Ziel der Studie ist die Ermittlung der Expositions-Wirkungs-Beziehung zwischen Innenraumbelastungen an Radon als Lebensexposition und dem Auftreten des Lungenkarzinoms in den Ardennen sowie der Eifel. Die Studie wird von fuenf europaeischen Kooperationspartnern in Grossbritannien, Frankreich, Luxemburg, Belgien und der Bundesrepublik Deutschland als 1 : 3-gematchte Fall-Kontroll-Studie durchgefuehrt.
Die bei der Begasung von Getreide in einer Muehle entstehenden unkontrollierten hochgiftigen Methylbromid-Emissionen werden vollstaendig vermieden und das eingesetzte Insektizid zurueckgewonnen und wiederverwertet. Hierzu ist folgende Verfahrenstechnik vorgesehen. Das eingesetzte Giftgas wird vor der Begasung auf einem Adsorberspeicher (Aktivkohle) gebunden und erst mit der zu begasenden Raumluft aus dem Adsorptionsmittel ausgetrieben und in die Muehle geleitet. Nach erfolgter Begasung wird durch umgekehrte Regelung von Temperatur und Druck die mit Schadstoff beladene Raumluft wieder durch das Adsorptionsmittel geleitet, wobei das Giftgas an der Aktivkohle adsorbiert wird. Mittels eines Hochleistungsgeblaeses mit Drosselventil wird ein fuer die Adsorption guenstiger Unterdruck von etwa 0,5 bar und ein fuer die Begasung (Desorption) entsprechender Unterdruck erzeugt. Durch mehrere Absperrhaehne koennen Adsorption und Desorption im Gegenstrom zueinander gefuehrt werden. Das Giftgas wird im Adsorber gespeichert und steht mit einer fahrbaren Anlage fuer eine weitere Nutzung zur Verfuegung. Durch Verringerung des Raumvolumens mittels eines aufblasbaren Verdraengungskoerpers kann der Begasungsaufwand zB bei geometrisch regelmaessig gestalteten leeren Siloraeumen deutlich gesenkt werden. Durch Anpassen der Stufenzahl der Adsorberspeicher an das Begasungsvolumen wird erreicht, dass die Adsorber immer mit annaehernd gleichen spezifischen Bedingungen arbeiten. Die Entsorgung kann durch diese mobile Anlage aeusserst wirtschaftlich durchgefuehrt werden.
Bei der Weiterentwicklung des Bewertungssystems Nachhaltiges Bauen (BNB) bzw. des BNB-Kriteriensteckbriefs 'Innenraumlufthygiene' wurde für den Aspekt 'Kohlendioxidgehalt' eine Lücke an praxisorientierten Planungsinstrumenten und Bewertungsgrundlagen für Räume erkannt, die teilweise oder ausschließlich über Fenster be- und entlüftet werden. Dies gilt insbesondere für Räume mit hohen Personenzahlen wie beispielsweise Unterrichtsräume und Besprechungszimmer. Hieraus erwächst der Bedarf an Informationen und anschaulichen Handlungsempfehlungen zu funktionierenden Lüftungskonzepten sowie einem transparenten CO2-Berechnungstool als Planungs- und Bewertungsinstrument im Sinne des Nachhaltigen Bauens. Ausgangslage: Um den zukünftigen Anforderungen an ganzheitlich optimierte Gebäude gerecht zu werden, hat das Bundesbauministerium für Bundesgebäude den Leitfaden Nachhaltiges Bauen und das Bewertungssystem Nachhaltiges Bauen (BNB) entwickelt; er ist seit Oktober 2013 für Bundesbauten verpflichtend und wurde zuletzt 2017 überarbeitet. Hinsichtlich der Innenraumlufthygiene werden im Kriterium BNB 3.1.3 insbesondere Verunreinigungen der Innenraumluft durch Schadstoffe aus Bauprodukten und durch Kohlendioxidemissionen der Raumnutzer betrachtet. Weiterhin werden die mikrobiologische und die geruchliche Situation thematisiert. Die abgestufte Bewertung der CO2-Konzentration des Kriteriensteckbriefs BNB 3.1.3 orientiert sich an den Raumluftqualitätsklassen der DIN EN 13779 und berücksichtigt die Anforderung der Arbeitsstättenrichtlinie ASR A3.6 'Lüftung' und den AIR-Richtwert, wonach eine CO2-Konzentration von 1.000 ppm als 'hygienisch unbedenklich' gilt. Für die Bewertung der CO2-Konzentration wird auf folgende Normen bzw. Rechenansätze verwiesen: - Luftvolumenströme durch offene Fenster nach DIN EN 15242 - CO2-Konzentration im Raum nach Recknagel/Sprenger bzw. nach VDI 6040-2. Fachdiskussionen und Praxiserfahrungen zeigen, dass insbesondere bei Räumen mit einer hohen Personenzahl Probleme hinsichtlich des Kohlendioxidgehalts in der Innenraumluft und ggf. des thermischen Komforts aufgrund nicht optimaler Raumlüftung bestehen. Das betrifft insbesondere die Fensterlüftung und die hybride Lüftung, aber auch die mechanische Lüftung. Die Einhaltung der Anforderungen aus der 2012 neu eingeführten Arbeitsstättenrichtlinie ASR A3.6 'Lüftung' ist für diese Räume mit erheblichen Schwierigkeiten verbunden, vor allem unter gleichzeitiger Berücksichtigung des thermischem Komforts und der Nutzerfreundlichkeit. (Text gekürzt)
Ziel der Studie ist die Ermittlung der Expositions-Wirkungs-Beziehung zwischen Innenraumbelastungen an Radon und dem Auftreten des Lungenkarzinoms unter Beruecksichtigung des Rauchens und beruflicher Karzinogene. Dazu werden im Rahmen einer Fall-Kontroll-Studie in einem Zeitraum von vier Jahren mehr als 3000 Lungenkrebsfaelle und 3000 nach Alter und Geschlecht gematchten Kontrollpersonen in drei Studienregionen (Ostbayern, Saarland/NRW, Thueringen (Sachsen)) auf ihre Exposition befragt und durch Messung mittels Kernspurdosimetern in allen in den letzten 35 Jahren bewohnten Wohnungen ihre Exposition ermittelt.
In Innenräumen findet sich eine Vielzahl von Chemikalien, die aus Gegenständen, Materialien oder durch menschliche Aktivitäten freigesetzt werden und ein Risiko für aquatische Ökosysteme darstellen können, falls entsprechende Chemikalien in den Wasserkreislauf gelangen. Wir stellen die Hypothese auf, dass aromatische Amine (AA), die aus Innenräumen emittiert werden, in Oberflächengewässer eingetragen werden und dort signifikant zur Belastung und der damit verbundenen Mutagenität beitragen. Gewaschene Textilien, die durch Emissionsquellen in Innenräumen mit AA kontaminiert sind, wirken als Überträger dieser Substanzen in Abwässer. Die Berücksichtigung dieses Übertragungsweges kann uns helfen, das Auftreten von AA ohne klare Emissionsquellen in Oberflächengewässern besser zu verstehen. In vielen Studien wird berichtet, dass AAs, welche in Innenräumen beispielweise durch Rauchen und Grillen von Fleisch entstehen, die Hauptursache für Mutagenität in Oberflächengewässern und häuslichen Abwässern sind. Sie können durch gasförmige und Partikeldepostion auf Textilien adsorbiert werden. Daher wollen wir den Übertragungsweg von AA aus Innenräumen in Oberflächengewässer im Hinblick auf die folgenden vier Aspekte untersuchen: (i) Stoffgruppen-spezifisches Non-target-Screening zum Nachweis der gesamten Verbindungsklasse in allen Matrizes entlang des dargestellten Expositionspfades, d.h. in Extrakten von Textilien, Staub, Waschwasser, Abwasser und Oberflächenwasser; (ii) Instrumente zum Monitoring aromatischer Amine aus Abwässern und Oberflächengewässern mittels selektiver Anreicherung, um ihren Verbleib in Kläranlagen und das damit verbundene Risiko für Wasserorganismen zu entschlüsseln; (iii) Charakterisierung der Aufnahme AA durch Textilien durch gasförmige und Partikeldeposition und ihre Verteilung in Innenräumen durch Expositionsexperimente im Labor und realen Innenräumen und (iv) Anwendung aller entwickelten Instrumente und Methoden in Kombination mit diagnostischen Mutagenitätstests zur Aufklärung der angenommenen Emissionswege. Hierbei werden Textilbelastung in Innenräumen mit verschiedenen AA-Quellen berücksichtigt, Waschexperimente durchgeführt und Proben aus Kläranlagen und Abwasserauffangbecken entnommen, um die quellenbezogenen Muster und die wichtigsten AA zu identifizieren, die die beobachtete mutagene Aktivität verursachen. Mit diesem Ansatz wollen wir die Kenntnislücke zwischen Innenraumexpsosition und der Umweltexposition schließen. In diesem Projekt wird das Fachwissen eines deutschen und eines tschechischen Forschungsinstituts kombiniert. Es umfasst das Target-, Suspect- und Non-target-Screening nach organischen Schadstoffen in komplexen Umweltmischungen, die Detektion von Mutagenität und den zugrundeliegenden Chemikalien in Oberflächenwasser mit wirkungsorientierter Analytik und passiver Probenahme in verschiedenen Umweltmatrizes, sowie die Berücksichtigung von Verteilungsmechanismen von Verbindungen in Innenräumen.
Zielsetzung Die Schädigung von Museumsexponaten durch Einwirkung anthropogener Schadgase ist ein zentrales Problem als Folge der Belastung von Innenräumen mit Schadstoffen. Ein diesbezüglich weit verbreiteter Schadstoff ist Essigsäure, vertreten sind aber auch andere kurzkettige Carbonsäuren. Essigsäure, die im beantragten Vorhaben im Fokus stehen soll, kann bei einer Vielzahl von Materialien unter bestimmten klimatischen Bedingungen zu Korrosionsprozessen führen, so dass es unter Schädigung und Materialverlust am Objekt zur Ausbildung von Acetat-Ausblühungen (oder anderer kristalliner Phasen) kommen kann. Hieraus ergibt sich die Notwendigkeit des Schutzes solcher zum national wertvollen Kulturgut gehörender Objekte gegenüber schädlichen Umwelteinflüssen und folglich auch der Entfernung der anthropogenen Schadstoffe aus ihrem unmittelbaren Umfeld. Eine Museumsvitrine hat eine Schutzfunktion für die Objekte. Sie ist Instrument zur nachhaltigen präventiven Konservierung und hat die Aufgabe, Kulturgüter sicher und ästhetisch ansprechend auszustellen. Die Vitrine soll neben dem Schutz vor unberechtigtem Zugriff eine möglichst inerte, das heißt reaktionsarme Umgebung sowie ein auf die Bedürfnisse des Objekts angepasstes Klima bieten. Eine reaktionsarme Umgebung schließt per Definition auch den Schutz vor anthropogenen Schadstoffen, z.B. Essig- und Ameisensäure, Formaldehyd, Schwefeldioxid, Stickoxide, Ozon u.a. ein. Die Protektion vor den genannten äußeren Einflüssen ist durch eine niedrige Luftwechselrate der Vitrinen gegeben, d.h. der Präsentationsraum, der das Volumen für das auszustellende Sammlungsgut darstellt, tauscht nur wenig Luft mit der Umgebung der Vitrine aus. Durch die Reduktion des Luftaustauschs werden anthropogenen Schadstoffe am Eintritt in die Vitrine gehindert. Ein weiterer wesentlicher Aspekt sind jedoch interne Quellen, durch die Schadstoffe innerhalb der Vitrine freigesetzt werden. Zu diesen Schadstoffquellen können Bau- und Konstruktionsmaterialien der Vitrine, ihrer Innenausstattung, insbesondere Holz oder weitere Werkstoffe wie Silikon aber auch das Objekt selbst zählen. Routinemäßig durchgeführte Messungen von Schadstoffkonzentrationen und relativer Feuchte sind zwar ausreichend, um Handlungsbedarf an den Vitrinen nachzuweisen, sie sind jedoch nicht dazu geeignet, die Kinetik der Schadstoff- oder Wasserdampfverteilung nachzuvollziehen. Jede Optimierung der passiven Vitrine kann dazu beitragen, die Anschaffung von aktiv konditionierten Vitrinen unnötig zu machen und so wesentliche Ressourcen einzusparen. Aktiv konditionierte Vitrinen verschlechtern die CO2-Bilanz von Einrichtungen und bergen das Risiko technischer Havarien in sich, wie sie in der Museumspraxis leider immer wieder vorkommen. Im einfachsten Fall handelt es sich um Einbauten von Pumpen und Ventilatoren, die Luft aus dem Präsentationsraum zum Konditionierungsmittel transportieren. Aufwändigere Lösungen beinhalten auch verbaute Klimageräte, welche Luftfeuchte und Temperatur regulieren. Bei der Nachhaltigkeitsbetrachtung der Einbauten müssen Anschaffungskosten, Wartungsleistungen und Energieverbrauch der Geräte, Gesamttreibhausemission und Rohstoffverbrauch im Herstellungsprozess sowie die Recyclingfähigkeit der Geräte in deren Lebenszyklus beachtet werden. Passive Vitrinen hingegen kommen ohne fehleranfällige Elektronik aus, die ausfallen kann, so dass eine vergleichende Betrachtung immer zugunsten der passiven Vitrine ausfällt. Um der Problematik der Schadstoffdeposition anthropogenen Ursprungs auf vulnerablen Objekten sowie der damit einhergehenden Materialschädigung entgegenzuwirken, ist neben der weiteren Aufklärung der zugrundeliegenden Schädigungsmechanismen auch eine Charakterisierung der Situation in der passiven Vitrine erforderlich. (Text gekürzt)
<p>Umwelt, Gesundheit und soziale Lage</p><p>Die soziale Lage entscheidet mit darüber, ob und in welchem Umfang Kinder, Jugendliche und Erwachsene durch Umweltschadstoffe belastet sind. Strukturell schlechter gestellte Menschen sind von Umweltproblemen oftmals stärker betroffen als strukturell besser Gestellte.</p><p>Strukturell und gesundheitlich benachteiligt</p><p>Bildung, Einkommen und Faktoren wie die berufliche Stellung beeinflussen die Wohnbedingungen und Lebensstile sowie die damit verbundenen Gesundheitsrisiken der Menschen. Das belegen sozial- und umweltepidemiologische Untersuchungen wie die<a href="https://www.umweltbundesamt.de/themen/gesundheit/belastung-des-menschen-ermitteln/deutsche-umweltstudie-zur-gesundheit-geres">Deutsche Umweltstudie zur Gesundheit (GerES)</a>, die das Umweltbundesamt seit dem Jahr 1985 durchführt.</p><p>Diese Studien zeigen, dass strukturell benachteiligte Bevölkerungsgruppen in den meisten Fällen häufiger und stärker von Umweltproblemen betroffen sind als strukturell besser Gestellte. Sie verfügen meist auch nicht über die Ressourcen, um solche Belastungen zu vermeiden. In einigen Fällen sind aber auch strukturell besser Gestellte höher belastet.</p><p>Nach den Ergebnissen der bundesweit repräsentativen Umweltbewusstseinsstudie von 2024 fühlten sich in Deutschland rund 31 % der Befragten durch Umweltprobleme gesundheitlich „sehr stark“ oder „stark“ belastet. Dabei nahmen Befragte mit niedrigem Einkommen subjektiv deutlich häufiger umweltbedingte Gesundheitsbelastungen wahr als Befragte mit hohem Einkommen. Das galt insbesondere für Hitzeperioden sowie Schadstoffe in Trinkwasser und Lebensmitteln (<a href="https://www.umweltbundesamt.de/publikationen/umweltbewusstsein-in-deutschland-2024">UBA 2025</a>).</p><p>Umweltbedingte Mehrfachbelastungen</p><p>In einer Studie von 2024 konnte für Deutschland gezeigt werden, dass Haushalte mit geringeren Einkommen häufiger in Gebieten leben, in denen Mehrfachbelastungen aus schlechter Luftqualität (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>, Stickstoffdioxid), Lärm und besonders hohen Lufttemperaturen auftreten als finanziell besser gestellte Haushalte (<a href="https://www.umweltbundesamt.de/publikationen/soziale-aspekte-der-umweltpolitik">UBA 2024</a>).</p><p>Für das Land Berlin wurde ein „Umweltgerechtigkeitsmonitoring“ entwickelt, das über die sozialräumliche Verteilung gesundheitsrelevanter Umweltbelastungen und -ressourcen Auskunft gibt. Aktuelle Daten zeigen, dass es in der Stadt viele Gebiete gibt, die gleichzeitig Lärm- und Luftbelastungen aufweisen, einen Mangel an Grünflächen besitzen und eine hohe soziale Problemdichte (u. a. eine hohe Arbeitslosigkeit) haben und damit mehrfach belastet sind (<a href="https://www.berlin.de/sen/uvk/umwelt/nachhaltigkeit/umweltgerechtigkeit/">SenUVK 2022</a>).</p><p>In einer Studie in Dortmund wurden im nördlichen Teil der Stadt zahlreiche „Hotspots“ identifiziert, in denen es gleichzeitig eine hohe <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=soziale_Verwundbarkeit#alphabar">soziale Verwundbarkeit</a> (u.a. mit einer hohen Anzahl an Transferleistungsempfänger*innen und Menschen mit Migrationshintergrund) und umweltbedingte Mehrfachbelastungen gibt. In den „Hotspots“ konzentrierten sich hohe Feinstaub (<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>), Stickstoffdioxid (NO2) und Lärmbelastungen sowie eine große Entfernung zu Grünflächen (<a href="https://doi.org/10.3390/ijerph13070691">Shrestha et al. 2016</a>).</p><p>Belastungen durch Straßenverkehr</p><p>Menschen mit einem niedrigen sozioökonomischen Status sind in Deutschland öfter verkehrs- und industriebedingten Luftschadstoffen ausgesetzt als Menschen mit einem hohen sozioökonomischen Status. Sie fühlen sich auch häufiger durch äußere Umwelteinflüsse belästigt. Drei Beispiele:</p><p>Lärmbelästigung und Lärmbelastung</p><p>Eine dauerhafte Lärmbelastung kann krank machen (<a href="https://www.umweltbundesamt.de/publikationen/einfluss-des-laerms-auf-psychische-erkrankungen-des">UBA 2023</a>). Menschen mit niedrigem sozioökonomischen Status sind sowohl subjektiv als auch objektiv mehr Lärm und insbesondere Straßenverkehrslärm im Wohnumfeld ausgesetzt als Menschen mit höherem sozioökonomischen Status. Fünf Beispiele:</p><p>Zugang zu Grünräumen</p><p>Bundesweit repräsentative und regionale Studien zur sozialräumlichen Verteilung von Umweltressourcen in Deutschland zeigen, dass Menschen mit geringeren Einkommen und niedrigem Bildungsniveau häufig einen schlechteren Zugang zu umweltbezogenen Gesundheitsressourcen wie Grün- und Freiflächen haben:</p><p>Innenraumluftbelastungen</p><p>In Innenräumen ist die Situation komplexer. Die Qualität der Innenraumluft ist von vielen Faktoren abhängig, unter anderem von der Wohnungseinrichtung und dem Verhalten der Bewohnerinnen und Bewohner. In GerES V wurde die Schadstoffbelastung der Innenraumluft bei Kindern und Jugendlichen erfasst (<a href="https://www.umweltbundesamt.de/publikationen/umweltbewusstsein-in-deutschland-2024">UBA 2025</a>). Drei Beispiele:</p><p>Schadstoffe im Menschen</p><p>In GerES V wurden im Rahmen des Human-Biomonitoring Schadstoffe und ihre Abbauprodukte im Blut und Urin der Teilnehmenden analysiert (<a href="https://www.umweltbundesamt.de/publikationen/deutsche-umweltstudie-zur-gesundheit-von-kindern-1">UBA 2023</a>). Die Belastung durch Umweltschadstoffe ergibt ein uneinheitliches Bild, wie drei Beispiele zeigen:</p><p>Umweltassoziierte Erkrankungen</p><p>Auch bei den umweltassoziierten Erkrankungen zeigt sich ein differenziertes Bild in Abhängigkeit vom sozioökonomischen Status:</p><p>Die Verbesserung der Datenbasis über die soziale Verteilung von Umweltbelastungen und deren gesundheitliche Auswirkungen ist eine wichtige Aufgabe für die Zukunft. Die Verknüpfung von Umwelt-, Gesundheits- und Sozialberichterstattung ist ein Aufgabenfeld, das stärker verfolgt werden muss. Aussagekräftige Daten bilden die Grundlage, auf der sich umweltpolitische, verkehrsplanerische und verbraucherbezogene Maßnahmen gezielter planen und umsetzen lassen.</p><p><em>Tipps zum Weiterlesen:</em></p><p><em>Bolte, G., Bunge, C., Hornberg, C., Köckler, H. (2018): Umweltgerechtigkeit als Ansatz zur Verringerung sozialer Ungleichheiten bei Umwelt und Gesundheit. Bundesgesundheitsblatt, 61. Jg. (6): 674–683.</em></p><p><em>Bolte, G., Bunge, C., Hornberg, C., Köckler, H., Mielck, A. (Hrsg.) (2012): Umweltgerechtigkeit. Chancengleichheit bei Umwelt und Gesundheit: Konzepte, Datenlage und Handlungsperspektiven. Hans Huber Verlag, Bern.</em></p><p><em>Rehling, J., Bunge, C. (2020): Umweltgerechtigkeit in Städten. Empirische Befunde und Strategien für mehr gesundheitliche Chancengleichheit. Informationen zur Raumentwicklung (IzR) 47 (1).</em></p><p><em>Senatsverwaltung für Umwelt, Mobilität und Verbraucher- und <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a> (SenUMVK) Berlin (Hrsg.) (2022): Die umweltgerechte Stadt. Umweltgerechtigkeitsatlas. Aktualisierung 2021/2022. Berlin.</em></p>
Menschen, die Feuchte/Schimmelbefall in Innenräumen ausgesetzt sind, haben ein erhöhtes Risiko für vielfältige Atemwegserkrankungen, unter anderem Entwicklung und Verschlimmerung von Asthma und Atemwegsinfektionen. Mit dem Teilvorhaben 'Schimmel und biologische Belastung der Innenräume' wird dazu die Belastung von Innenräumen mit biogenen Schadstoffen im Zusammenhang mit der gesundheitlichen Situation der Raumnutzer ermittelt.
Das Gesamtziel des Vorhabens ist die Entwicklung eines biobasierten, formaldehydfreien Klebstoffs aus der Rest-Biomasse der Rapspflanze zur Herstellung von faserbasierten Holzwerkstoffen mittels eines energieeffizienten Heißluft-/Heißdampfverfahrens. Die Untersuchungen werden im Rahmen einer Machbarkeitsstudie durchgeführt, bei der die Wertschöpfungskette dieser Agrarpflanze erhöht werden soll, indem aus anfallenden Nebenprodukten bzw. Reststoffen ein neues 'grünes' Kuppelprodukt gewonnen wird. Aus der Rest-Biomasse werden für die Klebstoffherstellung geeignete Komponenten gewonnen und zu einem Pflanzenpulver weiterverarbeitet. Hierzu soll Rapstrester aufgeschlossen und zu einer proteinreichen Suspension weiterverarbeitet werden. Durch den bewussten Einsatz von Rest-Biomasse in Form eines Pflanzenpulvers und den Verzicht auf Formaldehyd wird ein gesundheitlich unbedenklicher Klebstoff für die Herstellung von Mitteldichten Faserplatten (MDF) und Faserdämmplatten entwickelt werden. Bei der Produktion als auch bei der anschließenden Verwendung der Faserwerkstoffe entstehen nur im geringen bis gar keine gesundheitsschädlichen Emissionen. Durch das Vorhaben wird ein wesentlicher Beitrag zur Vermeidung von Schadstoffen während des Herstellungsprozesses und in der Innenraumluft von Gebäuden geleistet
Wie viele Lungenkrebsfälle gehen in Deutschland auf Radon in Wohnräumen zurück? Das radioaktive Gas Radon ist nach dem Rauchen einer der häufigsten Auslöser von Lungenkrebs. Eine langjährige Belastung durch erhöhte Radonkonzentrationen in Innenräumen steigert das Erkrankungsrisiko. Um Schutzmaßnahmen gezielt bewerten zu können, ist die Zahl der durch Radon verursachten Todesfälle von Bedeutung. In einem Forschungsprojekt kamen Wissenschaftler*innen des BfS zum Ergebnis, dass ca. 6,3 Prozent aller Lungenkrebstodesfälle in Deutschland auf Radon in Wohnräumen zurückgehen. Radon im menschlichen Körper Hintergrund Das radioaktive Gas Radon ist nach dem Rauchen einer der häufigsten Auslöser von Lungenkrebs. Langjähriger Aufenthalt in Räumen mit hohen Radonkonzentrationen erhöht das Risiko, an Lungenkrebs zu erkranken. Radon entsteht als Zerfallsprodukt von Uran überall im Erdboden. Je nach Vorkommen und Bodendurchlässigkeit unterscheidet sich die Menge des austretenden Radons in Deutschland. Kleine Undichtigkeiten im Bodenbereich von Häusern reichen aus, dass das radioaktive Gas in Gebäude eindringen und sich dort zu hohen Konzentrationen anreichern kann. Sammelt sich auf diesem Wege Radon in Wohnräumen an, atmen ihre Bewohner*innen das Gas über längere Zeiträume ein und ihr Lungenkrebsrisiko steigt. Erhöhte Radon -Konzentrationen treten vorwiegend in Keller- und Erdgeschossen auf. Zielsetzung Dass Radon ein wichtiger Auslöser für Lungenkrebs ist, ist bekannt. Doch um die Bedeutung entsprechender Schutzmaßnahmen abzuschätzen, ist es wichtig zu wissen, wie viele Menschen jährlich an einer durch Radon verursachten Lungenkrebserkrankung sterben. Wissenschaftler*innen des BfS ermittelten dazu diese Zahl mittels epidemiologischer Methoden. Durchführung Mit ihrer Untersuchung bauten die BfS -Wissenschaftler*innen auf Forschungsprojekten ihrer Kolleg*innen auf: In den Jahren 2019 bis 2023 hatte das BfS umfangreiche Arbeiten zur Erhebung der Radon -Situation in Wohnräumen in Deutschland teils durchführen lassen, teils selbst durchgeführt. Neben diesen Daten zur regionalen Verteilung der Radon -Konzentrationen in Wohnräumen nutzten die Forscher*innen für die Ermittlung der Anzahl der Lungenkrebstodesfälle durch Radon unter anderem aktuelle Daten zur Lungenkrebssterblichkeit und zum Rauchverhalten der Bevölkerung sowie Risikomodelle zur Beschreibung des Zusammenhangs zwischen Radon und Lungenkrebs und zwischen Rauchen und Lungenkrebs. Um die Auswirkungen jährlicher Schwankungen der Todesfallzahlen auszugleichen, wurde die Gesamtzahl der Lungenkrebstodesfälle über die Jahre 2018 bis 2022 gemittelt. Bei der Bestimmung der auf Radon in Wohnräumen zurückgehenden Lungenkrebstodesfälle schätzt man in einem ersten Schritt zunächst das allgemeine Risiko in einer Population im Laufe seines Lebens an Lungenkrebs zu sterben. In einem zweiten Schritt schätzt man ab, um wieviel dieses Lungenkrebsrisiko sinken würde, wenn die Menschen nur einer praktisch unvermeidbaren Basis-Radonkonzentration ausgesetzt wären. Für Deutschland wird hierfür ein angenommen, der in etwa der Außenluftkonzentration entspricht (10 Becquerel pro Kubikmeter). Nun wurde der populations-attributable Anteil ermittelt. Das ist der Anteil der Lungenkrebsfälle, die in einer Population nicht auftreten würden, wenn die Exposition beseitigt werden würde. Dafür wurde die Risikoreduzierung bei 10 Becquerel pro Kubikmeter ins Verhältnis zum allgemeinen Lungenkrebsrisiko gesetzt. Schließlich wird dieser populations-attributable Anteil mit der Gesamtzahl der Lungenkrebstodesfälle multipliziert. So erhält man die Anzahl an Lungenkrebstodesfällen, die schätzungsweise auf Radon in Wohnräumen zurückgehen. Ergebnis Demnach gehen rechnerisch etwa 6,3 Prozent aller Lungenkrebstodesfälle in Deutschland auf Radon in Wohnräumen zurück. Das sind rund 2.800 Fälle pro Jahr. Die Wissenschaftler*innen veröffentlichten ihre Ergebnisse im Fachmagazin "Radiation and Environmental Biophysics ." Die Auswertung der BfS -Wissenschaftler*innen zeigt Unterschiede zwischen den Bundesländern: In Ländern mit höheren durchschnittlichen Radon -Konzentrationen in Wohnräumen ist der Anteil der Lungenkrebstodesfälle, der Radon -bedingt ist, höher als in Ländern mit niedrigeren Durchschnittswerten. Besonders betroffen sind Thüringen (10,0 % ) und Sachsen (9,5 % ). Am niedrigsten liegt die Quote in den Stadtstaaten Berlin (3,2 % ), Hamburg und Bremen (jeweils 3,3 % ). Projektdaten Forschungs-/ Auftragnehmer: Eigenforschung am BfS Projektleitung: Dr. Felix Heinzl Beginn: Dezember 2021 Ende: November 2024 Stand: 15.07.2025
Origin | Count |
---|---|
Bund | 316 |
Land | 12 |
Zivilgesellschaft | 6 |
Type | Count |
---|---|
Daten und Messstellen | 170 |
Ereignis | 1 |
Förderprogramm | 101 |
Text | 32 |
unbekannt | 24 |
License | Count |
---|---|
geschlossen | 219 |
offen | 103 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 314 |
Englisch | 204 |
Resource type | Count |
---|---|
Archiv | 4 |
Datei | 169 |
Dokument | 23 |
Keine | 98 |
Multimedia | 1 |
Webseite | 215 |
Topic | Count |
---|---|
Boden | 328 |
Lebewesen und Lebensräume | 328 |
Luft | 328 |
Mensch und Umwelt | 328 |
Wasser | 328 |
Weitere | 285 |