API src

Found 131 results.

Aus der Atmosphäre in den Boden - wie Druckfluktuationen den Gastransport im Boden beeinflussen

Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.

Entwicklung eines Verfahrens zum Entlacken und zum Entfernen von Schichten von Flaechen durch eishaltiges Hochdruckwasser und Bau eines Prototyps der Eisstrahlanlage

Verfahren und Vorrichtung zum Entlacken und zum Entfernen von Schichten von Flaechen unter Verwendung von mit Eispartikeln versetztem Hochdruckwasser

WavE - WEISS: Effiziente Kreislaufführung von Kühlwasser durch integrierte Entsalzung am Beispiel der Stahlindustrie, Teilprojekt 6

Ziel des Projektes ist die Effizienzsteigerung des Kühlwassereinsatzes zur Verringerung des Frischwasserverbrauchs. Konkret wird eine Halbierung der Absalzwassermenge als realistisches Ziel angesehen - für einen durchschnittlichen Stahlstandort ergibt sich eine Wassereinsparung von bis zu 800.000 m3/a. Der Lösungsweg besteht in der Verfahrensentwicklung zur Salzabtrennung aus Kreislaufwasser, Zusatzwasser und Absalzwasser. Durch die bedarfsgerechte Dosierung und Abstimmung von Kühlwasserchemikalien auf die Wasserbehandlung sollen der Salzeintrag und damit der Wasserverbrauch zusätzlich gesenkt werden. Das Teilvorhaben der Fa. WEHRLE beschäftigt sich mit der Entwicklung einer zweiten Umkehrosmosestufe zur Reduzierung der Konzentratströme und zur Erhöhung der Gesamtausbeute bei der Salzabtrennung aus dem Kühlkreislauf. Im Vordergrund steht hierbei durch Hochdruckosmose eine maximale Salz-Aufkonzentrierung zu erreichen, wobei die herkömmlichen Grenzen durch Druck und Scaling überwunden werden sollen. WEHRLE wird in AP3 Voruntersuchungen zur maximalen Salz-Aufkonzentrierung in einer zweiten Umkehrosmose-Stufe im Labormaßstab an synthetischen und realen Abwässern unter Variation von relevanten Prozessparametern mit verschiedenen Membranmaterialien untersuchen. In AP4 erfolgen dann die Konzeption, der Aufbau und der Betrieb der entsprechenden Versuchsanlage. In AP6 bringt WEHRLE seine Erfahrung aus dem Internationalen Anlagenbau zur Erstellung spezifischer Verfahrenskonzepte und Durchführung von Wirtschaftlichkeitsbetrachtung ein und ist auch in AP8 beim Ergebnistransfer und Capacity Development engagiert.

CO2Plus - OptiMeOH - Optimierte Prozesskette zur ressourceneffizienten Methanolsynthese, Teilvorhaben 3: Untersuchung der Hydrodynamik eines Blasensäulenreaktors

Das Ziel des Verbundprojekts 'Optimierte Prozesskette zur ressourceneffizienten Methanolsynthese' ist die Entwicklung einer innovativen Prozesskette zur Synthese der C1-Basischemikalie Methanol bei Verzicht auf fossile Rohstoffe oder ausschließlich unter Verwendung von zwangsweise anfallenden Nebenprodukten. Ziel dieses Teilprojektes ist es, die für die Auslegung von Blasensäulenreaktoren relevante Hydrodynamik, insbesondere die für den Stoffaustausch- und Reaktion relevante Blasengröße, im Hochdruckdreiphasenreaktor beschreiben zu können. Hierzu wird eine optische Messsonde entwickelt. Diese wird eine optimierte Beschreibung des Zusammenhangs von Blasengröße und Reaktion im Hochdruckreaktor ermöglichen. Zusätzlich wird der Auslegungsprozess durch Computational Fluid Dynamics Simulationen unterstützt. Nach erfolgreicher Kinetikbestimmung soll diese zusätzlich in die Simulation mit einfließen und somit eine erste numerische Abschätzung zur Optimierung der Anlageneffizienz ermöglichen. Im AP 4 werden die Kinetik der Methanolsynthese im Dreiphasen-System und die Hydrodynamik eines Blasensäulenreaktors zur Methanolsynthese untersucht, um eine Auslegung eines Dreiphasenreaktors zur Methanolsynthese zu ermöglichen. In diesem Teilprojekt wird eine optische Messtechnik für den erforderlichen Druck und die erforderliche Temperatur ausgelegt und konstruiert (AP 4.2.1). Zur Optimierung der Sonde werden Computational Fluid Dynamics Simulationen eingesetzt (AP 4.2.4). Zum Test und Optimierung der Messtechnik wird eine Technikumskolonne aufgebaut (AP 4.2.2). Eine Anpassung des verwendeten Softwaretools erfolgt hin zur automatisierten Datenerfassung (AP 4.2.3). Auf Basis der erfolgen Messdaten soll das verwendete CFD Tool weiter optimiert werden, wodurch eine prinzipielle Maßstabsvergrößerung basierend auf einer Simulation ermöglicht wird.

COOREFLEX-Turbo, Robustes Aero-Design

Dieses Vorhaben wird im Rahmen des Verbundvorhabens COOREFLEX-turbo durchgeführt. Das übergeordnete Ziel besteht in der Erreichung einer robusten Wirkungsgradmaximierung im Hochdruckverdichter. Es sollen einzelne Topologien der Beschaufelungen gefunden werden, die nicht notwendigerweise den Wirkungsgrad des ideal gefertigten neuen Verdichters unter Designbetriebsbedingungen maximieren, sondern solche, bei denen das Wirkungsgradintegral über den Lebenszyklus hinweg maximiert wird. Demnach soll die Beschaufelung tolerant gegenüber Fertigungsabweichungen und Verschleißmerkmalen ausgelegt werden. Zudem soll sie unter deutlich stärkerem Teillastanteil als im bisherigen Betrieb im Integral über alle Betriebsbedingungen optimale Eigenschaften aufweisen. Das Teilvorhaben gliedert sich in zwei Hauptarbeitspakete. In Arbeitspaket 4 sollen die Methoden und das notwendige Wissen erarbeitet werden, welche eine robuste Optimierung ermöglichen. Enthalten sind hier auch die deterministischen numerischen Verfahren zur Berechnung der strömungsmechanischen Eigenschaften. Die zur Validierung nötigen Kaskadenversuche werden im Arbeitspaket 5 am Kaskadenprüfstand des Institutes durchgeführt. Dabei sollen verschiedene Profile in Vergleichsmessungen gegeneinander gehalten werden.

COORETEC-Turbo 2020, Vorhaben 2.3.4.A

Die TU Darmstadt entwickelt ein Laser-Hygrometer auf Basis der Tunable Diode Laser Absorption Spectroscopy (direkt-TDLAS) zur Zwei-Linien-Thermometrie an Hochdruck-Brennkammern. In einem zweiten Schritt wird planare laserinduzierte Fluoreszenz am OH-Radikal zur zeitlich hochaufgelösten Diagnostik in der Hauptreaktionszone einer Gasturbinenbrennkammer angewendet. Zunächst wird eine Selektion geeigneter Absorptionslinien und die Neubestimmung deren spektroskopischer Liniendaten durchgeführt. An die Charakterisierung der Laser schließt sich die Konzeption des Spektrometers und die Erprobung an einem Modellbrenner der RSM-Hochdruckkammer an. Schließlich wird das Spektrometer zur Gastemperaturmessung an der Versuchsbrennkammer HBK2(DLR Köln) eingesetzt. Des Weiteren wird die Eignung der Nutzung des an den Brennkammerwänden entstehenden Streulichts untersucht. Im Bereich der Highspeed - OH- PLIF wird die Einkopplung der UV-Laserstrahlung in die Brennkammer realisiert. Darauffolgend erfolgt die PLIF Messung am SCARLET Rig (HBK3) an der DLR Köln.

Sicherheit in unterirdischen städtischen Verkehrsbereichen bei Einsatz neuer Energieträger (SUVEREN), Teilvorhaben: Erforschung der Hochdruckwassernebel-Technologie zur Bekämpfung von Bränden in Verbindung mit New Energy Carriers

Motivation: Um Ressourcen zu schonen und CO2-Emissionen zu reduzieren, werden seit einiger Zeit alternative Fahrzeugantriebe entwickelt und verwendet. Viele PKW-Hersteller bieten eine breite Palette von Fahrzeugen an, die rein elektrisch, hybrid, d. h. in Kombination von Verbrennungsmotor und Elektroantrieb, oder gasgetrieben fahren. Obwohl die Anzahl neu zugelassener Hybrid- und Elektroautos stark angestiegen ist, gibt es bislang kaum belastbare Untersuchungen, wie sich die neuen Energieträger, z. B. im Fall von Bränden, verhalten. Ziele und Vorgehen: Das Projekt SUVEREN erforscht physikalische Phänomene, die im Zusammenhang mit dem Einsatz neuer Energieträger in unterirdischen Verkehrsbereichen auftreten können. Dazu wird u. a. das Brandverhalten von Batterien und Gasdruckbehältern sowie von in Fahrzeugen verbauten Verbundmaterialien untersucht. Wichtige Forschungsinhalte sind die Interaktion zwischen Rauchgasen und Löschmitteln sowie Möglichkeiten der Bekämpfung von z. B. Batteriebränden durch Sprinkler oder Wassernebellöschanlagen. In die Risikoanalyse werden die speziellen räumlichen Gegebenheiten in urbanen unterirdischen Räumen, wie Tiefgaragen und Tunneln, einbezogen. Innovationen und Perspektiven: Mit dem verstärkten Einsatz neuer Energieträger in unterirdischen Räumen wird im Hinblick auf die öffentliche Sicherheit Neuland betreten. Im Vorhaben wird daher ein Sicherheitskonzept zum Umgang mit diesen Energieträgern erarbeitet, das u.a. die Gestaltung von Brandbekämpfungsanlagen, Löschmitteln, Flucht- und Rettungswegen sowie Maßnahmen für Einsatzkräfte beinhaltet. Es ist vorgesehen, die Ergebnisse in nationale und europäische Normen und Regelwerke einfließen zu lassen.

KMU-Innovativ - Baukleines Hochdruck-Massenspektrometer zur schnellen und sicheren Spreng- und Gefahrstoffdetektion (HiP-MS), Teilvorhaben: Grundlegende Untersuchung zur Realisierbarkeit des Messprinzips und Aufbau eines baukleinen Demonstrators

Ziel des Vorhabens ist es, grundlegende Untersuchungen zur Realisierung eines Hochdruck-Massenspektrometers durchzuführen, mit dem toxische Industriechemikalien und Explosivstoffe vor Ort innerhalb von Sekunden detektiert werden können. Zusammen mit der Leibniz Universität Hannover soll ein Flugzeitspektrometer erforscht werden, welches in einem Druckbereich betrieben wird, welcher zwischen dem eines klassischen Flugzeitspektrometers (ToF-MS), d.h. Hochvakuum, und eines Ionenmobilitätsspektrometers (IMS), d.h. Umgebungsdruck, liegt. Das Hochdruck-Massenspektrometer (HiP-MS) soll zur Aufrechterhaltung des Unterdruckes nur mit einer einfachen Vorpumpe ausgestattet werden, sodass das Gerät auch mobil eingesetzt werden kann. In diesem Teilvorhaben werden u.a. Untersuchungen zur Realisierbarkeit des Probenahmesystems und des Unterdrucksystems durchgeführt. Elektronische Schaltkreise werden entworfen und realisiert, sowie der mobile Demonstrator aufgebaut. Zusammen mit potentiellen Endanwendern wird der Demonstrator getestet und charakterisiert.

KMU-Innovativ - Baukleines Hochdruck-Massenspektrometer zur schnellen und sicheren Spreng- und Gefahrstoffdetektion (HiP-MS), Teilvorhaben: Grundlegende Untersuchungen zu Miniaturisierungseffekten in der Hochdruck-Massenspektrometrie

Toxische Industriechemikalien, welche bei Unfällen oder gezielt durch terroristische Anschläge freigesetzt werden, stellen genauso wie Sprengstoffe eine erhebliche Gefahr für die zivile Sicherheit dar. Durch die wissenschaftliche Erforschung eines neuen Ansatzes, den Betrieb eines Massenspektrometers bei hohem Druck, zur hochsensitiven und schnellen vor-Ort-Detektion relevanter Gefahrstoffe sollen in diesem Teilvorhaben die wissenschaftlichen Grundlagen für die spätere Entwicklung eines baukleinen Hochdruck-Massenspektrometers (HiP-MS) geschaffen werden, um so den Schutz von Einsatzkräften und der Gesellschaft vor Bedrohungen durch Terrorismus und Großschadenslagen zu verbessern. Im Vorhaben ist daher ein modularer, baukleiner Demonstrator zur Klärung der wissenschaftlichen Fragestellungen aufzubauen und eingehend zu untersuchen. Die Kombination aus hohem Druck und hoher elektrischer Feldstärke führt dabei zu neuen Effekten bei der Ionenbildung und Ionentrennung, die eine schnelle, zuverlässige und hochempfindliche Gefahrstoffdetektion ermöglichen. Dieses Teilvorhaben konzentriert sich auf die wissenschaftlichen Grundlagen zur Ionisation und Substanzidentifikation sowie den Entwurf eines Systems mit hoher analytischer Leistungsfähigkeit trotz kleiner Baugröße.

1 2 3 4 512 13 14