Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.
Projektziele sind die Erfassung der Abundanz und der wesentlichen Bruthabitate von veterinärmedizinisch relevanten Insekten (Muscidae, Ceratopogonidae) in und im Umfeld von Rinderställen, Vergleich und Optimierung innovativer Bekämpfungsmethoden zur effektiven Reduktion der Insektenbelastung im Stall sowie die Bilanzierung der relativen Bedeutung unterschiedlicher Substrate im Stall und im Hofbereich als Bruthabitate. So ist die Bedeutung der auf verschiedene Habitate ausgerichteten Maßnahmen erkennbar: gezielte Reinigung der Spaltenböden, mechanische Störung von Liegeflächen und Eliminierung der Emergenz aus Mistlagerstätten. Ebenfalls eingesetzt werden Schlupfwespen und Güllefliegen zur Bekämpfung der Musciden. Dies wird verglichen mit einer Insektizidbehandlung von Ställen. Der Erfolg wird über die Abundanz der Insekten im Stall überprüft. Die Analysen münden in zielgruppenadressierte Konzepte zu Methodenoptimierungen. Arbeitspaket 5.3.1. Auswirkungen gezielter Spaltbodenreinigung auf die Entwicklung und das Auftreten von Ceratopogoniden und Musciden (M13, M14): Die Reinigung erfolgt mit Hilfe eines Spaltenreinigungsverfahrens der Firma Westermann. Untersucht wird, ob nach mechanischer Vorreinigung und gleichzeitiger Hochdruckreinigung ein ausreichender Störeffekt vorliegt. Arbeitspaket 5.3.2. Auswirkungen gezielter mechanischer Störung im Bereich der Liegeflächen auf die Entwicklung und das Auftreten von Ceratopogoniden und Musciden (M15, M16): Dieses Stör-Konzept geht von der Annahme aus, dass eine Fräswalze im Bereich der Liegeflächen von Milchkühen ('Mistmatratzen') die Entwicklung der Insekten mindestens bei hoher Störintensität reduziert. Die Überprüfung der Effekte erfolgt hierbei durch die Arbeitsgruppe von Prof. Kiel.
Die TU Darmstadt entwickelt ein Laser-Hygrometer auf Basis der Tunable Diode Laser Absorption Spectroscopy (direkt-TDLAS) zur Zwei-Linien-Thermometrie an Hochdruck-Brennkammern. In einem zweiten Schritt wird planare laserinduzierte Fluoreszenz am OH-Radikal zur zeitlich hochaufgelösten Diagnostik in der Hauptreaktionszone einer Gasturbinenbrennkammer angewendet. Zunächst wird eine Selektion geeigneter Absorptionslinien und die Neubestimmung deren spektroskopischer Liniendaten durchgeführt. An die Charakterisierung der Laser schließt sich die Konzeption des Spektrometers und die Erprobung an einem Modellbrenner der RSM-Hochdruckkammer an. Schließlich wird das Spektrometer zur Gastemperaturmessung an der Versuchsbrennkammer HBK2(DLR Köln) eingesetzt. Des Weiteren wird die Eignung der Nutzung des an den Brennkammerwänden entstehenden Streulichts untersucht. Im Bereich der Highspeed - OH- PLIF wird die Einkopplung der UV-Laserstrahlung in die Brennkammer realisiert. Darauffolgend erfolgt die PLIF Messung am SCARLET Rig (HBK3) an der DLR Köln.
Ein strahlgeführtes, ottomotorisches Brennverfahren mit Hochdruck-Direkteinspritzung wird erforscht und entwickelt und an einem Versuchs-Vollmotor umgesetzt. Die angestrebte Erhöhung des Einspritzdrucks auf 600 bar wird eine Steigerung des motorischen Wirkungsgrads und damit einhergehend eine Verbrauchseinsparung von mindestens 10% ermöglichen. Gleichzeitig wird eine signifikante Reduzierung der HC-, Partikel- sowie NOx-Emissionen erwartet, die in der Folge eine Vereinfachung der Abgasnachbehandlung mit entsprechenden Kosteneinsparungen ermöglichen soll. Voraussetzung hierfür bildet die Entwicklung eines geeigneten und betriebsfesten Hochdruck-Einspritzsystems. Der Entwicklungsprozess wird mittels fortschrittlicher Messverfahren und mit aufwendigen Simulationswerkzeugen zielführend ergänzt. In diesem Teilprojekt soll für die Entwicklung und Anwendung innovativer keramischer Werkstoffe von den beiden Teil-Instituten IAM-KM und IAM-ZBS am KIT hierzu grundlegende Forschungsarbeit geleistet werden, die wesentliche Erkenntnisse und Beiträge zur Erreichung der notwendigen, hohen Einspritzdrücke liefert. Entscheidende Resultate dazu werden aus den systematischen Gefügevariationen der Oberflächentextur der neuartigen Keramikbauteile der Hochdruckpumpe und deren eingehende Eignungsuntersuchungen erwartet, die in Verbindung mit der mechanischen Charakterisierung und den tribologischen Modelluntersuchungen grundlegende Gefüge-Eigenschafts-Korrelationen liefern, die dann an realen Motorenkomponenten eingesetzt und überprüft werden.
Ziele des Teilprojektes im Gesamtprojekt RevAl ist neben der Synthese eines komplementären Alazan-Portfolios die thermodynamisch Charakterisierung der Verbindungen mittels Kalorimetrie unter Anwendungs-, d.h. unter und Hochdruckbedingungen. Die Untersuchungen sollen dazu dienen, systematische Trends bei der Variation der molekularen und strukturellen Eigenschaften zu erkennen, so dass eine gezielte Optimierung der Materialien auf den Anwendungsfall im Druckbereich bis 700bar erfolgen kann. Neben der thermodynamischen Charakterisierung werden spektroskopische Untersuchungen zur Verbesserung möglicher Katalysatoren für die reversible Beladung durchgeführt. Am Anfang des Projekts werden neben der Synthese von geeigneten Startverbindungen vor allem apparative Maßnahmen zur Erweiterung des Druckbereichs der Hochdruckkalorimetrie (im Wesentlichen Wärmeflusskaloriemetrie) sowie der Beladbarkeit über volumetrische Messung in den Bereich von 700bar erfolgen. Daraufhin werden die eigensynthetisierte, bei Raumtemperatur stabile Aminoalane in Bezug auf deren Rehydrierbarkeit und den dabei vorkommenden Wärmetönungen untersucht. Sobald die instabilen Hydride der Mühlheimer Arbeitsgruppe vorliegen, werden diese gleichartigen Untersuchungen unterzogen. Nach Identifikation geeigneter Alazan-und Katalysatormaterialien wird die Katalysator-Alazan-Wechselwirkung röntgenphotoelektronspektroskopisch untersucht und mit den strukturellen Ergebnissen zur Wirkungsoptimierung in Bezug gesetzt.
Das zentrale technologische Anliegen im bis November 2015 laufenden Projektabschnitt ist die Gewinnung des Lignins sowie die Abtrennung weiterer Hydrolyseprodukte aus Biomasse, hier Weizenstroh, mit umweltfreundlichen bzw. umweltneutralen Hilfsmitteln (Wasser, Hochdruck, Temperatur, Biokatalysatoren). Das Lignin findet unter anderem Einsatz als Rohstoff in der Klebstoffindustrie, die Hydrolysate (C5- und C6- Zucker) sind wertvolle Nebenströme für die Gewinnung von Feinchemikalien (Xylitol, Lävulinsäure u.a.). In der Gesamtheit kann durch die Arbeiten im Projektabschnitt 'Phase II' bisher bestätigt werden, dass die angedachte Verwertung des Lignins und auch die Verwertung der Hydrolysate wie geplant funktioniert. Ziel ist nunmehr die Vermarktung/ industrielle (Pilot)-Verwertung des gewonnenen Lignins. Bevor die Produkte zur Marktreife geführt und beworben werden können, sind jedoch noch Verbesserungen an den jeweiligen Prozessschritten notwendig, in Abhängigkeit vom gewünschten Endprodukt wurden folgende Arbeitsschritte als notwendig erachtet, diese mit geeigneten Modellen zu begründen. 1) Anpassung der Lignin-Partikelgröße, 2) Gewinnung eines Lignins mit möglichst niedrigem Schmelz- bzw. Erweichungspunkt. Hierfür ist ggf. der Bezug alternativer Biomasse notwendig (Holz, Bagasse, Biogas-Gärreste), 3) Anpassung des Betriebs der Extrudereinheit, 4) Wertschöpfung aus Nebenprodukten (Zucker bzw. Exzess-Lignin).
Durch effiziente Umwandlung der Biomasse in integrierten Bioraffinerien können Pflanzen und biologische Abfallstoffe in ihrer Multifunktionalität als Energie- und Rohstofflieferanten nutzbar gemacht werden. Eine der Schlüsselaufgaben ist dabei die Nutzung einer möglichst großen Anzahl der in Lignocellulose enthaltenden Rohstoffe. Lignocellulose umfasst die drei Stoffgruppen Hemicellulose, Cellulose und Lignin, die sich in ihrem Reaktionsverhalten erheblich unterscheiden. Das zentrale technologische Anliegen im Modul II von BIORAFFINERIE2021-Phase I war der Aufschluss der Lignocellulose und die Abtrennung der Hydrolyse- und Fermentationsprodukte mit umweltfreundlichen bzw. umweltneutralen Hilfsmitteln (Wasser, Hochdruck, Temperatur, Biokatalysatoren) zu Einfachzuckern und weiteren Chemikalien. Es wurde eine Gesamtkette zur Produktion von Bioethanol realisiert. Während des Projektfortschritts hat sich herausgestellt, dass ein besonderes industrielles Interesse an der Nutzung des anfallenden Lignins besteht. Lignin ist nach der Cellulose das mengenmäßig wichtigste organische Polymer auf der Erde und macht 30Prozent des nicht-fossilen organischen Kohlenstoffes aus. Generelles Ziel von BIORAFFINERIE2021-Phase II 'Erweiterung der nutzbaren Biomasseressourcen' ist die Optimierung des Gesamtprozesses der Lignocellulose-basierten Bioraffinerie zur Gewinnung der Wertstoffe Lignin und Xylose. Aufbauend auf den im bisherigen Projektverlauf gewonnenen Ergebnissen hier die Produktion und experimentelle Untersuchung von Lignin für den Einsatz in Klebemassen im Vordergrund stehen.
Ziel des Projekts LaserJetDrilling ist die Entwicklung eines neuartigen Bohrverfahrens, mit dem eine flächendeckende Strom- und Wärmegewinnung aus Tiefer Geothermie in Deutschland realisiert werden kann. Hierfür wird ein neuartiges Bohrverfahren entwickelt, welches zur Steigerung der Vortriebgeschwindigkeiten hochenergetische Laserstrahlung verwendet, die zum Schutz der Optik vor Verschmutzung in einen Wasserstrahl eingekoppelt wird. An die Wasserstrahlführung werden hohen Anforderungen hinsichtlich Druckstabilität, Homogenität und Reinheit gestellt. Die KAMAT Pumpen GmbH & Co. KG entwickelt und fertigt das hierfür benötigte Equipment zur Druckerzeugung und Wasseraufbereitung. Im Teilvorhaben der KAMAT Pumpen GmbH & Co. KG wird eine Druckerzeugung und Wasseraufbereitung für den LaserJetDrilling-Ansatz entwickelt und gefertigt. Notwendige Ausgangsdaten für die Auslegung der Pumpenkomponenten sind die beim assoziierten Partner Synova für Mikroanwendungen vorhandenen Informationen (Druck, Durchfluss, Reinheitsgrad) und Erfahrungswerte im Bereich Druckerzeugung und Wasseraufbereitung. Die Informationen werden auf Grundlage eines Kooperationsvertrages dem LaserJetDrilling-Konsortium zur Verfügung gestellt. Die Konzeptionierung des Pumpen- und Wasseraufbereitungsequipments für den LaserJetDrilling-Ansatz stellt den ersten Schwerpunkt des Arbeitspaketes von KAMAT dar. Hierfür müssen die Kennwerte von Synova hochskaliert werden, so dass eine Wasserstrahlführung von multi-kW-Laserstrahlung ermöglicht wird. Im Anschluss wird die Fertigung und Beschaffung der hierfür notwendigen Komponenten vorbereitet und umgesetzt. Abschließend erfolgt die Inbetriebnahme der Druckerzeugung und Wasseraufbereitung am LaserJetDrilling-Prüfstand.
| Origin | Count |
|---|---|
| Bund | 131 |
| Type | Count |
|---|---|
| Förderprogramm | 131 |
| License | Count |
|---|---|
| offen | 131 |
| Language | Count |
|---|---|
| Deutsch | 122 |
| Englisch | 13 |
| Resource type | Count |
|---|---|
| Keine | 52 |
| Webseite | 79 |
| Topic | Count |
|---|---|
| Boden | 93 |
| Lebewesen und Lebensräume | 88 |
| Luft | 81 |
| Mensch und Umwelt | 130 |
| Wasser | 82 |
| Weitere | 131 |