The World Settlement Footprint (WSF) 3D provides detailed quantification of the average height, total volume, total area and the fraction of buildings at 90 m resolution at a global scale. It is generated using a modified version of the World Settlement Footprint human settlements mask derived from Sentinel-1 and Sentinel-2 satellite imagery in combination with digital elevation data and radar imagery collected by the TanDEM-X mission. The framework includes three basic workflows: i) the estimation of the mean building height based on an analysis of height differences along potential building edges, ii) the determination of building fraction and total building area within each 90 m cell, and iii) the combination of the height information and building area in order to determine the average height and total built-up volume at 90 m gridding. In addition, global height information on skyscrapers and high-rise buildings provided by the Emporis database is integrated into the processing framework, to improve the WSF 3D Building Height and subsequently the Building Volume Layer. A comprehensive validation campaign has been performed to assess the accuracy of the dataset quantitatively by using VHR 3D building models from 19 globally distributed regions (~86,000 km2) as reference data. The WSF 3D standard layers are provided in the format of Lempel-Ziv-Welch (LZW)-compressed GeoTiff files, with each file - or image tile - covering an area of 1 x 1 ° geographical lat/lon at a geometric resolution of 2.8 arcsec (~ 90 m at the equator). Following the system established by the TDX-DEM mission, the latitude resolution is decreased in multiple steps when moving towards the poles to compensate for the reduced circumference of the Earth.
Fallstudien werden herangezogen um leistungsfähige Doppelfassaden in ihrer Wirkung auf Systeme der Gebäudetechnik sowie auf die Energieeffizienz des Gebäudes zu untersuchen. Bei der ersten Fallstudie handelt es sich um einen 21-geschossigen Büroturm im Zentrum von Berlin mit Fertigstellungsdatum 1999. Die Doppelfassade wirkt als solarthermischer Schacht und ermöglicht die natürliche Lüftung des Turmes während 70Prozent des Jahres. Für die verbleibende Zeit erfolgt die Versorgung mechanisch über Quellluft und sorptionsgestützte Klimatisierung. Das zweite Gebäude hat die Funktion einer Hauptverwaltung nahe Frankfurt, fertiggestellt im Jahr 2000. Hier ermöglicht ein extrem effizientes Doppelfassadensystem den Verzicht auf ein konventionelles Heizsystem. Ein Kapillarrohrsystem in der Decke sorgt für Kühlung und Heizung. Die Einsparungen an den konventionellen Systemen können somit den gestiegenen Fassadenkosten gegen gerechnet werden. Die dritte Fallstudie beschäftigt sich mit dem erstgereihten Wettbewerbsentwurf für die neue Hauptverwaltung der europäischen Zentralbank in Frankfurt. Eine zweite Gebäudehülle in Kombination mit einer energetisch optimierten Gebäudeform erlaubt während des gesamten Jahres die natürliche Lüftung des Hochhauses. Zusätzlich zur Ersparnis in den laufenden Betriebsenergiekosten wird ein enormes Einsparpotential bezüglich Investitionskosten (Wegfall des mechanischen Lüftungssystems und Anlagentechnik) geschaffen sowie die Maximierung nutzbarer Fläche (Wegfall/Verringerung der Versorgungsschächte) ermöglicht. Die Fallstudien zeigen deutlich, dass höchst effiziente Doppelfassaden nicht nur das energetische Gebäudeverhalten verbessern können, sondern genauso die Investitionskosten signifikant senken können. Deshalb ist die Wirtschaftlichkeit einer solchen Maßnahme nicht nur bezüglich ihrem Potential zur Senkung von Energiekosten zu bewerten, sondern immer im Zusammenhang mit einer möglichen Reduktion der Investitionskosten für HLK-Systeme im Gebäude zu sehen. Eine bloße Reduktion der Größe dieser Systeme führt oft zu keinen bemerkenswerten Einsparungen.
Viele technische Einrichtungen und bauliche Strukturen in der Stadt können Probleme für die Tierwelt bereiten. Glas und Licht sind zwei typisch städtische Faktoren, die sich erheblich auf die Biodiversität auswirken. Um ihren Einsatz kommen wir nicht herum. Gleichzeitig müssen wir aber alle Möglichkeiten nutzen, um schädliche Auswirkungen zu minimieren. Glas als Problem für Vögel Licht als Problem für Tiere Wieviele Vögel fliegen gegen Glas? Glas ist der menschlich bedingte Faktor, durch den am meisten Vögel umkommen. Die Länderarbeitsgemeinschaft der Vogelschutzwarten hat hochgerechnet, dass jährlich in Deutschland vermutlich über 100 Millionen Vögel an Glas sterben. Das wären über 5 % aller im Jahresverlauf vorkommenden Vogelindividuen (LAG VSW 2017). Damit dürfte Glas inzwischen dafür mitverantwortlich sein, dass die Zahl der Vögel in Deutschland, Europa und weltweit zurückgeht und unser Planet Jahr für Jahr mehr an Biodiversität verliert. Betroffen sind auch zahlreiche Zugvögel. Warum fliegen Vögel gegen Glas? Die Ursachen, die zu Anflügen führen, sind schon lange bekannt: Transparenz oder Reflexion. Entweder sehen Vögel durch die Glasscheibe hindurch Bäume, Sträucher, den Himmel oder ein sonstiges Ziel und wollen dorthin fliegen. Oder sie sehen die Spiegelung ihres Ziels in der Scheibe. Reflexionen sind besonders in der Stadt ein relevanter Faktor. In beiden Fällen prallen fliegende Vögel mit erheblicher Geschwindigkeit gegen das Glas. Die Folge sind meist starke Kopf- oder innere Verletzungen. Beleuchtung kann als verstärkender Faktor hinzukommen: Zugvögel können nachts vom Licht angelockt oder irritiert werden und kollidieren dann an den Glasscheiben der Umgebung. Welche Vögel fliegen gegen Glas? Tatsächlich kann kein Vogel Glas erkennen, betroffen sein kann daher theoretisch jede Art. Es ist vielmehr eine Frage, ob sich Glas in ihrem Lebensraum befindet. Und hierbei muss das gesamte Jahr betrachtet werden. Manche Wasservögel und Vogelarten der offenen Landschaft treffen so gut wie nie auf gläserne Strukturen. Aber die meisten anderen Vogelarten kommen auch in Siedlungsräume, sowohl als Brutvögel als auch als Durchzügler oder im Winter. Das in Berlin dokumentierte Artenspektrum reicht von Haussperling über Nebelkrähe, Gelbspötter, Eisvogel, Sing- und Rotdrossel, Sommer- und Wintergoldhähnchen, Teichrohrsänger bis Habicht und Waldohreule. Direkt an innerstädtischen Gewässern wurden auch Stockente und Höckerschwan als Anprallopfer gefunden. Gerade Zugvögel sind vielfach betroffen. So ist die Waldschnepfe ein regelmäßiges Glasopfer im März und Oktober/November, obwohl diese Art nicht hier brütet. Selbst sehr seltene Arten wie Ringdrossel und Zwergschnäpper, die nur ausnahmsweise beobachtet werden, sind in der Innenstadt als Glasopfer gefunden worden. Welche Glasscheiben sind gefährlich? Jede Glasscheibe hat ein Gefährdungspotenzial, aber die konkrete Gefahrensituation hängt von ihrer Größe, der Menge Glas an der Fassade, Durchsicht, Reflexion und dem Standort ab. Die Länderarbeitsgemeinschaft der Vogelschutzwarten hat ein Bewertungsschema entwickelt, mit dem man die Gefährlichkeit von Glas an Bauwerken abschätzen kann (LAG VSW 2021). Meist unproblematisch sind danach Lochfassaden mit „normalen“ Fenstern unter 1,5 m² Fläche. Häufig problematisch sind hingegen freistehende Glaswände (auch z.B. in Wartehäuschen von Bus und Bahn) oder -gänge mit Durchsichten, auch zusammenhängende Glasbereiche über 6 m². Je mehr Vegetation sich in der Glasscheibe spiegelt, desto größer ist die Vogelschlaggefahr. Straßenbäume reichen hier bereits aus, da sie von zahlreichen Vögeln genutzt werden, auch in der Innenstadt. Aber auch gegen Scheiben, die den freien Himmel spiegeln, können Vögel fliegen. Transparente Gebäudeecken und -kanten, bergen ein großes Anprallrisiko. Vegetation hinter Glas kann eine regelrechte Vogelfalle darstellen, z.B. Gewächshäuser oder Wintergärten. Wie sind Hochhäuser zu bewerten? Bei Hochhäusern können die unteren Bereiche genauso wie andere Bauwerke bewertet werden (siehe vorstehend). Die Häuser ragen aber meist über die umliegende Bebauung hinaus. Mit einem höheren Glasanteil, der den freien Himmel spiegelt, steigt damit die Gefahr für alle über Baumhöhe fliegenden Vögel. Auf dem Durchzug kann das jede Vogelart sein. Hier gilt ebenfalls, dass Lochfassaden in der Regel unproblematischer sind als Fassaden mit größeren zusammenhängenden Glasflächen. Ein weiterer relevanter Aspekt für Hochhäuser ist die Beleuchtung. Die Bauwerke ragen in den Raum der nächtlich ziehenden Vögel. Bei bestimmten Wetterlagen können diese von Licht angelockt und irritiert werden. Sie fliegen Kreisbahnen um die Lichtquelle und können gegen Glas und andere Hindernisse prallen. Wie kann man Vogelschlag erfassen? Selten wird man direkt Zeuge eines Anfluges. Auch die Kadaver findet man kaum, weil diese schnell von Verwertern wie Krähen und anderen Vögeln (tagsüber) oder Füchsen, Mardern, Ratten und anderen Säugetieren (vor allem nachts) abgesammelt werden. In der Stadt beseitigen auch Reinigungsdienste die toten Vögel, gerade an öffentlich genutzten Orten. Sichtbare Spuren an den Scheiben hinterlassen meist größere Vögel, während die Anprallstellen von Kleinvögeln allenfalls durch ein paar unauffällige Federchen erkannt werden können. Systematische Untersuchungen über mehrere Monate (vor allem von Juli bis November) können trotzdem gute Erkenntnisse über das Vogelschlaggeschehen erbringen, auch wenn man von einer hohen Dunkelziffer ausgehen muss. Der Aufwand hängt von den jeweiligen Fassaden ab und steigt vor allem bei Höhen über ca. 5 m an, weil die Flächen dann kaum noch optisch absuchbar sind. Die Frequenz der morgendlichen Kadaversuchen muss dann erhöht werden. Vereinzelt kann eine Kontrolle von innen hilfreich sein. Was kann man gegen Vogelschlag tun? Vogelschlag an Glas kann durch eine umsichtige Objektplanung und -gestaltung vermieden werden. Sollen trotzdem potenziell problematische Glasdimensionen zur Realisierung kommen, müssen die Glasflächen durch technische Maßnahmen sichtbar gemacht werden (z.B. Sandstrahlen, Ätzen, Digital- oder Siebdruck). Diese dauerhaft wirksamen Maßnahmen sind wirtschaftlicher als nachträgliche Lösungen wie z.B. das Aufkleben von Folien, denn diese müssen in mehrjährigen Abständen erneuert werden. Welche Markierungen sind wirkungsvoll? Als Faustregel gilt: Vögel nehmen senkrechte Linien ab 5 mm Breite wahr, und Kantenabstände von maximal 95 mm sind erforderlich, damit Vögel nicht zwischen ihnen hindurch fliegen („alle 10 cm eine Linie“). Bei horizontalen Linien sind 3 mm Breite ausreichend, bei einem maximalen Kantenabstand von 47 mm („alle 5 m eine Linie“). Der Deckungsgrad derartiger Markierungen beträgt 5 % bzw. 6 %, so dass der Lichtverlust sehr gering ist. Ein guter Kontrast ist hierbei essenziell – Vögel müssen die Markierungen gut erkennen können. Dies gilt insbesondere auch für Punkte, die erst in den letzten Jahren intensiver untersucht werden (siehe hierfür die Webseite der Wiener Umweltanwaltschaft für aktuelle Ergebnisse). Um gegen Reflexionen wirksam sein zu können, müssen Markierungen in der Regel außen auf das Glas angebracht werden (Ebene 1 der Glasscheibe). Es deutet sich an, dass glänzend-helle oder weiße Strukturen, die das Sonnenlicht spiegeln, auch auf der Innenseite (Ebene 2) angebracht werden können. Über deren Wirksamkeit liegen aber erst wenige Befunde vor (siehe hierfür ebenfalls die Webseite der Wiener Umweltanwaltschaft für aktuelle Ergebnisse). Einige neue Gläser und Materialien mit anderen Eigenschaften sind in der Testphase, so dass sich der Blick auf die Webseite der Wiener Umweltanwaltschaft von Zeit zu Zeit lohnt. Welche Markierungen sind (weitgehend) nutzlos, entgegen der Versprechungen? Die seit langem angewandten Greifvogelsilhouetten sind leider völlig wirkungslos. Zwar fliegt kein Vogel gegen die Silhouette, aber schon wenige Zentimeter daneben gegen das Glas. Denn die Vögel sehen in dem Aufkleber keinen “Greifvogel”, sondern nur das schwarze oder farbige Hindernis, dem sie ausweichen. Den gleichen Effekt hätte man mit einem beliebigen Aufkleber. Ebenfalls völlig bis weitgehend wirkungslos sind UV-Licht reflektierende Strukturen . Diesen liegt die Idee zugrunde, dass einige Vogelarten im Unterschied zum Menschen Licht im ultravioletten Bereich wahrnehmen können. Die Entwickler entsprechender Produkte nahmen daher an, dass Vögel applizierten UV-Strukturen ausweichen, die wir Menschen nicht sehen. In der Praxis funktioniert dies vermutlich aus mehreren Gründen nicht oder nur sehr wenig (siehe hierzu die Testergebnisse auf der Webseite der Wiener Umweltanwaltschaft). Und schließlich sind Gläser mit geringer Außenreflexion (maximal 15 %) allein in der Regel keine wirksame Lösung. Es ist zwar richtig, dass stärker spiegelnde Gläser die Gefährlichkeit von Glas häufig erhöhen, jedoch spiegelt grundsätzlich jedes Glas, wenn es in dem dahinter liegenden Raum deutlich dunkler ist als draußen. Und dies ist tagsüber fast überall der Fall, insbesondere wenn die Sonne scheint. Wann gibt es Handlungsbedarf? Ist dieser rechtlich durchsetzbar? Auch an den kleineren Glasscheiben einer Lochfassade können Vögel verunglücken – völlig auszuschließen ist die Gefährdung nie. Wenn sich aber Anflüge häufen, ist Handlungsbedarf gegeben. Tatsächlich gibt es ein striktes Tötungsverbot bei allen in Europa natürlicherweise vorkommenden Vogelarten in § 44 Abs. 1 Bundesnaturschutzgesetz. Nach geltender Rechtsauslegung greift dieses Verbot bei nicht beabsichtigen Tötungen (wie bei Windkraft, Straßentrassen oder eben Glas) dann, wenn das Tötungsrisiko „signifikant erhöht“ wird. Dies ist fachlich zu erläutern, und die Länderarbeitsgemeinschaft der Vogelschutzwarten hat dies getan (LAG VSW 2021). Danach sind auf 100 m Fassadenlänge zwei Vogelschlagopfer je Jahr noch „normal“ und rechtlich hinzunehmen, mehr als doppelt so viele (also ab fünf Vogelschlagopfer jährlich auf 100 m Fassadenlänge) „signifikant erhöht“. Wenn diese Situation erreicht ist, kann die zuständige Naturschutzbehörde über Anordnungen tätig werden. Die Gefahrenstelle muss entschärft werden. Unter der Überschrift „Lichtverschmutzung“ ist in den letzten Jahren bekannt geworden, dass sich Licht ungünstig auf Mensch und Tier auswirken kann. Die drei wichtigsten Aspekte für Vögel, Insekten und Fledermäuse werden nachfolgend benannt. Wann ist Licht für Vögel gefährlich? Wie schon im Abschnitt über Hochhäuser angesprochen, kann Licht unter bestimmten Umständen für Zugvögel kritisch sein und insbesondere nachts bei bestimmten Wetterlagen (Wolkendecke, Regen, Nebel) eine anlockende oder irritierende Wirkung haben. In Kombination mit Hindernissen (z.B. Glasscheiben, Abspannungen) kann es hierbei zu Massenanflügen kommen. Bei Untersuchungen im Jahr 2020 hat sich gezeigt, dass Zugvögel nachts auch in Bodennähe von starken Lichtquellen angelockt werden können. Dies kann Leuchtreklame sein, aber auch helle Innenbeleuchtung, die nach außen dringt. Vögel verunglücken dann an den Glasscheiben in der Nähe der Lichtquelle. Wichtig ist daher, keine deutlich über das allgemeine Beleuchtungsniveau der Umgebung hinausragende Lichtstärke zu installieren. Darüber hinaus können sogenannte “Skybeamer”, stark gebündelte Lichtstrahlen, zu Irritationen bei Zugvögeln führen, bis hin zum Absturz der Vögel. Aus dem Tötungsverbot in § 44 Abs. 1 Bundesnaturschutzgesetz ergibt sich daraus, dass derartige Beleuchtungen zu den Vogelzugzeiten verboten sind. In Berlin betrifft dies die Zeiträume 1. März bis 31. Mai und 15. August bis 30. November. Was ist für Insekten schädlich und wie sehen Vermeidungsmaßnahmen aus? Die Anlockwirkung von Licht auf Insekten ist altbekannt. Vor allem in der Nähe von Stadtgrün und Gewässern kann hierbei die örtliche Artenvielfalt (Biodiversität) erheblich gemindert werden, wenn viele Insekten aus ihren Lebensräumen quasi herausgezogen werden. Denn sie umkreisen die Lichtquelle und verhungern dort oft. Diese Tiere gehen dann für den Populationserhalt verloren. Hieraus wird deutlich, dass man mit Licht in durchgrünten Gebieten sehr sorgsam umgehen muss. Handlungsmöglichkeiten hat fast jeder auch im privaten Bereich: Möglichst wenig Licht verwenden, mit geringstmöglicher Helligkeit. Später in der Nacht nicht benötigtes Licht abschalten. Leuchtkörper mit geringen blauen und UV-Anteilen verwenden, also eher gelbliches Licht wie LED-Amber oder Natriumdampflampen. Wenn weißes Licht unbedingt erforderlich ist, kann warmweißes LED-Licht verwendet werden. Beleuchtung niedrig anbringen und nur nach unten abstrahlen – keine Abstrahlung in die Landschaft. Was ist für Fledermäuse wichtig? Zwar gibt es einige Fledermäuse, die gezielt Lichtquellen anfliegen, um die dort angesammelten Insekten zu erbeuten, doch grundsätzlich weichen die meisten Fledermäuse hell beleuchteten Bereichen aus. Dies geht so weit, dass sie für ihre Flüge durch die Stadt nur dunkle Verbindungsstrukturen verwenden können, z.B. nicht beleuchtete Grünzüge. Fledermäuse werden also durch Licht gleich doppelt betroffen: Zum einen verringert sich ihr Nahrungsangebot, weil die Insektenpopulationen verkleinert werden. Und zum anderen wird ihre Bewegungsfähigkeit durch Beleuchtung eingeschränkt. In der Folge verringert sich auch die Zahl der Fledermäuse, die in der Stadt leben können.
Die Höhenerstreckung der Berliner Gebäude hängt eng mit der Baugeschichte der Stadt, einschließlich der Wiederaufbaumaßnahmen nach dem II. Weltkrieg, zusammen. Der Begleittext zu den Umweltatlas-Karten „Stadtstruktur (06.07) und „Stadtstruktur – Flächentypen differenziert (06.08) beschreibt sehr ausführlich die Siedlungsentwicklung der Stadt, die aufgrund der vor allem nach der Reichsgründung 1871 rasant zunehmenden politischen und wirtschaftlichen Bedeutung Berlins ebenso rasant in einzelnen Bauepochen vonstattenging. Eine weitere detailreiche Darstellung der Berliner Baugeschichte bietet die Veröffentlichung „Berliner Pläne 1862-1994“ (SenStadt 2002). Zunächst nur innerhalb der seit 1877 bestehenden Ringbahn, später auch deutlich darüber hinaus und gebietsweise bis zur heutigen Zeit beherrscht die typische Berliner Blockbebauung den Mietshaus-Wohnungsbau. Seit 1853 regelte die ‚Baupolizeiordnung‘ für Berlin u.a. die Höhe der Gebäude. Sie setzte die im Prinzip auch heute noch geltende Berliner Traufhöhe von 22 m fest (in der Karte wird dagegen die berechnete Höhe des Gebäude-Dachfirstes dargestellt). Zusammen mit dem Kellergeschoss lassen sich so in der Regel sechs bis sieben Geschosse in einem Gebäude unterbringen. Diese Bestimmung und die Tatsache, dass auch der Wiederaufbau nach dem II. Weltkrieg im Bestand weitgehend die bisherigen Grundriss- und Höhenstrukturen wiederaufnahm, führten dazu, dass große Teile der Berliner Innenstadt, auch heute noch ein relativ einheitliches Bild der Dachlandschaft bieten. Rund 3.400 ha und damit etwa 10 % der Wohngebiets-Flächentypen des Informationssystems Stadt und Umwelt (ISU) gehören zu den von der Traufhöhenbeschränkung direkt betroffenen innerstädtischen Altbauquartieren (vgl. Karte 06.08 „Stadtstruktur – Flächentypen differenziert“ sowie Abbildung 4 und Tabelle 1). Sowohl von ihrer räumlichen Lage als auch von ihrer Entstehungszeit her stehen diesen Altbauquartieren die Typen der Einfamilienhaussiedlungen sowie der Reihen- und Doppelhäuser gegenüber. Ganz überwiegend am Stadtrand gelegen, bilden sie mit einer Fläche von etwa 11.500 ha rund 45 % der Block(teil)flächen mit Flächentypen der Wohnbebauung ab. Hier prägen Gebäude mit Firsthöhen bis etwa 12 m das Siedlungsbild (vgl. Abbildung 5 und Tabelle 1). Im Wohnungsbau die höchsten Einzelgebäude weist der Flächentyp 9 „Großsiedlung und Punkthochhäuser (1960er – 1990er), 4 – 11-geschossig und mehr“ auf. Aufgrund des großen Anteils auch kleinerer (Neben)-Gebäude macht sich dieser Effekt bei einer Aggregation auf die Ebene der Block(teil)flächen der Flächentypen im Mittelwert jedoch nicht bemerkbar (vgl. Tabelle 1). Obwohl Berlin im Vergleich zu anderen Metropolen eine nur geringe Anzahl exponierter Hochhäuser aufweist (vgl. Abbildung 6), besitzt die Stadt mit dem Fernsehturm am Alexanderplatz jedoch das höchste Bauwerk Deutschlands (Gesamthöhe 368 m, ausgewiesene Schafthöhe laut LoD2: 253 m). Höhen über 100 m weisen zum Beispiel folgende Gebäude bzw. Bauwerkskomplexe auf: Heizkraftwerk Reuter West (vgl. Abbildung 7), Bahn-Tower und Kollhoff-Tower am Potsdamer Platz Potsdamer Platz Ku’damm-Karree-Hochhaus Treptower Towers Zoo-Fenster und Upper-West in der City-West (vgl. Abbildung 8) Park Inn Hotel sowie die beiden Türme Fernsehturm Alexanderplatz und Fernmeldeturm Schäferberg. Eine Zuordnung der mittleren Gebäudehöhen und weiteren statistischen Parametern auf der Ebene der block(teil)flächen-bezogenen Flächentypen des Informationssystems Stadt und Umwelt (ISU) zeigt Tabelle 1. Es fällt auf, dass selbst Typen erwartbar großer Gebäudehöhen (z.B. Flächentyp 9, „Großsiedlung und Punkthochhäuser (1960er – 1990er), 4 – 11-geschossig und mehr“ und Flächentyp 29 „Kerngebiet“) eine ‚unauffällige‘ mittlere Höhe aufweisen. Dies liegt vor allem an der breiten Streuung der Einzelhöhen durch den hohen Anteil auch niedrigerer Gebäude bzw. Gebäudeteile innerhalb der Blöcke und Blockteilflächen dieser Flächentypen. Die Maximalwerte dieser Flächentypen entsprechen dagegen den Erwartungen (89 m bei Typ 9 bzw. 123 m Einzelgebäudehöhe bei Typ 29). h6. 1) Betrachtet wurden nur Gebäude > 3,50 m und Flächentypen mit Gebäudeanteil > 10% Abbildung 9 verdeutlicht an drei Beispielen den auch in Tabelle 1 erkennbaren Streuungseinfluss anhand der Verteilungsdarstellung nach Mittelwerten und Standardabweichung. Während die Mittelwerte der ausgewählten Flächentypen praktisch identisch sind (vgl. Tabelle 1), unterscheiden sich die Streuungen sehr deutlich. Bei Typ 1 „Dichte Blockbebauung, geschlossener Hinterhof (1870er – 1918), 5 – 6-geschossig“ liegen die jeweiligen Gebäudehöhen sehr eng um den Mittelwert (kleinste Standradabweichung), während diese bei Typ 9 „Großsiedlung und Punkthochhäuser (1960er – 1990er), 4 – 11-geschossig und mehr“ und bei Typ 29 „Kerngebiet“ bei großer Standardabweichung weit streuen, ein Effekt, der auf eine große Bandbreite unterschiedlicher Höhen in den Blöcken dieser Typen hinweist.
The World Settlement Footprint (WSF) 3D provides detailed quantification of the average height, total volume, total area and the fraction of buildings at 90 m resolution at a global scale. It is generated using a modified version of the World Settlement Footprint human settlements mask derived from Sentinel-1 and Sentinel-2 satellite imagery in combination with digital elevation data and radar imagery collected by the TanDEM-X mission. The framework includes three basic workflows: i) the estimation of the mean building height based on an analysis of height differences along potential building edges, ii) the determination of building fraction and total building area within each 90 m cell, and iii) the combination of the height information and building area in order to determine the average height and total built-up volume at 90 m gridding. In addition, global height information on skyscrapers and high-rise buildings provided by the Emporis database is integrated into the processing framework, to improve the WSF 3D Building Height and subsequently the Building Volume Layer. A comprehensive validation campaign has been performed to assess the accuracy of the dataset quantitatively by using VHR 3D building models from 19 globally distributed regions (~86,000 km2) as reference data. The WSF 3D standard layers are provided in the format of Lempel-Ziv-Welch (LZW)-compressed GeoTiff files, with each file - or image tile - covering an area of 1 x 1 ° geographical lat/lon at a geometric resolution of 2.8 arcsec (~ 90 m at the equator). Following the system established by the TDX-DEM mission, the latitude resolution is decreased in multiple steps when moving towards the poles to compensate for the reduced circumference of the Earth.
The World Settlement Footprint (WSF) 3D provides detailed quantification of the average height, total volume, total area and the fraction of buildings at 90 m resolution at a global scale. It is generated using a modified version of the World Settlement Footprint human settlements mask derived from Sentinel-1 and Sentinel-2 satellite imagery in combination with digital elevation data and radar imagery collected by the TanDEM-X mission. The framework includes three basic workflows: i) the estimation of the mean building height based on an analysis of height differences along potential building edges, ii) the determination of building fraction and total building area within each 90 m cell, and iii) the combination of the height information and building area in order to determine the average height and total built-up volume at 90 m gridding. In addition, global height information on skyscrapers and high-rise buildings provided by the Emporis database is integrated into the processing framework, to improve the WSF 3D Building Height and subsequently the Building Volume Layer. A comprehensive validation campaign has been performed to assess the accuracy of the dataset quantitatively by using VHR 3D building models from 19 globally distributed regions (~86,000 km2) as reference data. The WSF 3D standard layers are provided in the format of Lempel-Ziv-Welch (LZW)-compressed GeoTiff files, with each file - or image tile - covering an area of 1 x 1 ° geographical lat/lon at a geometric resolution of 2.8 arcsec (~ 90 m at the equator). Following the system established by the TDX-DEM mission, the latitude resolution is decreased in multiple steps when moving towards the poles to compensate for the reduced circumference of the Earth.
The World Settlement Footprint (WSF) 3D provides detailed quantification of the average height, total volume, total area and the fraction of buildings at 90 m resolution at a global scale. It is generated using a modified version of the World Settlement Footprint human settlements mask derived from Sentinel-1 and Sentinel-2 satellite imagery in combination with digital elevation data and radar imagery collected by the TanDEM-X mission. The framework includes three basic workflows: i) the estimation of the mean building height based on an analysis of height differences along potential building edges, ii) the determination of building fraction and total building area within each 90 m cell, and iii) the combination of the height information and building area in order to determine the average height and total built-up volume at 90 m gridding. In addition, global height information on skyscrapers and high-rise buildings provided by the Emporis database is integrated into the processing framework, to improve the WSF 3D Building Height and subsequently the Building Volume Layer. A comprehensive validation campaign has been performed to assess the accuracy of the dataset quantitatively by using VHR 3D building models from 19 globally distributed regions (~86,000 km2) as reference data. The WSF 3D standard layers are provided in the format of Lempel-Ziv-Welch (LZW)-compressed GeoTiff files, with each file - or image tile - covering an area of 1 x 1 ° geographical lat/lon at a geometric resolution of 2.8 arcsec (~ 90 m at the equator). Following the system established by the TDX-DEM mission, the latitude resolution is decreased in multiple steps when moving towards the poles to compensate for the reduced circumference of the Earth.
Schwarz Straßenkonturen; Wege; andere Grundrisselemente (z. B. Zäune, Mauern, Konturen von Hochhäusern, Flughäfen/-plätze, Rollbahnen), Eisenbahnen; schwarze Symbole; Felsen, Geröll Quelle: AdV
Origin | Count |
---|---|
Bund | 53 |
Kommune | 1 |
Land | 38 |
Wissenschaft | 4 |
Zivilgesellschaft | 8 |
Type | Count |
---|---|
Daten und Messstellen | 9 |
Förderprogramm | 42 |
Text | 25 |
Umweltprüfung | 5 |
unbekannt | 14 |
License | Count |
---|---|
geschlossen | 16 |
offen | 70 |
unbekannt | 9 |
Language | Count |
---|---|
Deutsch | 88 |
Englisch | 13 |
Resource type | Count |
---|---|
Archiv | 2 |
Dokument | 10 |
Keine | 48 |
Webdienst | 4 |
Webseite | 41 |
Topic | Count |
---|---|
Boden | 73 |
Lebewesen und Lebensräume | 75 |
Luft | 37 |
Mensch und Umwelt | 95 |
Wasser | 35 |
Weitere | 95 |