhand vollfunktionsfähiger GaInP/GaInAs/Ge Dreifachsolarzellen direkt nachgewiesen und im Anschluss nach industriellen Bewertungsmaßstäben evaluiert. Im Rahmen des Teilvorhabens von AZUR SPACE wird die etablierte Fertigungs - und Charakterisierungstechnologie für Ge-basierte III-V Mehrfachsolarzellen und das Know-how über industrielle Standardprozesse zur Herstellung der zugrundeliegenden Epitaxiestrukturen als Basis für die Bewertung der technologischen Verbesserungen dem Gesamtprojekt zur Verfügung gestellt. Konkrete Ziele im Teilvorhaben sind die Fertigung und Charakterisierung von Einzel - und Mehrfach- solarzellen aus den im Gesamtprojekt entstehenden Epitaxiestrukturen, die anschließende Bewertung und daraus resultierende Rückmeldungen und Unterstützung der Projektpartner, sowie die finale industrielle Evaluierung der im Gesamtprojekt erreichten Verbesserung durch die neuartigen Indium - Quellen und Zuführsystem Technologien.
Im Zusammenhang mit der Reinigung von durch Kohlenwasserstoffe bzw. Stickoxide belasteten Abgasen ist der Einsatz von Halbleitern, wie z.B. TiO2, als Photokatalysatoren vor allem deshalb interessant, weil die Verbrennungs- bzw. Reduktionsreaktionen bei Raumtemperatur ablaufen können. Die praktische Anwendung ist allerdings durch die bisher erreichten, noch zu geringen Katalysatoraktivitäten begrenzt. Im Rahmen des Projektes sollen der Einfluss von Lichtwellenlänge, Lichtintensität und Kristallitgröße auf Geschwindigkeit und Selektivität (z.B. NO2, NO, N2O, N2) der Umsetzung untersucht werden. Es umfasst die Katalyse aus Sicht der Technischen Chemie und das Problem der Herstellung und Charakterisierung nanokristalliner, d.h. grenzflächendominierter Materialien aus Sicht der Festkörper Physikochemie. Ziel dieser Zusammenarbeit ist es vor allem, am Beispiel ausgewählter Reaktionen die Einflüsse der Eigenschaften des Katalysatormaterials auf den Ablauf von mit Photohalbleitern katalysierten Gasreaktionen herauszuarbeiten und in einem Modell zusammenzuführen.
Die synthetische Materialchemie steht vor enormen Herausforderungen: Die Energiewende erfordert völlig neue Materialien mit herausragenden Eigenschaften - effektive Fotokatalysatoren für die solargetriebene Wasserstoffentwicklung, effiziente Energiespeichermaterialien, Materialien für Energiekonversion und vieles mehr. Auf der anderen Seite besteht die zwingende Notwendigkeit des ressourcenschonenden Einsatzes von Rohstoffen und Energie durch effizientere Herstellung bekannter und bereits verwendeter Materialien. Hier müssen nachhaltige chemische Prozesse erdacht und entwickelt werden, die bei niedrigerer Temperatur ablaufen, höhere Reinheit und Ausbeute ermöglichen und weniger Abfall produzieren.
Eine Erfolg versprechende Option hierfür ist die Nutzung von ionischen Flüssigkeiten (engl. Ionic Liquids, ILs) - organische Salze, die bereits unterhalb 100 Grad Celsius, oftmals sogar bei Raumtemperatur, als hoch polare Flüssigkeiten vorliegen. Die einzigartigen Eigenschaften dieser neuartigen 'Designer-Lösungsmittel' lassen sich durch vielfältige Variation ihrer chemischen Zusammensetzung an das jeweilige Synthesesystem adaptieren. Vielversprechende erste Forschungsergebnisse zeigen, dass unter Nutzung von ILs anorganische Materialien (Metalle, Legierungen, Halbleiter, Hartstoffe, Funktionswerkstoffe etc.) unter Umgebungsbedingungen hergestellt werden können. Dadurch lassen sich Energieeinsatz und technischer Aufwand im Vergleich zu den bisher notwendigen Hochtemperaturprozessen, wie Schmelzreaktionen, Solvothermalsynthesen oder Gasphasenabscheidungen, enorm reduzieren. Zugleich werden chemische Materialsynthesen besser steuerbar, was ebenfalls die Energie- und Rohstoffeffizienz erhöht.
Unabhängig davon eröffnen Synthesen in ILs die Möglichkeit, auch völlig neue Niedertemperaturverbindungen mit noch unbekannten chemischen und physikalischen Eigenschaften erstmalig zugänglich zu machen. Tatsächlich lassen sich in diesem frühen Stadium der Forschung noch längst nicht alle wissenschaftlichen, ökonomischen und ökologischen Implikationen abschätzen. Somit sind die Ziele des Schwerpunktprogramms:
(1) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien,
(2) Entdeckung neuartiger, auch unorthodoxer Funktionsmaterialien, die nur durch die Synthesen nahe Raumtemperatur in ILs zugänglich sind,
(3) Verständnis der Prinzipien von Auflösung, Reaktion und Abscheidung anorganischer Feststoffe in ILs.
Das Projekt beabsichtigt die Entwicklung von III-V-Verbindungshalbleitern (GaN, InN, GaSb, InSb und AlSb) und Metallsulfid-Verbindungshalbleitern (ZnS- und GaS) Dünnfilmen und Nanostrukturen (Nanoröhrchen, Nanodrähte und makroporöse Strukturen) bei elektrochemischer Abscheidung/stromloser Abscheidung in verschiedenen ionischen Flüssigkeiten nahe Raumtemperatur. Der Hauptfokus wird auf das Verständnis des Reaktionsmechanismus der Bildung der Verbindungshalbleiter gesetzt. Die Reaktionsmechanismen werden anhand von IL-Salz-Mischungen, Elektrode/Elektrolyt-Grenzfläche und der hergestellten Strukturen und Schichten analysiert. Der Einfluss der IL-Zusammensetzung auf die Morphologie und die optischen Eigenschaften der erhaltenen Halbleiter wird untersucht. Zusätzlich werden die Halbleiternanostrukturen Templat-basiert und Templat-frei elektrochemisch hergestellt, was eine neue Methode zur Synthese von Halbleiternanostrukturen nahe Raumtemperatur eröffnet.
Untersuchung von photoelektrochemischen Systemen am Beispiel von n-TiO2-Halbleiterelektroden. Zusammenhang zwischen photophysikalischen, elektrochemischen und halbleiterphysikalischen Daten von unterschiedlich hergestellten polikristallinen TiO2-Schichten. Vergleich thermisch oxidierter, anodisch oxidierter und vakuum-aufgedampfter Halbleiter. Messung ihrer Stabilitaet und der Photoeffizienz. Untersuchung von Farbstoffen hinsichtlich Stabilitaet gegenueber Angriff von H- und OH-Radikalen, die bei der photokatalytischen H2O-Spaltung entstehen. Untersuchung von Methylenblau, Thionin, Acridinorange, Rhuteniumpyridil, Prophyrine etc. TiO2-Suspensionen als Photokatalysator fuer O2-Entwicklung aus sauren und Ce4+-haltigen waessrigen Systemen. Farbstoffsensibilisierung an Halbleiterelektroden: Farbstoffe im Elektrolyten oder adsorbiert an der Halbleiteroberflaeche.
1
2
3
4
5
…
102
103
104