Der Datensatz enthält die Einzugsbereiche von Haltestellen des Hamburger Verkehrsverbunds (HVV) im Hamburger Stadtgebiet. Der Einzugsbereich (Realfußwegdistanz) von Fernverkehr, Regionalbahn (RE/RB/AKN), S-Bahn und U-Bahn beträgt 720 m um die Haltestellen, der Einzugsbereich von Bushaltestellen beträgt 480 m um die Haltestellen. Für die zugehörigen Haltestellen ist der Haltestelleneingang bzw. der Bahnsteigzugang maßgeblich. Bei großen Haltestellen gibt es entsprechend z.T. mehrere Haltestellenbereiche je Haltestelle. Der Datensatz enthält zudem verschiedene Attribute, wie z.B. den zugehörigen Haltestellennamen, die HaltestellenID, die Art des Transportmittels, die jeweiligen anfahrenden Liniennummern, die Anzahl der anfahrenden Linien (nur bei den Haltestellen), die Anzahl der Anfahrten pro Tag (nur bei den Haltestellen) und die Anzahl der erschlossenen Einwohner (nur bei den Einzugsbereichen). Der Datensatz wird vom HVV bereitgestellt und jährlich im Laufe des Frühjahrs auf den aktuellen Jahresfahrplan aktualisiert. Quellen für die Auswertung der Einzugsbereiche: Haltestellen des HVV mit dem Stand des jeweiligen Jahresfahrplans Fahrplandaten des HVV mit dem Stand des jeweiligen Jahresfahrplans zugrundeliegendes Fußwegenetz: OSM Aufbereitung aus 2020 zugrundeliegende Einwohnerdaten: Adressdaten aus Melderegister, Statistisches Amt für Hamburg und Schleswig-Holstein, Stand 31.12.2021
Der Datensatz enthält die Lage der Fahrradabstellanlagen an Schnellbahnhaltestellen im Hamburger Stadtgebiet. Für jede Abstellanlage wird die Anzahl der öffentlichen Stellplätze (überdacht und nicht überdacht) und, wenn vorhanden, die Anzahl der abschließbaren Mietplätze angegeben.
Der Dienst (WMS-Gruppe) stellt Daten aus dem Bereich Verkehr dar.:Der Dienst (WMS-Gruppe) stellt Geodaten aus dem Themenbereich Flugverkehr und ÖPNV dar.
In der Verkehrserschließung der Universität Kassel hat sich in der letzen Zeit die Situation zugespitzt: Die Belastung der Straßenbahnlinien zum Holländischen Platz hat stetig zu genommen, starke bis unzumutbare Überfüllung der Bahnen in den Spitzenstunden ist mittlerweile die Regel. Der Übergang der Aus- und Einsteiger von der derzeitigen Haltestelle zur Hochschule ist zudem in der Kapazität an der Grenze bis hin zur Gefährlichkeit. Pläne der Umgestaltung verzögern sich aus verschiedenen Gründen immer wieder. Auch die Situation im Radverkehr ist stark verbesserungswürdig. Der Anteil der Studierenden, die mit dem Rad zur Universität kommen ist im Vergleich zu anderen Hochschulorten immer noch unterdurchschnittlich, die Ursachen sind von der Existenz eines sehr kostengünstigen Zuganges zum ÖV (Semesterticket) bis hin zu der unzureichenden Infrastruktur für Radverkehr in Kassel und einem offenbar fehlenden Bewusstsein der Studierenden vielfältig. Ein höherer Anteil der Studierenden im Fahrradverkehr wäre aber sehr wünschenswert und könnte die Situation im ÖPNV entspannen. Insgesamt muss es darum gehen, die Verkehrserschließung der Universität Kassel so zu gestalten, dass die günstige räumliche Ausganglage der Hochschule auch zu einem nachhaltigen Verkehrsverhalten führt. Dies würde die Universität auch in den Bemühungen um eine insgesamt gute CO2-Bilanz stark stützen. Angesichts der gegenwärtig begrenzten Potenziale der Stadt Kassel (zahlreiche Personalwechsel) und der offensichtlichen Notwendigkeit einer zeitlichen Beschleunigung der naturgemäß durch Planungsverfahren und Bauvorbereitungen langfristigen Prozesse der infrastrukturellen Verbesserung der Hochschulerschließung ist es angebracht, durch wissenschaftliche und organisatorische Unterstützung der Universität einen sinnvollen Beitrag zu leisten. Dabei kommt es darauf an, wissenschaftliches Material anzubieten und durch Unterstützung des Präsidiums im Interesse der Hochschule liegende Maßnahmen frühzeitig zu identifizieren, zu verdeutlichen und ggf. gegenüber der Stadt Kassel zu vertreten. Im Einzelnen werden folgende Aufgaben wahrgenommen: FG Integrierte Verkehrsplanung/Mobilitätsentwicklung (Prof. Holzapfel) - Verbesserte Anbindung aller Standorte an die studentischen Wohnquartiere- Verbindung der verschiedenen Hochschulstandorte über Fahrradstraßen - Überdachte Fahrradstellplätze auf dem Campusgelände - Fahrradhaus/Servicestation mit Meisterwerkstatt (Modell Uni Hamburg) - Förderung von E-Bikes. FG Verkehrsplanung und Verkehrssysteme (Prof. Sommer) - Konkrete Verbesserungsvorschläge im ÖPNV (z. B. Taktung Straßenbahn, verstärkter Einsatz von Bussen, die das Campusgelände direkt anfahren) - Verbesserung von Jobticket/Semesterticket - Intermodale Angebote - Mobilitätsportal im Intranet. Beide Fachgebiete bearbeiten die Aufgaben einer stärkeren Beteiligung der Universität an KONRAD sowie des Aufzeigens von Mobilitätsmöglichkeiten für Mitarbeiter in Form eines Welcome-Pakets. (Text gekürzt)
Das aktuelle Klima der Erde verändert sich schneller, als von den meisten wissenschaftlichen Prognosen vorhergesagt wurde. Dabei erwärmen sich die Polargebiete schnellsten von allen Regionen der Erde. Die Polargebiete haben auch starke globale Auswirkungen auf das Erdklima und beeinflussen daher das Leben und die Lebensgrundlagen auf der ganzen Welt. Trotz der großen Fortschritte der Polarforschung der letzten Jahre gibt es nach wie vor schlecht verstandene Prozesse; einer davon ist die Aerosol-Wolke-Klima-Wechselwirkung, die daher auch nicht zufriedenstellend modelliert werden können. Wolken und deren Wechselwirkungen im Klimasystem sind eine der schwierigsten Komponenten bei der Modellierung, insbesondere in den Polarregionen, da es dort besonders schwierig ist, qualitativ hochwertige Messungen zu erhalten. Die Verfügbarkeit hochwertiger Messungen ist daher von entscheidender Bedeutung, um die zugrunde liegenden Prozesse zu verstehen und in Modelle integrieren zu können. Im ersten Teil des hier vorgeschlagenen Projekts schlagen wir, d.h. TROPOS, vor, die bestehenden Aerosolmessungen an der Neumayer III-Station um in-situ Wolkenkondensationskern- (CCN) und Eiskeim- (INP) Messungen zu erweitern für einen Zeitraum von fast zwei Jahren. Die erfassten Daten wie Anzahl der Konzentrationen, Hygroskopizität, INP-Gefrierspektren usw. werden mit meteorologischen Informationen (z.B. Rückwärtstrajektorien) und Informationen über die chemische Zusammensetzung der vorherrschenden Aerosolpartikel verknüpft, um Quellen für INP und CCN über den gesamten Jahreszyklus zu identifizieren. In einem optionalen dritten Jahr wollen wir die Ergebnisse der südlichen Hemisphäre mit den TROPOS-Langzeitmessungen des CCN und INP aus der Arktis (Villum Research Station) vergleichen, welche uns im Rahmen dieses Projekts von DFG-finanzierten TR 172, AC3, Projekt B04 zur Verfügung stehen werden. Ein Ergebnis des beantragten Projekts wird ein tieferes Verständnis dafür sein, welche Prozesse die CCN- und INP-Population in hohen Breiten dominieren. Die im Rahmen des vorliegenden Projekts gesammelten quantitativen Informationen über CCN und INP in hohen Breiten werden öffentlich zugänglich veröffentlicht, z.B. für die Evaluierung globaler Modelle und Satellitenretrievals.
Der Dienst (WMS-Gruppe) stellt Daten aus dem Bereich Verkehr dar.:Haltestellen des Öffentlichen Personennahverkehrs (Bus und Tram). Punkte repräsentieren Haltestellenbereiche mit mehreren Haltepositionen (Quelle: Zweckverband Personennahverkehr Saarland).
Der Kartendienst (WFS-Gruppe) stellt ausgewählte Geodaten aus dem Bereich Verkehr dar.:Haltestellen des Öffentlichen Personennahverkehrs (Bus und Tram). Punkte repräsentieren Haltestellenbereiche mit mehreren Haltepositionen.
Arktischer Permafrost und sibirische Feuchtgebiete stellen global wichtige Quellen für das Treibhausgas Methan dar. Bei weiterer Klimaerwärmung werden die Emissionen zunehmen. Da nur sehr wenige kontinuierliche Methan-Messstationen in der russischen Arktis und Sibirien vorhanden sind, dienen sie als Ausgangspunkt für Schätzungen der Emissionen auf regionalen Skalen. Gleichzeitig tragen kleinskalige Heterogenitäten der Landschaft wesentlich an Unsicherheit zur Abschätzung von Methan-Flüssen bei. Zeitlich und räumlich hochaufgelöste Methanflüsse und Wärme- und Feuchtebilanzen sind nur mit einer Kombination von mehreren Messmethoden möglich. Dieser Mangel an hochaufgelösten Datensätzen behindert die Weiterentwicklung und Validierung der Simulation des Zusammenhangs von Landbedeckung und Emissionen.Das Projekt MICHAEL hat als Ziele i) die Erhebung eines zeitlich und räumlich hochaufgelösten Datensatzes von Methan-Emissionen, turbulenten Wärmeflüssen und der Methan-Isotopen-Verteilung mit neuen und traditionellen Beobachtungsmethoden und ii) die Weiterentwicklung von Land-Oberflächen-Modellen und Parametrisierungen zur besseren Berücksichtigung von Landschafts-Inhomogenitäten. Dafür werden an zwei Orten Messkampagnen durchgeführt, nämlich an der Samoylov-Station im Lena-Delta und Mukhrino, zentral in Westsibirien gelegen. Der besondere Fokus liegt auf kleinskaliger Variabilität und dem Einfluss von verschiedenen Landschafts-Strukturen auf die Atmosphäre. Bodengestützte Eddy-Kovarianz (EC)- und Kammer-Messungen werden ergänzt mit zusätzlichen boden- und fluggestützten Messungen mit unbemannten Flugsystemen (UAS) von meteorologischen Parametern und Bodeneigenschaften, Wärme- und Methanflüssen, sowie Profilen der Methankonzentration und –isotopie. Drei UAS werden eingesetzt: Ein Flächenflugzeug für meteorologische Messungen und Strahlung, ein Quadrocopter für Vertikalprofile der Methankonzentration und –isotopie durch Analyse von Luftproben, und ein Kipprotor-System für Methan-Flüsse. Die UAS werden abhängig von Windrichtung, Stabilität und Oberfläche in einem Radius von 10 km um die Observatorien eingesetzt. Damit werden die Genauigkeit von traditionellen EC- und Kammer-Messungen und Ansätze zur Skalierung bewertet.Mit numerischen Simulationen wird die 3D-Variabilität von Methan-Emissionen in die Atmosphäre berechnet. Die zusätzlich entwickelte Land-Oberflächen-Modellierung berücksichtigt Austauschprozesse über inhomogenen Oberflächen. Die Ergebnisse der Simulationen werden mit Messdaten bewertet, und der Einfluss von räumlichen Inhomogenitäten auf die Atmosphäre wird bestimmt.
Einladende barrierefreie Fußwege tragen zur Attraktivität des Öffentlichen Verkehrs (ÖV) bei. Studien der Norwegian University of Science and Technology zeigen u.a., dass 70 % der Eindrücke eines ÖV-Weges auf den dazugehörigen Fußwegetappen von oder zur Haltestelle gesammelt werden. Eine attraktive Fußverkehrsinfrastruktur motiviert Menschen dazu, bis zu 70% längere Wege zur Haltestelle in Kauf zu nehmen. Diese Erkenntnisse sind aber noch nicht in der Breite der Akteurslandschaft des ÖV in Deutschland realisiert bzw. berücksichtigt worden. In 3-5 möglichst heterogenen Kommunen bzw. Quartieren sollen deshalb in diesem Projekt Erhebungen zur Attraktivität von Fußverkehrsinfrastruktur auf Zu- und Abwegen zu Haltestellen durchgeführt werden. Überdies sollen eine Reihe von Expert*innen befragt werden. Die Ergebnisse werden mit der ÖV-Akteurslandschaft diskutiert, auf der Basis bereits vorliegender Erkenntnisse weiterentwickelt (Infografiken, Veröffentlichungen etc.) und den Entscheidungsträger*innen in Kommunen und Ländern vorgestellt. Die entscheidenden Hebel, die der Bund für die Umsetzung besitzt, sollen dabei ebenfalls dargestellt werden. Das Vorhaben soll Ergebnisse EU-weit und international präsentieren und diskutieren.
Origin | Count |
---|---|
Bund | 125 |
Kommune | 4 |
Land | 22 |
Type | Count |
---|---|
Förderprogramm | 120 |
Text | 1 |
unbekannt | 22 |
License | Count |
---|---|
geschlossen | 2 |
offen | 134 |
unbekannt | 7 |
Language | Count |
---|---|
Deutsch | 100 |
Englisch | 59 |
Resource type | Count |
---|---|
Archiv | 5 |
Dokument | 1 |
Keine | 99 |
Webdienst | 11 |
Webseite | 36 |
Topic | Count |
---|---|
Boden | 87 |
Lebewesen und Lebensräume | 107 |
Luft | 118 |
Mensch und Umwelt | 142 |
Wasser | 67 |
Weitere | 143 |