Der Bericht präsentiert die Emissionsdaten der fluorierten Treibhausgase (F-Gase) für die Jahre 1995-2022 für Deutschland. Aufgeführt sind Daten für teil- und vollfluorierte Kohlenwasserstoffe, Schwefelhexafluorid, Stickstofftrifluorid sowie Hydrofluorether und Sulfuryldifluorid. Die Emissionen der F-Gase, die zwischen 2000 und 2017 kontinuierlich gestiegen sind, zeigen seit 2018 einen deutlichen Abwärtstrend. Im Vergleich zum Basisjahr 1995 sanken die F-Gas-Emissionen bis zum Jahr 2022 um knapp 40%. Dies ist hauptsächlich auf Verbote und Beschränkungen von Verwendungsmengen durch die europäische und nationale F-Gas-Gesetzgebung zurückzuführen. Veröffentlicht in Texte | 50/2024.
Veranlassung Es fehlen schnelle und vor allem feldtaugliche Methoden zur Detektion von PFAS in der Umwelt, um so zeitnah Maßnahmen zur Minderung von PFAS-Kontaminationen durchzuführen oder den Erfolg von Minderungsmaßnahmen zu beurteilen. Entsprechende Methoden können ebenso helfen, die Prozesssteuerung einer Abwasserbehandlung zur Entfernung von PFAS z. B. durch eine Aktivkohlebehandlung zu optimieren. Das Projekt PFASense hat sich zum Ziel gesetzt, eine solche Methode zu entwickeln. Hierzu werden Elektroden hergestellt, die a) entweder für eine spezifische Detektion perflourierter Verbindungen oberflächenmodifiziert sind und b) biologische Effekte, die durch perflourierte Verbindungen hervorgerufen werden können, mit mikrobiellen Bioreportern elektrochemisch erfassen. Mit den individuellen Signalen der einzelnen Elektroden wird eine KI trainiert und auf diese Weise ein Sensor-Array zur sensitiven Detektion der großen Stoffgruppe der perfluorierten Verbindungen in Umweltproben entwickelt. Ziele - a. Design und Herstellung von molekular geprägten Membranen zur Anreicherung spezifischer PFAS. - b. Design und Herstellung elektrochemischer, bakterieller Biosensoren zur Detektion biologischer Effekte, die durch PFAS hervorgerufen werden. - c. Design und Herstellung elektrochemischer, hefebasierter Biosensoren zur Detektion einer Veränderung der Thyroid-Signalkaskade durch PFAS. - d. Design und Herstellung eines intelligenten elektrochemischen Sensors für die direkte chemische Detektion von PFAS mittels KI-gestützter Datenauswertung. - e. Konstruktion eines mikrofluiden multi-Sensor-Arrays unter Nutzung der in a. bis d. entwickelten Komponenten. - f. Validierung und Eignungstestung des entwickelten Sensor-Arrays mittels Einzelsubstanzen, Substanzmischungen sowie dotierten und undotierten Realproben mit einem Fokus auf industriellen Abwässern. Ziel des Vorhabens ist die Entwicklung einer innovativen technologischen Lösung für die folgende Fragestellung: Wie kann man zeitnah Informationen über die Qualität von z. B. Abwässern erhalten, ohne auf verzögert zur Verfügung stehende, analytische Informationen aus einem Labor angewiesen zu sein? Dieser Bedarf an zeitnahen Informationen für eine Bewertung von Abwasser und Wasserproben kann perspektivisch mittels eines bio-elektrochemischen Sensorarrays gedeckt werden, der im Rahmen des Projekts für den Nachweis von Per- und Polyfluoralkylsubstanzen (PFAS) entwickelt wird. PFAS werden in zahlreichen Produkten verwendet, darunter wässrige filmbildende Schäume für die Brandbekämpfung, antihaftbeschichtetes Kochgeschirr, Lebensmittelverpackungen, wasserabweisende Stoffe, medizinische Geräte, Kunststoffe und Lederprodukte. PFAS werden jedoch mit verschiedenen, toxikologisch relevanten Effekten in Verbindung gebracht, wie mit veränderten Immun- und Schilddrüsenfunktionen, Leber- und Nierenerkrankungen, Lipid- und Insulinstörungen, Fortpflanzungs- und Entwicklungsstörungen oder auch der Krebsentstehung. Als unmittelbare Folge dieser Gesundheitsrisiken hat die Europäische Kommission einen Vorschlag zur Überarbeitung der Liste der prioritären Stoffe in Oberflächengewässern angenommen, unter denen 24 Verbindungen zur Gruppe der PFAS gehören.
Veranlassung Baggergut das aufgrund erhöhter Nährstoffkonzentrationen für eine Umlagerung in der Ostsee nicht geeignet ist, wird häufig auf Spülfeldern im Küstenbereich abgelagert, um anschließend verwertet zu werden. Gelegentlich kann das Überschreiten von Grenzwerten des Arsens (As) im Eluat dazu führen, dass das Ausleiten des Überstandwassers seitens der zuständigen Landesbehörden nicht genehmigt wird, wodurch das Abtrocknen des Sediments, und somit der wichtigste Prozess der As-Retention, verlangsamt wird. Die Aussagekraft der Eluattests zur Abschätzung der Metall(oid)-Freisetzung aus den Spülfeldsedimenten ist sehr begrenzt, da die an Organik reichen, anaeroben Sedimente der Ostsee nach dem Aufbringen auf ein Spülfeld zeitlichen Änderungen von z.B. Temperatur- und Redoxbedingungen unterliegen. Darüber hinaus ist damit zur rechnen, dass diese Situation klimawandelbedingt durch ein häufigeres Auftreten von Trockenheitsereignissen weiter erschwert wird, da es zu einer Verstärkung vertikaler pH- und Redox-Gradienten und einer beschleunigten Mobilisierung von Cadmium, Nickel oder Zink unter oxischen Bedingungen als Folgewirkung der Sulfid-Oxidation kommt. Es besteht ein hoher Bedarf die Möglichkeiten der Verwertung von Spülfeldsedimenten zu verbessern und die Kapazitäten der Spülfelder für zukünftig anfallendes Baggergut zu erhalten. Kenntnisse über die Zusammenhänge der Metall(oid)mobilität mit zeitlich dynamischen Sedimenteigenschaften können hierzu einen wichtigen Beitrag liefern. Darüber hinaus soll in diesem Projekt untersucht werden inwieweit Unterschiede je nach Alter und Herkunft der Spülfeldsedimente bei der Transformation von PFAS-Vorläufersubstanzen hin zu Perfluorcarbonsäuren bestehen. Dies ist für Spülfeldsedimente der Ostsee bisher nicht bekannt. Grundsätzlich ist davon auszugehen, dass relevante Grenzwerte nicht überschritten werden, da auch andere ubiquitäre Schadstoffe gewöhnlich in unterdurchschnittlichen Mengen auftreten. Vor dem Hintergrund ihrer guten Wasserlöslichkeit sind vertiefte Kenntnisse zur Bildung der Perfluorcarbonsäuren allerdings von hoher Bedeutung. Eine Optimierung der Verwertungsmöglichkeiten des Baggerguts der Ostsee-Spülfelder liefert auch für Wasserstraßen- und Schifffahrtsämter (WSA) der Binnenbereiche eine wichtige theoretische Arbeitsgrundlage. Dies betrifft einerseits die Handhabung des Baggerguts aus WSA-Talsperren, in denen ebenfalls schadstoffarmes, nährstoffreiches und stark organikhaltiges Baggergut anfällt, und welches somit im Beräumungsfall einer Problematik ähnlich den Ostsee-Spülfeldsedimenten unterliegt. Andererseits befinden sich im norddeutschen Raum zahlreiche WSA-Spülfelder deren Betrieb innerhalb der letzten Dekade eingestellt oder stark zurückgefahren wurde. Hier könnten die Projektergebnisse als Orientierung dienen, wenn eine Reaktivierung dieser Spülfelder gewünscht wird. Ziele - Erfassung des Einflusses verschiedener Bearbeitungstechniken auf die Mobilität anorganischer und organischer Schadstoffe in aufgespültem Baggergut - Erarbeitung detaillierter Kenntnisse zur Mobilität verschiedener Arsenspezies und weiterer Metall(oid)e, zu den dabei relevanten mikrobiologischen Prozessen sowie zu Möglichkeiten der Reduzierung der Arsenfreisetzung - Untersuchung des Freisetzungsverhaltens perfluorierter Verbindungen (PFAS) im Kontext des Reifungsprozesses von Baggergut sowie in Abhängigkeit des fluvialen Sedimenttransports - Ableitung und Anwendung geeigneter Remediationstechniken zur Behandlung von anoxischem Überstandwasser.
Per- und Polyfluoralkylsubstanzen (PFAS) sind eine komplexe Gruppe von künstlich hergestellten Chemikalien mit einzigartigen wasser- und ölabweisenden Eigenschaften. Sie werden seit Jahrzehnten für die Herstellung zahlreicher Verbraucherprodukte verwendet, z. B. für antihaftbeschichtete Kochgeschirre, atmungsaktive Textilien oder Lebensmittelverpackungen. Die Aufnahme über Lebensmittel und Trinkwasser ist der Hauptexpositionsweg des Menschen. Aufgrund der beobachteten Assoziationen zwischen der Konzentration von PFAS im Blut und den Blutfettwerten (besonders LDL-Cholesterin) wird vermutet, dass PFAS eine Rolle für das Risiko von Herz-Kreislauf- Erkrankungen spielen könnten. Auch der Zusammenhang mit dem Risiko von Typ 2 Diabetes wird diskutiert. Der Bekanntheitsgrad von PFAS in der Öffentlichkeit und ihre Untersuchung in wissenschaftlichen Studien hat erst in den letzten Jahren zugenommen. Aus diesem Grund gibt es bis heute nur sehr wenige Studien, die den Zusammenhang zwischen PFAS und der Inzidenz von Herz-Kreislauf-Erkrankungen und Typ 2 Diabetes untersucht haben. Daher hat diese Studie zum Ziel, die Zusammenhänge zwischen den Baseline-Konzentrationen von PFOS/PFOA und anderen perfluorierten Verbindungen im Blut und dem Risiko für Entstehung eines Herzinfarkts, Schlaganfalls und / oder einer Herzinsuffizienz und Typ 2 Diabetes während der Nachbeobachtung in einer Fall-Kohortenstudie der European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Studie zu untersuchen. Zudem sollen Assoziationen im Querschnitt zwischen Konzentrationen von PFOS, PFOA und anderen perfluorierten Verbindungen im Blut und Biomarkern des Lipidmetablismus (Gesamtcholesterin, LDL-Cholesterin, HDL-Cholesterin, Triglyceride), des Glucosemetabolismus (Glucose und HbA1c), des Leberstoffwechsels (GGT, GPT), der Harnsäure und des hsCRP in der repräsentativen Subkohorte untersucht werden. Zudem sollen auch die Zusammenhänge zwischen PFAS und bestimmten Lebensmitteln oder Lebensmittelgruppen (z.B. Fleisch, Fisch) zu untersuchen werden.
Bodenmikrobiologische N-Umsetzungsprozesse nehmen eine zentrale Stellung im N-Kreislauf von Wäldern ein, da sie einerseits als N-Lieferanten für den Bestand fungieren, andererseits aber auch mit diesem um N konkurrieren. Bisher lagen keine systematischen Untersuchungen über den Einfluss von Klimafaktoren (Temperatur, Niederschlagsverteilung) und Bewirtschaftungsmaßnahmen (Schirmhieb) auf (a) bakterielle N-Umsetzungsraten im Boden, (b) die an sie gekoppelten gasförmigen N-Verluste, (c) die Konkurrenzsituation zwischen Baumwurzel-Aufnahme und bakteriellen N-Umsetzungsprozessen um im Boden vorhandenen Stickstoff wie auch (d) Zusammensetzung der am N-Kreislauf in Buchenwäldern beteiligten bakteriellen Populationen vor. Im Rahmen dieses Vorhabens sollen die bisher durch Freiland- und Laboruntersuchungen auf den Kernflächen des auslaufenden Sonderforschungsbereichs 433 (K1: NO-exponiert und K2: SW-exponiert) gewonnenen Ergebnisse um Untersuchungen auf der NW-exponierten Satellitenfläche S erweitert werden, um belastbare Aussagen über den Einfluss von Klima bzw. Bewirtschaftung auf die o.g. Parameter treffen zu können. Die eigenen und in engster Zusammenarbeit mit weiteren Disziplinen (Hildebrand/Bodenkunde, Mayer/Meteorologie, Rennenberg/Baumphysiologie gewonnenen Freiland- und Labor-Datensätze werden dazu genutzt, ein im IFU vorhandenes prozessorientiertes Modell zur Simulation der biogeochemischen N- und C-Umsetzungen in Waldböden und der an sie gekoppelten gasförmigen N- und C-Emissionen so weiterzuentwickeln, dass es zur Berechnung der genannten Umsetzungen/Emissionen auf der lokalen Skala, d.h. der Skala der Untersuchungsflächen, eingesetzt werden kann.
<p>Chemikalien in der Umwelt</p><p>Wir kommen täglich mit Chemikalien wie z.B. Lösungsmitteln, Farben und Lacken, Haushaltchemikalien, Weichmachern und Flammschutzmitteln aus Kunststoffen in Berührung. Die von Chemikalien ausgehenden Gefahren betreffen uns alle. Um die menschliche Gesundheit und die Umwelt vor chemischen Substanzen zu schützen, trat 2007 die europäische Chemikalienverordnung REACH in Kraft.</p><p>Die Europäische Union (EU) erfasst mit der Verordnung (EG) 1907/2006 über die Registrierung, Bewertung, Zulassung und Beschränkung von chemischen Stoffen - kurz<a href="https://echa.europa.eu/de/regulations/reach/understanding-reach">REACH-Verordnung</a>genannt - alle Chemikalien, die nicht in speziellen Gesetzen, wie z.B. der Biozid- oder Arzneimittelverordnung, geregelt werden. Unter REACH werden im Rahmen der Registrierung Daten zum Verbleib und zur Wirkung von Chemikalien auf Mensch und Umwelt gefordert. Besonders problematische Chemikalien können für bestimmte Verwendungen verboten oder zulassungspflichtig werden. Hersteller von Chemikalien sind für die sichere Handhabung ihrer Produkte verantwortlich und müssen garantieren, dass diese weder Gesundheit noch Umwelt übermäßig belasten. Chemikalien können bei der Gewinnung, Herstellung, Verarbeitung, in der Nutzungsphase von Produkten, beim Recycling und in der Entsorgungsphase in die Umwelt gelangen. Je nach Verwendungsbedingungen und chemisch-physikalischen Eigenschaften gelangen sie in Umweltmedien wie Luft, Grundwasser, Oberflächengewässer, Klärschlamm, Boden und somit auch in Organismen und ihre Nahrungsketten.</p><p>Unter REACH werden besonders besorgniserregende Stoffe identifiziert. Diese werden im Englischen „substances of very high concern“ (SVHC) genannt. Dazu gehören zum Beispiel Stoffe, die giftig und langlebig in der Umwelt sind und sich in Organismen anreichern (persistent, bioaccumulative and toxic – <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PBT#alphabar">PBT</a>), oder Stoffe, die giftig, persistent und mobil in der Umwelt sind (PMT Stoffe). Ebenfalls gehören Stoffe dazu, die auf das Hormonsystem wirken, die sogenannten Endokrinen Disruptoren. Dadurch kann die Entwicklung und die Fortpflanzung von Lebewesen geschädigt werden. Das Geschlechterverhältnis ganzer Populationen kann sich verändern. So können Vermännlichungen und Verweiblichungen sowie der Verlust der Fortpflanzungsfähigkeit auftreten. Im Folgenden sind beispielhaft Umweltkonzentrationen von einzelnen Stoffen bzw. Stoffgruppen aufgeführt, die das Umweltbundesamt unter REACH als besonders besorgniserregende Stoffe identifiziert hat:</p><p>Prüfen der Umweltwirkung von Chemikalien</p><p>Das Umweltbundesamt (<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>) bewertet bei der gesetzlichen Stoffprüfung von Chemikalien, wie diese Stoffe auf die Umwelt wirken. Das UBA führt dabei in der Regel keine eigenen Untersuchungen durch. Es prüft die von Antragstellern eingereichten Daten, sowie die wissenschaftliche Literatur zu Umweltwirkungen und bewertet dann die Risiken für die Umwelt. Bestimmte Chemikalienwirkungen wie zum Beispiel Einflüsse auf die Ozonschicht und auf das <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a> werden in gesonderten gesetzlichen Regelungen behandelt.</p><p>Die jeweiligen gesetzlichen Stoffregelungen geben vor, welche Informationen und Testergebnisse Unternehmen, die eine Chemikalie oder ein Präparat auf den Markt bringen wollen, für eine Umweltprüfung vorlegen müssen (siehe Tab. „Überblick zu den Testanforderungen in den Stoffregelungen – <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=REACH#alphabar">REACH</a>-Chemikalien“). Im Rahmen des noch laufenden „REACH-Review“ Prozesses ist geplant, in Zukunft neue Tests und Endpunkte in den Standartdatensätzen, die bei der Markteinführung vorgelegt werden müssen, zu ergänzen. Damit sind dann z.B. Daten zu der endokrinen Wirkweise von Chemikalien von Anfang an verpflichtend und erlauben den Behörden eine effizientere Bewertung von Substanzen hinsichtlich dieses Gefahrenpotenzials.</p><p>Öffentlich zugängliche Daten zu Chemikalienwirkungen</p><p>Daten zu Wirkungen von Chemikalien sind über verschiedene Datenbanken zugänglich.</p><p>Chemikalien in der Europäischen Union</p><p>Wie viele verschiedene Chemikalien verwendet werden, ist nicht bekannt. Im Einstufungs- und Kennzeichnungsverzeichnis (Classification Labeling & Packaging-Verordnung) der Europäischen Chemikalienagentur (ECHA) sind (Stand 07.08.2024) 259.538 Stoffe verzeichnet. Dazu kommen noch Stoffe für die keine Meldepflicht ins Verzeichnis besteht (insbesondere nicht nach <a href="https://www.umweltbundesamt.de/service/glossar/r?tag=REACH#alphabar">REACH</a> registrierungspflichtige Stoffe soweit diese nicht als gefährlich im Sinne der <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CLP#alphabar">CLP</a>-VO einzustufen sind).</p><p>Bis zum Jahr 2018 mussten Chemikalienhersteller und -importeure schrittweise fast all jene Chemikalien registrieren, von denen sie innerhalb der Europäischen Union (EU) mehr als eine Tonne jährlich herstellen oder in die EU einführen. Bis zum 31.07.2024 wurden 22.773 verschiedene Stoffe bei der ECHA in Helsinki registriert bzw. gelten als registriert. Deutsche Unternehmen haben davon 11.786 Stoffe (mit-)registriert (ECHA Registrierungsstatistik).</p>
Straßenplanungsfachsoftware für die Entwurfsphase, Grunderwerb, Kanal-/Leitungsplanung, Bauabrechnung, Bohrpunkte, BIM-Methode, Geländemodell, Planableitung und 3D-Visualisierung BIM-Anwendungsfälle: • 010 Bedarfserfassung und -modellierung • 030 Planungsvarianten • 040 Visualisierung • 080 Planableitung Fach- Teilmodelle welche mit Vestra INFRAVISION erstellt werden können: FM Umgebung • TM DGM • TM Gebäude • TM Grunderwerb FM Verkehrsanlage (Bestand) • TM Ausstattung (VA-B) • TM Entwässerung (VA-B) • TM Erdbau (VA-B) • TM Fahrbahn (VA-B) FM Verkehrsanlage • TM Ausstattung (VA) • TM Entwässerung (VA) • TM Erdbau (VA) • TM Fahrbahn (VA) FM Baugrund • TM Aufschluss • TM Bodenschicht verwendete Standards: OKSTRA, ALKIS-NAS, IFC, BCF, ISYBAU, LandXML, WM(T)S, LAS, CityGML, OpenstreetMap
Origin | Count |
---|---|
Bund | 161 |
Land | 23 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Daten und Messstellen | 2 |
Förderprogramm | 83 |
Gesetzestext | 1 |
Text | 58 |
Umweltprüfung | 1 |
unbekannt | 37 |
License | Count |
---|---|
geschlossen | 96 |
offen | 87 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 174 |
Englisch | 22 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 1 |
Datei | 5 |
Dokument | 43 |
Keine | 74 |
Webdienst | 2 |
Webseite | 85 |
Topic | Count |
---|---|
Boden | 167 |
Lebewesen und Lebensräume | 176 |
Luft | 164 |
Mensch und Umwelt | 184 |
Wasser | 168 |
Weitere | 176 |