Da Hemicellulose und Cellulose einen großen Anteil an den vergärbaren Inhaltsstoffen der lignocellulosehaltigen Biomasse (LCB) ausmachen, ist der Nachweis der Induktion von intra- und extrazelluläre Cellulasen (Endoglucanasen, Exoglucanasen, Cellobiosephosphorylase, Cellodextrinphosphorylase ect.) von besonderem Interesse. Ziel des Projektes ist es daher ein Nachweissystem für die entsprechenden Gene und Transkripte auf der Basis der sogenannten Mikorarraytechnologie zu validieren und im Rahmen der geplanten gemeinsamen Beprobungen einzusetzen. Erster Schritt soll die Herstellung eines Mikroarrays (Biochips) zur Erfassung der mikrobiellen Abbauleistung für polymere Zucker sein. Im zweiten Schritt soll die Validierung des Mikroarrays erfolgen. Hierbei soll das Erkennungsspektrum der Sonden unter den verwendeten Hybridisierungsbedingungen detailliert ausgetestet werden, Ergebnisse über die Induzierbarkeit ganzer Gencluster sind für die Steuerung eines effizienten optimierten Betriebes von Biogasanlagen eine wichtige Voraussetzung.
Im Rahmen dieses Verbundvorhabens sollen die Grundlagen und Technologien zur Verwendung von Hemicellulosen (Xylane) als hochwertige polymere Additive aus gering lignifizierten Resten von Einjahrespflanzen wie Haferspelzen, Stroh und Maisspindeln erarbeitet werden. Ziel ist dabei der weitgehende Erhalt des nativen Polymerisationsgrades des Xylans, so daß die Synthesevorleistung der Natur in vollem Umfang genutzt wird. Auf eine Delignifizierung der landwirtschaftlichen Rohstoffe kann bei Einjahrespflanzen verzichtet werden. Das Gesamtprojekt umfaßt den kompletten Aufbau einer Produktlinie von der Bereitstellung der Ausgangsmaterialien über die Isolierung und Derivatisierung der Wertstoffkomponenten, der Applikationsprüfung bis hin zur verfahrenstechnischen Entwicklung für eine spätere industrielle Verwendung in den Bereichen Baustoffe, Papier und Pharma. Im Rahmen des Teilvorhabens 2 sollen die bereitgestellten Xylane derivatisiert werden, wobei vor allem Carboxymethylierungen, Alkylierungen, Hydroxyalkylierungen und Veresterungen untersucht werden. Die Methodenentwicklung im Labormaßstab sowie die Charakterisierung der unterschiedlichen Reaktionsprodukte sind die Schwerpunkte des Teilvorhabens. Das Verbundvorhaben wird in Zusammenarbeit mit der Bundesforschungsanstalt für Forst- und Holzwirtschaft, der Fa. Peter Kölln und der Fa. Wolff Walsrode AG durchgeführt werden.
Ein wesentliches Ziel des Verbundvorhabens betrifft den Einsatz von Cellulase-Enzymkomplexen zur Verzuckerung des Zellstoffs aus dem Organosolv-Aufschluss für die Herstellung von Zucker der zweiten Generation (2G). Die daraus resultierenden Ziele des Teilvorhabens 2 betreffen (i) die Entwicklung eines Produktionsstammes zur Cellulasegewinnung, optimiert für die Hydrolyse von Zellstoff aus dem Organosolv-Aufschluss, (ii) die Cellulaseproduktion auf Basis kostenrelevanter Substrate aus dem Organosolv-Aufschluss und (iii) die Optimierung des Fermentationsprozesses. AP 2: Herstellung der P. verruculosum-Cellulase (CBP/UL) Fermentation im Pilotmaßstab; 1. Phase mit dem Ausgangsstamm P.v.-M28-10; 2. Phase mit gentechnisch optimiertem Stamm (AP7). AP 3: Genetische Veränderung des Ausgangsstammes (Dutch DNA Biotech) Erhöhung der Enzym-Exkretionsrate durch Modifikation des Transkriptionsfaktors bzw. Ausschaltung der C-Katabolitrepression. AP 4: Prozessoptimierung der Cellulaseproduktion mit P.v. (UL) (i) Integration der Cellulaseproduktion auf Basis wirtschaftlich relevanter Substrate aus dem Organosolv-Aufschluss. (ii) Prozessoptimierung mit einem verbesserten non-GMO- als auch einem GMO-Stamm. AP 6: Anpassung der enzymatischen Verzuckerung von Zellstoff (UL) Untersuchung der Hydrolyse der Kohlenhydratfraktion (Cellulose, Hemicellulose) in Kombination mit den LEs von MetGen und USC. Insbesondere soll eine Reduzierung des Restlignin-Anteils im Zellstoff erzielt werden. AP 7: Scale-up der optimierten Cellulase-Fermentation (CBP, UL) Die in AP4 optimierte Cellulase-Produktion einschließlich Downstream Processing wird mit einem gentechnisch verbesserten Stamm am CBP in den Kubikmeter-Maßstab überführt. AP 8: Scale-up des modifizierten Organosolv-Verfahrens und der enzymatischen Cellulosehydrolyse (CBP, UL) Demonstration des Gesamtprozesses von Buchenholz zu Zuckern der zweiten Generation im Pilotmaßstab. Dies beinhaltet die Verzuckerung der Cellulose mit P.v.-Cellulase und LEs.
Im Unterschied zu den fossilen Rohstoffen Erdöl und Kohle sind Lignocellulosen wie Holz und Stroh in nahezu unerschöpflicher Menge vorhanden. Ziel des Vorhabens ist es, die Hauptbestandteile der pflanzlichen Zellwand Lignin, Cellulose und Hemicellulose mittels eines neuen mechanisch/enzymatischen Verfahrens aufzuschließen und diese damit wesentlich besser als bislang technisch nutzbar zu machen. Aus jüngsten eigenen Vorarbeiten geht eindeutig hervor, dass Enzyme aus der Klasse der Esterasen eine wesentliche Rolle beim natürlichen Abbau von Lignocellulosen durch holzzersetzende Pilze spielen. Diese Erkenntnis soll im Rahmen des Kooperationsprojektes dazu genutzt werden, die in Russland aktuell in Entwicklung befindlichen Enzymcocktails signifikant zu verbessern. Dazu müssen die neuen Enzyme zunächst auf molekularer Ebene charakterisiert werden. Darauf aufbauend werden geeignete Produktionsorganismen für industrielle Enzymcocktails auf Basis von Penicillium-Stämmen generiert. Die wissenschaftlichen Expertisen der beteiligten Partner sind in idealer Weise komplementär und sollen zum Aufbau einer langfristig tragfähigen Kooperation über das beantragte Projekt hinaus genutzt werden.
'Bioraffinerie' ist derzeit nicht nur ein Modewort, das aufgrund seiner unzureichenden Definition nicht nur viel, sondern auch häufig unzutreffend verwendet wird, sondern auch ein ernstzunehmendes wissenschaftliches Forschungsgebiet: Es besteht kein Zweifel, dass die Endlichkeit fossiler Ressourcen - ein wissenschaftlicher Fakt - langfristig die Umstellung ganzer Stoffläufe der chemischen Industrie von fossilen Ressourcen (Erdöl, Erdgas, Kohle) auf nachwachsende Rohstoffe ('Nawaros': Holz, landwirtschaftliche Produkte und Abprodukte) bedingen wird. Bedenkt man die langen Zeiträume, die der bestehenden erdölbasierten chemischen Industrie gegeben waren, um ihren heutigen Entwicklungsstand zu erreichen, wird offensichtlich, dass zum Aufbau einer 'Nawaro-basierten' chemischen Industrie viel Zeit und vor allem auch viel Entwicklungs- und Forschungsarbeit nötig ist. Bioraffinerien - als Pendant zu konventionellen Erdöl-Raffinerien definiert - haben die Aufgabe, natürliche, meist pflanzliche Ausgangsstoffe in (möglichst reine) Fraktionen zu trennen und daraus im weiteren Grundchemikalien und -materialien zur Verfügung zustellen. Aus diesen wird dann in folgenden chemischen / biotechnologischen Verfahren die ganze Palette chemischer Zwischen- und Endprodukte hergestellt, was jedoch nicht mehr in den Bereich der eigentlichen Bioraffinerie fällt. Bioraffinerien haben mit zwei spezifischen Problemen zu kämpfen. Zum einen kann es in Bioraffinerien kein Standard-Verfahren zur Aufbereitung und Auftrennung der Biomasse geben: bedingt durch die große Vielfalt der Ausgangsprodukte (z.B. Hölzer, einjährige Pflanzen, verschiedenste Produkte und Abfälle der Agrarproduktion) sind unterschiedliche Aufschluss- und Trennverfahren erforderlich, die speziell auf die Fraktionierung des Ausgangssubstrates abgestimmt sein müssen. Zum anderen entstehen beim Aufschluss der Biomassen extrem komplexe Stoffgemische wechselnder Zusammensetzung - anders als bei Erdölraffinerien, der Synthesechemie oder der pharmazeutischen Industrie - für die herkömmliche Analyseverfahren völlig unzureichend sind. Die unterentwickelte Bioraffinerie-Analytik ist einer der wichtigsten Hindernisse für Bioraffinerien und Bioraffinerie-Produkte heutzutage: eine sinnvolle Verwertung und Weiterverarbeitung von Bioraffinerieprodukten setzt eine präzise (oder zumindest grundlegende) Kenntnis der Zusammensetzung und chemischen Struktur der Ausgangsfraktion voraus. Der Kohlenhydratanteil setzt sich aus einer Cellulose- und einer Hemicellulosefraktion zusammen. Die Cellulose-, Hemicellulose- und Ligninfraktionen sind von hochkomplexer Zusammensetzung: Bedingt durch natürliche Struktur und chemische Reaktionen beim Aufschluss liegen sowohl chemische Bindungen zwischen den Substanzklassen vor (sogenannte lignin-carbohydrate complexes, LCC) als auch meist breite Verteilungen des Molekulargewichtes. (Text gekürzt)
Das Konsortium des beantragten Forschungsvorhabens, bestehend aus Fraunhofer IAP und IFAM im Verbund mit industriellen Herstellern von Biopolymeren und Modifikaten, sowie mit Klebstoffproduzenten und Applikanten, hat sich das Ziel gesetzt, für verschiedene Klebstofftypen und Anwendungen biobasierte Klebstoffsysteme zu entwickeln. Basis soll die Erarbeitung von Struktur-Wirkungsbeziehungen von Derivaten der Stärke, Cellulose und Hemicellulose sein, um den optimalen Rohstoff/optimale Derivate für vielfältige industrielle Verwendungen und auch für Alltags- bzw. Konsumentenklebstoffe zur Verfügung zu stellen. Ein partieller Ersatz von synthetischen Polymeren und Copolymeren in Marktprodukten wird angestrebt. Ausgehend von verschiedenen industriellen Rohstoffen werden Stärke-, Hemicellulose und Cellulosederivate am Fraunhofer IAP hergestellt, in der Entwicklung von Formulierungen am Fraunhofer IFAM verwendet und für Anwendungen als Dispersionskleber, Schmelz- und Reaktivklebstoff am IFAM und bei renommierten Klebstoffproduzenten getestet. Für Dispersionskleber wird eine Kombination von Degradation und Funktionalisierung durch Veresterung/Veretherung mit Variation der Kettenlänge des Substituenten und des Substitutionsgrades unter Erhalt der Wasserdispergierbarkeit durchgeführt, wobei Anwendungskonzentrationen von 30-50% mit speDas Klebevermögen von funktionalisierten Stärkeprodukten wird mit relativ hoch substituierten Hemicellulose- und Cellulosederivaten verglichen, um den Einfluss der chemischen Struktur auf das Klebevermögen von Biopolymerderivaten für verschiedene Materialien zu untersuchen. Schmelzbare Derivate werden aus Stärke, Cellulose und Hemicellulose hergestellt, um die Erfordernisse an Tg und MFI zu erfüllen. Im Arbeitspaket Reaktivklebstoffe geht es zum einen um den Aufbau von PUR-Dispersionen, zum anderen um die Einführung reaktiver Gruppen in die verschiedenen Polysaccharide.
Im Rahmen dieses Verbundvorhabens sollen die Grundlagen und Technologien zur Verwendung von Hemicellulosen (Xylane) als hochwertige polymere Additive aus gering lignifizierten Resten von Einjahrespflanzen wie Haferspelzen, Stroh und Maisspindeln erarbeitet werden. Ziel ist dabei der weitgehende Erhalt des nativen Polymerisationsgrades des Xylans, so daß die Synthesevorleistung der Natur in vollem Umfang genutzt wird. Auf eine Delignifizierung der landwirtschaftlichen Reststoffe kann bei Einjahrespflanzen verzichtet werden. Das Gesamtprojekt umfaßt den kompletten Aufbau einer Produktlinie von der Bereitstellung der Ausgangsmaterialien über die Isolierung und Derivatisierung der Wertstoffkomponenten, der Applikationsprüfung bis hin zur verfahrenstechnischen Entwicklung für eine spätere industrielle Verwendung. Die isolierten Hemicellulosen sollen über die Reaktionsklassen Carboxymethylierung, Alkylierung, Hydroxyalkylierung und Veresterung in neuartige Polymere überführt und im Hinblick auf einen Einsatz in den Industriebereichen Baustoffe, Papier und Pharma getestet werden. Das Verbundvorhaben soll in Zusammenarbeit mit der Bundesforschungsanstalt für Holzforschung, der Fa. Peter Kölln, der FhG-IAP und der Fa. Wolff Walsrode AG durchgeführt werden.
Im Rahmen dieses Verbundvorhabens sollen die Grundlagen und Technologien zur Verwendung von Hemicellulosen (Xylane) als hochwertige polymere Additive aus gering lignifizierten Resten von Einjahrespflanzen wie Haferspelzen, Stroh und Maisspindeln erarbeitet werden. Ziel ist dabei der weitgehende Erhalt des nativen Polymerisationsgrades des Xylans, so daß die Synthesevorleistung der Natur in vollem Umfang genutzt wird. Das Gesamtprojekt umfaßt den kompletten Aufbau einer Produktlinie von der Bereitstellung der Ausgangsmaterialien über die Isolierung und Derivatisierung der Wertstoffkomponenten, der Applikationsprüfung bis hin zur verfahrenstechnischen Entwicklung für eine spätere industrielle Verwendung. Die isolierten Hemicellulosen sollen in neuartige Polymere überführt und im Hinblick auf einen Einsatz in den Industriebereichen Baustoffe, Papier und Pharma getestet werden. Das Verbundvorhaben soll in Zusammenarbeit mit der Fa. Peter Kölln, dem FhG-IAP und der Fa. Wolff Walsrode AG durchgeführt werden. Die Arbeitspakete des Teilvorhabens 1 umfassen vor allem Fragestellungen zur Isolierung und umfassenden Charakterisierung der Hemicellulosen aus den unterschiedlichen Rohstoffen. Nach Optimierung der Extraktions- und Bleichsequenzen sollen Xylanproben hergestellt und den Projektpartnern für weitere Untersuchungen zur Verfügung gestellt werden.
Im Rahmen des beantragten Acet-LC Projektes sollen neuartige bio-basierte Kunststoffe auf der Basis lignocellulosischer (LC-)Biomasse entwickelt werden. Die Projektpartner bringen langjährige Erfahrungen der Holzchemie (Universidad de Concepción, UdeC), der Entwicklung (Fraunhofer UMSICHT) und der erfolgreichen Vermarktung biobasierter Kunststoffe (FKuR Kunststoff GmbH) ein. Die Verwendung lignocellulosehaltiger Nebenprodukte als Rohstoffe vermeidet Konkurrenzen mit der Nahrungserzeugung. Der Prozess lässt durch seine kurze Projektkette hohe Ausbeuten und geringe Kosten erwarten. Kern der Prozessentwicklung ist die Acetylierung der LC-Rohmaterialien gefolgt von einer Extraktion niedermolekularer Hemicellulosebruchstücke (AP 1), was an der UdeC untersucht wird. Ausgangsmaterial, Acetylierungsbedingungen und Extraktionsgrad beeinflussen die Eigenschaften des Kunststoffrohmaterials. Die Entwicklung eines marktfähigen Werkstoffs durch Compoundieren mit hocheffizienten, aber umweltschonenden Additiven erfolgt durch Fraunhofer UMSICHT, Abteilung Biobasierte Kunststoffe (AP 2). Die Bewertung aus industrieller Sicht und das Scale-Up der Compoundierung in den industriellen Maßstab übernimmt der Industriepartner FKuR Kunststoff GmbH (AP 3). Die Nachhaltigkeit der zu entwickelnden Technologie wird im Rahmen des Projekts durch eine Ökoeffizienzanalyse, Fraunhofer UMSICHT, Abteilung Ressourcen- und Innovationsmanagement, geprüft (AP 4).
Um den Aufschluss der Lignocellulose aus Getreidestroh kostengünstiger und effizienter zu machen sollen mikrobieller Enzyme wie Cellulasen, Hemicellulasen, Laccasen und Peroxidasen aus extremophilen Mikroorganismen (vorwiegend Archaea) isoliert werden. Die DSMZ besitzt weltweit die umfangreichste Sammlung extremophiler Mikroorganismen. Das Temperaturoptimum der Cellulaseenzyme dieser extremophilen Organismen liegt oft bei etwa 80 Grad C, was u.a. die Gefahr einer Kontamination mit anderen mesophilen Bakterien reduziert. Dadurch wird sich die Ausbeute an Zucker und damit in Folge auch die Bioethanolproduktion erhöhen. Um das Ziel zu erreichen, wird die DSMZ zunächst extremophile Organismen auf ihre cellulolytische Aktivitäten hin untersuchen und dem Verbundpartner SeqLab zur DNA-Sequenzierung zur Verfügung stellen. Außerdem wird die DSMZ SeqLab bei der Suche nach cellulolytischen Genen, die durch Metagenomanalyse von Umweltproben erhalten wurden, mit ihrer Bioinformatik unterstützen. Die Neuisolate der cellulolytischen Mikroorganismen werden von der DSMZ in Reinkultur genommen, chemotaxonomisch charakterisiert und unter besonderer Berücksichtigung der metabolischen Eigenschaften phänotypisiert werden. Dies ist notwendig um die Neuisolate valide benennen zu können. Die axenischen Kulturen der identifizierten Stämme werden an der DSMZ durch Gefriertrocknung und Lagerung konserviert, damit sie für die Herstellung von Enzymen zur Verfügung stehen.
| Origin | Count |
|---|---|
| Bund | 37 |
| Type | Count |
|---|---|
| Förderprogramm | 37 |
| License | Count |
|---|---|
| offen | 37 |
| Language | Count |
|---|---|
| Deutsch | 35 |
| Englisch | 3 |
| Resource type | Count |
|---|---|
| Keine | 16 |
| Webseite | 21 |
| Topic | Count |
|---|---|
| Boden | 37 |
| Lebewesen und Lebensräume | 30 |
| Luft | 7 |
| Mensch und Umwelt | 37 |
| Wasser | 7 |
| Weitere | 37 |