Untersuchung von photoelektrochemischen Systemen am Beispiel von n-TiO2-Halbleiterelektroden. Zusammenhang zwischen photophysikalischen, elektrochemischen und halbleiterphysikalischen Daten von unterschiedlich hergestellten polikristallinen TiO2-Schichten. Vergleich thermisch oxidierter, anodisch oxidierter und vakuum-aufgedampfter Halbleiter. Messung ihrer Stabilitaet und der Photoeffizienz. Untersuchung von Farbstoffen hinsichtlich Stabilitaet gegenueber Angriff von H- und OH-Radikalen, die bei der photokatalytischen H2O-Spaltung entstehen. Untersuchung von Methylenblau, Thionin, Acridinorange, Rhuteniumpyridil, Prophyrine etc. TiO2-Suspensionen als Photokatalysator fuer O2-Entwicklung aus sauren und Ce4+-haltigen waessrigen Systemen. Farbstoffsensibilisierung an Halbleiterelektroden: Farbstoffe im Elektrolyten oder adsorbiert an der Halbleiteroberflaeche.
Solarzellen aus III- V Halbleitern erreichen heute weltweit mit über 46 % die höchsten Umwandlungseffizienzen und finden industrielle Anwendung in Satelliten und in Konzentrator- PV Systemen. Als Ausgangsverbindungen werden Trimethylindium und Trimethylgallium als sogenannte 'Metallorganische Quellen' eingesetzt. Diese machen die Hälfte der Epitaxiekosten des Herstellprozesses aus. Zur Reduktion der Epitaxiekosten bietet sich das sogenannte 'Liquid- Indium' als hochreine Indium-Quelle an. Dazu soll ein produktionstauglicher Prozess für die Darstellung von Trimethylindium mittels eines Hochdruckverfahren und die folgende Umsetzung zum Liquid-Indium etabliert werden, was die Aufreinigung auf eine hochreine, epitaxietaugliche Qualität inklusive der analytischen Verfahren beinhaltet. Die Grundlage bieten dabei die Ergebnisse aus dem vorhergegangen KoReMo Projekt. Das Ziel des Teilprojektes für Dockweiler Chemicals stellt die Etablierung dieses großskaligen Produktionsprozesses dar, um bei den Projektpartnern das hochreine Material in der metallorganischen Gasphasenepitaxie einzusetzen.