Im GLA wurden Grafik und Inhalt der Bodenkarte von Nordrhein-Westfalen 1 : 50 000 EDV-technisch verfuegbar gemacht. Das Kartenblatt wurde per Hand von Dritten von der zweifachen Vergroesserung der Druckvorlage vektoriell digitalisiert. Die Legende wurde im GLA unter Anwendung eines bodenkundlichen Datenschluessels in normierte Kuerzel uebersetzt. Diese Uebersetzung ist auf numerische Weiterverarbeitung im Rechner ausgelegt. Sie bietet die einheitliche, vergleichbare und autorisierte Grundlage fuer Auszuege und Auswertungen des Datenbestandes. Die Ergebnisse der Bearbeitungen koennen als Plots ausgegeben bzw. als digitale Datensaetze an Dritte kostenpflichtig weitergegeben werden. Standardmaessige Auswertungen sind Karten bzw. Tabellen der effektiven Durchwurzelungstiefe, der nutzbaren Feldkapazitaet, der Feuchtestufe, der Kationenaustauschkapazitaet, der Wasserdurchlaessigkeit und des Kapillaraufstiegs. Spezielle Auswertungen stehen zu den Themen Sickerwasser, Austauschhaeufigkeit und Grundwasserbelastung durch Schwermetallionen zur Verfuegung. Es ist moeglich, die Auswertungskarten auf den ALK-GIAP zu uebertragen und dort mit kartographischen Routinen zu bearbeiten. Es wurde eine Verfahrensdatei fuer die Bodenkarte geschrieben, die eine druckkartenaehnliche Ausgabe auf dem HP-Design-jet ermoeglicht. Die gesamte digitale Bodenkarte 1 : 50 000 liegt auf einem PC vor. Der Speicherbedarf liegt bei etwa 80 MB fuer die Graphik und etwa 20 MB fuer die Legende. Bisher wurden ueber 500 TDM und 1O Arbeitsjahre von 2 Mitarbeitern in Aufbau und Auswertung investiert. Fuer 60 von 72 Vollblaettern ist die Bearbeitung abgeschlossen. Der gesamte Datenbestand der BK 50 DIG kann in BIS Dritter ueberfuehrt werden. Das Konzept fuer die digitale Bereitstellung und Bearbeitung dieser Bodenkarte ist so ausgelegt, dass es auch auf die grossmassstaebigen Karten der land- und forstwirtschaftlichen Standortkartierung sowie der Stadtbodenkartierung uebertragen werden kann.
Die Radiookkultations-(RO)-Technik verwendet auf niedrigfliegenden (Low Earth Orbiter, LEO) Satelliten installierte Empfänger, um GPS/GNSS-Signale zu empfangen und Bogenmessungen der Erdatmosphäre und Ionosphäre durchzuführen. Aufgrund des Erfolgs der FormoSat-3/COSMIC- (Constellation Observing System for Meteorology, Ionosphere and Climate, FS3/COSMIC) -Mission, bestehend aus sechs Mikro-LEO-Satelliten, hat das gemeinsame US- und taiwanesische RO-Team beschlossen, eine COSMIC-Folgemission (sog. FS7/COSMIC2) voranzubringen. Die GNSS-RO-Nutzlast mit Namen Tri-G GNSS Radio-occultation System (TGRS) wird mehrkanalige GPS-, GLONASS- und Galileo-Satellitensignale empfangen und in der Lage sein, mehr als 10.000 RO-Beobachtungen täglich zu verfolgen, nachdem sowohl schwache als auch starke Bahnneigungs-Konstellationen vollständig abgedeckt worden sind. Man geht davon aus, die dichteren RO-Szintillationsbeobachtungen zu nutzen, um die Struktur der Erdatmosphäre und -ionosphäre genau zu analysieren und zu modellieren.Zusätzlich könnte die spezielle Art von GNSS-Multipfadverzögerungen, die von der Erdoberfläche reflektiert werden, verwendet werden, um Erdoberflächenumgebungsdaten, wie Ozeanhöhen und Seegang, zu erfassen. Die Empfindlichkeit dieser Signalcharakteristika gegenüber Ausbreitungseffekten ist für verschiedene Arten der Umweltfernerkundung geeignet. Dies hat einen Bedarf deutlich gemacht, geeignete Empfänger zu entwerfen und zu entwickeln, die reflektierte und gestreute GPS/GNSS-Signale in Echtzeit erfassen und verarbeiten können, um die Speicherung riesiger Mengen an Rohdaten zu vermeiden. Wir schlagen auch vor, das feldprogrammierbare Gatterfeld (Field Programmable Gate Array, FPGA) auf die GPS/GNSS-Reflektometrieinstrumente anzuwenden, wobei eine hohe Synchronität und ein größtmöglicher Nutzen aus den verfügbaren Hardware-Ressourcen zu erzielen wäre. Mittels Simulink/Matlab kann das FPGA auch komplexe Delay-Doppler-Map- (DDM) -Daten in Echtzeit durch Korrelation der phasengleichen und Quadraturkomponenten der Basisbandsignale berechnen. Diese Studie wird neue Ziele und Ergebnisse der GNSS-Fernerkundung der Atmosphäre, Ionosphäre, und der Ozeane sowie neue Möglichkeiten für die zukünftige FS7/COSMIC2-Mission aufzeigen.Das Projekt wird am Institut für Geodäsie und Geoinformationstechnik TU Berlin in enger Kooperation mit Wissenschaftlern des GFZ, Potsdam und des GPS Science and Application Research Center (GPSARC) der NCU, Taiwan durchgeführt.Die Ziele des Projekts lassen sich wie folgt zusammenfassen:(1) Nutzung von GPS/GNSS-RO-Atmosphärendaten und Entwicklung hochentwickelter Algorithmen für die untere Troposphäre und klimatologische Untersuchungen,(2) Erfassung und Überwachung der sporadischen E(Es)-Schicht, Szintillationen und damit zusammenhängender Effekte einschließlich vertikaler Kopplungen und(3) Entwicklung eines Echtzeit-FPGA-basierten GPS/GNSS-Reflektometers für Anwendungen im Bereich von Meereshöhen- und Seegangsmessungen.
Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
The research interests of our group are in two areas of Spatial Information Science: 1) spatial decision support techniques and 2) human-computer interaction in collaborative spatial decision making and problem solving. In the area of spatial decision support techniques we aim at supporting people (individuals, groups and organizations) in solving spatial decision problems by addressing three fundamental steps of decision process: intelligence, design, and choice. The focal research problems here are: - Idea generation tools including structured diagramming and cartographic visualization (2D, 3D) supporting 'spatial thinking' and the identification of value-objective-attribute hierarchies; - GeoSimulation models to generate decision options and compute their consequences; - Multi-criteria analysis techniques to evaluate decision options using spatial data about option impacts and user preferences; - Participatory techniques and collaborative approaches to group decision making. Subsequent research questions we are interested include: - Which software architectures are useful for developing robust spatial decision support systems? - Can a generic toolkit for spatial decision support be created? - What decision support services can be offered on-line in wide area networks (Internet) using open spatial data standards? In the area of human-computer interaction research our rational is that methods and techniques for spatial decision support must be subjected to empirical studies so that substantive knowledge about the intended effects of applying geospatial information technologies can be developed. We plan to study information processing, and problem-solving in interactive, collaborative spatial decision environments built by others and ourselves. In building prototype software environments we use off-the-shelf GIS software such as ArcGIS, Idrisi, Grass, use the existing GIS toolkits such as ArcObjects, apply various geosimulation tools, and use higher level programming languages such as Java and VB. Substantive domains for application development and testing of collaborative decision support environments include: - Urban development and transportation planning; - Community planning; - Water resource management; - Land use change. Our group welcomes interested students and other potential participants who would like to work with us in the broadly-defined research area of SDSS. We are very much open to new ideas, which may expand the above listed research interests.
Das Teilvorhaben der H-BRS legt ihren Fokus auf die Entwicklung von Prüfsequenzen zur normativen Validierung dynamischer Vorgänge von netzbildenden Erzeugungsanlagen und die Laborprüfung der Prüfsequenzen. Hierfür sollen zunächst die Anforderungen an das Interface des Echtzeitsystems, beim Betrieb von netzbildenden Anlagen (NBAs), im Hinblick auf Stabilität, Genauigkeit und Grenzen analysiert werden. Darauf aufbauend werden Prüfsequenzen für eine Power Hardware-in-the-Loop (P-HiL) Umgebung entwickelt. Außerdem soll ein automatischer Testablauf, zum Abfahren der Prüfsequenzen und zur Automatisierung des Prüfsystems erstellt werden. Vor der Anwendung auf dem Gesamtsystem soll eine Vorvalidierung im kleinen Maßstab durchgeführt werden. Dazu werden die Anforderungen an das Gesamtsystem übernommen und ein Aufbau mit geringeren Leistungen und den entwickelten Benchmarknetzen vorbereitet. Die automatisierten Prüfsequenzen werden dann mit dem Konsortium geteilt, um den Gesamtaufbau zu realisieren. Ein weiteres Arbeitspaket befasst sich mit der dynamischen Verstärkereinheit. Hier soll ein Konzept zur Weiterentwicklung der Hardware erstellt werden. Das Konzept wird theoretisch untersucht und dann beim Aufbau des Hybridverstärkers umgesetzt. Für die Leistungsimpedanz wird die Hardwareentwicklung der Ansteuerung durch die H-BRS durchgeführt. Nach der Übergabe an das IEE wird die Auslegung der Regelung und der Laboraufbau zur Validierung begleitet. Zuletzt wird in Zusammenarbeit mit den anderen Projektpartnern die Labordemonstration des Gesamtsystems durchgeführt. Dabei wird die Interoperabilität der Stromrichter mit netzbildenden Eigenschaften untersucht und die Testsequenzen werden ausgewertet.
1
2
3
4
5
…
147
148
149