API src

Found 5075 results.

Similar terms

s/kak/PAK/gi

Kohlendioxid-Emissionen

<p>Seit 1990 gehen die Kohlendioxid-Emissionen in Deutschland nahezu kontinuierlich zurück. Ursachen waren in den ersten Jahren vor allem die wirtschaftliche Umstrukturierung in den neuen Ländern. Seitdem ist es die aktive Klimaschutzpolitik der Bundesregierung, die in Einzeljahren jedoch auch von witterungsbedingten Effekten überlagert werden kann.</p><p>Kohlendioxid-Emissionen im Vergleich zu anderen Treibhausgasen</p><p>Kohlendioxid ist das bei weitem bedeutendste <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/die-treibhausgase">Klimagas</a>. Laut einer ersten Berechnung des Umweltbundesamtes betrug 2024 der Kohlendioxid-Anteil an den gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen 88,2 % (siehe Abb. „Anteile der Treibhausgase an den Emissionen“). Der Anteil hat gegenüber 1990 um über 4 Prozentpunkte zugenommen. Der Grund: Die Emissionen von Methan und Distickstoffoxid wurden im Vergleich zu Kohlendioxid erheblich stärker gemindert.</p><p>___<br> Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2023 (Stand 03/2025), für 2024 vorläufige Daten (Stand 15.03.2025)</p><p>Herkunft und Minderung von Kohlendioxid-Emissionen</p><p>Kohlendioxid entsteht fast ausschließlich bei den Verbrennungsvorgängen in Anlagen und Motoren. Weitere Emissionen entstehen im Bereich Steine und Erden, wenn Kalk zur Zement- und Baustoffherstellung gebrannt wird. Bezogen auf die Einheit der eingesetzten Energie sind die Emissionen für feste Brennstoffe, die überwiegend aus Kohlenstoff bestehen, am höchsten. Für gasförmige Brennstoffe sind sie wegen ihres beträchtlichen Gehalts an Wasserstoff am niedrigsten. Eine Zwischenstellung nehmen die flüssigen Brennstoffe ein.</p><p>Seit 1990 gehen die Kohlendioxid-Emissionen nahezu kontinuierlich zurück. Zwischen 1990 und 1995 ist dies vor allem auf den verminderten Braunkohleeinsatz in den neuen Ländern zurückzuführen. Ab Mitte der 90er-Jahre wirkt sich insbesondere die aktive Klimaschutzpolitik der Bundesregierung emissionsmindernd aus. Durch kalte Winter and durch konjunkturelle Aufschwünge stiegen die Emissionen zwischenzeitlich immer wieder leicht an, zum Beispiel in den Jahren 1996, 2001, 2008, 2010, 2013 und 2015, 2021&nbsp;(siehe Abb. „Emissionen von Kohlendioxid nach Kategorien“ und Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Im Jahr 2009 wirkte die ökonomische Krise emissionsmindernd. 2010 stiegen die Emissionen hauptsächlich durch die konjunkturelle Erholung der Wirtschaft und die kühle ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ wieder an. In den Folgejahren hatte die Witterung den größten Einfluss auf die Emissionsentwicklung, zusätzlich drückt der stetige Rückgang der Emissionen aus der Energiewirtschaft das Emissionsniveau ab dem Jahr 2014 deutlich. Im Jahr 2020 dominieren die komplexen Sondereffekte der Corona-Pandemie das Emissionsgeschehen, während 2021 von Wiederanstiegen dominiert wird. Der Russische Angriffskrieg gegen die Ukraine wirkte sich in unterschiedlicher Weise auf die Entwicklung der Emissionen im Jahr 2022 aus (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-prognose-treibhausgasemissionen-sanken-2022-um">UBA/BMWK: Gemeinsame Pressemitteilung 11/2023</a>).</p><p>Kohlendioxid-Emissionen 2024</p><p>2024 sanken die Kohlendioxid-Emissionen gegenüber 2023 um 21,3 Millionen Tonnen bzw. rund 3,6 % auf 572 Millionen Tonnen Kohlendioxid. Gegenüber 1990 sind die Kohlendioxid-Emissionen demnach um 48,2 % gesunken. Die größten Rückgänge gab es in der Energiewirtschaft. Weitere Nennenswerte Rückgänge der Emissionen gab es im Straßenverkehr, und bei den Haushalten und&nbsp; Kleinverbrauchern.</p><p>Den größten Anteil an den Kohlendioxid-Emissionen hatte 2024, wie in den letzten Jahren, die Kategorie Energiewirtschaft mit 30,8 %. Aus diesem Bereich wurden im Jahr 2024 rund 177 Millionen Tonnen Kohlendioxid freigesetzt. Die Kategorien Haushalte/Kleinverbraucher (18,6 %) und Straßenverkehr/übriger Verkehr (24,9 %) sowie Verarbeitendes Gewerbe/Industrieprozesse (zusammen 24,8 %) besitzen hinsichtlich der Kohlendioxid-Emissionen derzeit eine etwas geringere Bedeutung.</p><p>Die gesamtwirtschaftliche Emissionsintensität (Emissionen bezogen auf das Bruttoinlandsprodukt) sank zwischen 1991 und 2024 um 62 % (siehe Abb. „Kohlendioxid-Emissionsintensität in Deutschland“).</p>

Kalkungsvollzugsflächen in Sachsen

Die Datenserie beinhaltet Datensätze der im Rahmen der Bodenschutzkalkung seit 1986 gekalkten Waldflächen (Kalkungsvollzugsflächen) im Freistaat Sachsen. Je Kalkungsvollzugsfläche wird die Menge des aufgebrachten Naturkalks in Tonnen pro Hektar, das Datum der Durchführung der Kalkung sowie die Waldeigentumsart (Landeswald, Privatwald etc.) zum Zeitpunkt der Kalkung angegeben. Die Bodenschutzkalkung wird seit 1986 jährlich in Sachsen durchgeführt um die tiefgreifende Versauerung der Waldböden auszugleichen und Waldschäden vorzubeugen. Auf der Grundlage von Bodenanalysen und den forstlichen Standortverhältnissen wird die Kalkungsmenge pro Kalkungsvollzugsfläche bestimmt und der Naturkalk per Flugzeug oder Hubschrauber zwischen dem 1. Juli und 31. Oktober aufgetragen. Die Daten bilden die Grundlage für die digitale Kalkungsvollzugskarte für Sachsen. Weitere Informationen sind dem Faltblatt zur Bodenschutzkalkung zu entnehmen, welches vom Staatsbetrieb Sachsenforst herausgegeben wird.

Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum, landesweit bewertet

Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.

Fachinformationssystem Bodenschutz

Das Fachinformationssystem (FIS) Bodenschutz beinhaltet die Teilprojekte der 'Digitalen Bodenkarte Hamburg': - Fachplan Schutzwürdige Böden - Bodenversiegelung Hamburg - Bodendaten Profilinformationen - Bodenformengesellschaften Hamburg - Verdunstungspotential von Böden

Bilanzierung von Schadstoffen auf urbanen Flächen durch chemische und bildanalytische Methoden

In Deutschland wird in vielen Städten und Gemeinden das Regenwasser über eine Mischwasserkanalisation zusammen mit dem Abwasser der Haushalte/Kleinindustrien dem Klärwerk zugeführt. Bei Regenereignissen fallen so enorme zusätzliche Wasservolumina im Klärwerk an und müssen - um einen optimalen Betriebszustand beibehalten zu können - im Kanalnetz oder eigens dafür gebauten Rückhaltebecken zwischengespeichert werden. Ökonomischer und - unter dem Aspekt der Grundwasserneubildung - auch ökologischer wäre daher eine direkte Regenwasserversickerung in den Boden vor Ort. Infolge des zunehmenden Straßenverkehrs und anderer Immissionsquellen ist unser Regenwasser heutzutage jedoch nicht frei von Schadstoffen. Dies kann zu einer Belastung des Bodens und des Grundwassers bei der Regenwasserversickerung führen. Deshalb untersucht werden, inwieweit Dachmaterialien als Senke bzw. Quelle für Schadstoffe fungieren können. Bei der unvollständigen Verbrennung von fossilen Brennstoffen entstehen z.B. Verbindungen aus der Klasse der Polyzyklischen Aromatischen Kohlenwasserstoffe (PAK). Einige dieser Verbindungen sind krebserregend und werden frei oder an (Staub-)Partikel adsorbiert mit dem Niederschlag aus der Atmosphäre ausgewaschen. Deshalb wird innerhalb des Projektes die Konzentration der PAK im Regenwasser und den Dachabläufen unterschiedlicher Dachmaterialien (Tonziegel, Betondachsteine, Dachpappe, Titanzink, Kupfer, usw.) als Funktion der Jahreszeit und Regenintensität bestimmt. Gleichzeitig wird auch der Eintrag von Metallen in den Regenwasserabfluss der ausgewählten Dachmaterialen als eine mögliche Schadstoffquelle untersucht. Die Ergebnisse aus den Modelldachexperimenten werden mit Befunden realer Dachflächen verglichen. Eine Hochrechnung des Eintrages größerer Einzugsgebiete erfolgt durch die Ermittlung der Dachflächen und Materialien z.B. mittels Laserscanning und Hyperspektralaufnahmen.

Adaptive Umgebungsabhängige Lokalisierung von autonomen Fahrzeugen durch Methoden der künstlichen Intelligenz, Teilvorhaben C_HYDROGENIOUS LOHC NRW GmbH

095.Ä0.00/25 wesentliche Änderung einer Biogasanlage in 16909 Wittstock OT Dossow

Die Firma Fortwengel Landwirtschaft GmbH & Co. KG, Dossower Bahnhofstraße 5 a in 16909 Wittstock, OT Dossow, beantragt die Genehmigung nach § 16 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Bahnhofstraße 5 a in 16909 Wittstock in der Gemarkung Dossow, Flur 1, Flurstücke 488, 495, 496, 498 und 499 eine Biogasanlage wesentlich zu ändern. Mit dem eingereichten Antrag auf wesentliche Änderung der bestehenden Biogasanlage in Wittstock OT Dossow soll die Anlage wie folgt erweitert werden: - Austausch des derzeit vorhandenen BHKW durch ein leistungsstärkeres BHKW mit SCRKatalysator. Die Feuerungswärmeleistung erhöht sich somit von derzeit 1.250 KW auf zukünftig 1.889 KW. Der Austausch betrifft ausschließlich den Motor. Dieser wird in den im Bestand vorhandenen BHKW-Container installiert. - Einhausung der Wärmeverteilung und des AdBlue-Tanks. - Errichtung (erstmalig) eines Betriebsbereiches - relevante Stoffmengenerhöhung der Biogaslagermenge. Die jährliche Biogasproduktion beträgt weiterhin unverändert maximal 2.300.000 Nm³. Die Biogasanlage unterliegt aufgrund der Kapazität der Biogasspeicherung, Klarstellung im Kap. 4.1.1 der Antragsunterlagen, der Störfallverordnung (12. BImSchV). Die Menge an brennbaren Gasen innerhalb der Anlage entspricht bei einer angenommenen Dichte von 1,3 kg/m³ einem Gewicht von 10.115 kg und ist damit störfallrelevant. Ein Störfallkonzept wurde erstmals eingereicht. Es handelt sich dabei um eine Anlage der Nummer 8.6.3.2 V des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um die Änderung eines Vorhabens nach Nummer 8.4.2.2 S der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Nach § 9 Absatz 2 Satz 1 Nummer 2 UVPG war für das beantragte Vorhaben eine standortbezogene Vorprüfung durchzuführen. Die Feststellung erfolgte nach Beginn des Genehmigungsverfahrens auf der Grundlage der vom Vorhabensträger vorgelegten Unterlagen sowie eigener Informationen. Im Ergebnis dieser Vorprüfung wurde festgestellt, dass für das oben genannte Vorhaben keine UVP-Pflicht besteht. Diese Feststellung beruht im Wesentlichen auf folgenden Kriterien: Die standortbezogene Vorprüfung wurde als überschlägige Prüfung durchgeführt. In der ersten Stufe wurde geprüft, ob bei dem Vorhaben besondere örtliche Gegebenheiten gemäß den in Anlage 3 Nummer 2.3 zum UVPG aufgeführten Schutzkriterien vorliegen. Da die Prüfung in der ersten Stufe ergab, dass mit dem FFH-Gebiet DE 2941-303 „Dosse“ besondere örtliche Gegebenheiten vorliegen, hat die Behörde in der zweiten Stufe unter Berücksichtigung der in Anlage 3 aufgeführten Kriterien geprüft, ob das Vorhaben erhebliche nachteilige Umweltauswirkungen haben kann, die die besondere Empfindlichkeit oder die Schutzziele des Gebietes betreffen und nach § 25 Absatz 2 UVPG bei der Zulassungsentscheidung zu berücksichtigen wären. Von der Erweiterung der Biogasanlage sind keine Auswirkungen auf das vorhandene FFH-Gebiet zu erwarten, da der Abstand von 750 m als ausreichend angesehen wird und somit weder ein anlagenbezogener Nährstoffeintrag erfolgt noch eine Störung der geschützten Fauna durch Fahrzeugbewegungen zu erwarten ist. Die ausführliche Darstellung der Antragstellerin im Kapitel 4 und 14 der Antragsunterlagen ist Bestandteil dieses Prüfergebnisses.

Projekt RiA – Rohstoffrückgewinnung durch innovative Asphaltaufbereitung nach dem NaRePAK-Verfahren (Nachhaltiges Recycling von PAK-haltigem Straßenaufbruch)

Die IVH, Industriepark und Verwertungszentrum Harz GmbH mit Sitz in Hildesheim (Niedersachsen) hat über mehrere Jahre zusammen mit der Umweltdienste Kedenburg GmbH, beide Entsorgungs-/Recyclingunternehmen im Unternehmensverbund der Bettels-Gruppe, Hildesheim, und der Eisenmann Environmental Technologies GmbH, Holzgerlingen, deren NaRePAK-Verfahren zur großmaßstäblichen Umsetzung weiterentwickelt. Stoffkreisläufe zu schließen und somit die effiziente und nachhaltige Nutzung begrenzter Ressourcen zu verbessern ist die erklärte Philosophie der IVH, hier fügt sich das RiA-Verfahren nahtlos ein. In Deutschland fallen jährlich erhebliche Mengen teerhaltigen Straßenaufbruchs an. Dieser Abfallstrom besteht weit überwiegend aus mineralischen Komponenten (z.B. Gesteinskörnungen und Feinsand) und enthält neben Bitumen krebserregende polyzyklische aromatische Kohlenwasserstoffe (PAK). Letztere sind verantwortlich, dass dieser Massenstrom als gefährlicher Abfall eingestuft wird. PAK sind persistent und verbleiben ohne thermische Behandlung langfristig in der Umwelt. Die Abfallmengen sind dabei beträchtlich. Die Bundesregierung geht von einer Menge von etwa 600.000 Tonnen pro Jahr allein von Bundesautobahnen und -straßen aus, dazu kommt der Aufbruch von Landes- und Kreisstraßen, die mengenmäßig die Bundesautobahnen und -straßen weit übertreffen. Bisher wird teerhaltiger Straßenaufbruch überwiegend deponiert, wodurch die im Straßenaufbruch enthaltenen mineralischen Ressourcen dem Wertstoffkreislauf verloren gehen. Der in begrenztem Umfang alternativ mögliche Verwertungsweg: Kalteinbau in Tragschichten im Straßenbau, erfolgt ohne Entfernung der PAK und wird daher nur noch in geringem Umfang angewendet. Eine weitere Möglichkeit ist die thermische Behandlung in den Niederlanden. Dies ist nicht nur verbunden mit langen Transportwegen, auch arbeiten die niederländischen Anlagen in einem deutlich höheren Temperaturintervall – im Bereich der Kalzinierung (Kalkzersetzung) – was dazu führen kann, dass die mineralischen Bestandteile des Straßenaufbruchs nicht mehr die notwendige Festigkeit aufweisen, um für einen Einsatz als hochwertiger Baustoff für die ursprüngliche Nutzung des Primärrohstoffes in Frage zu kommen. Darüber hinaus wird beim Kalzinierungsprozess von Kalkgestein im Gestein gebundenes CO 2 freigesetzt. Mit dem Vorhaben RiA plant die IVH an ihrem Standort in Goslar / Bad Harzburg die Errichtung einer in Deutschland erstmaligen großtechnischen Anlage zur thermischen Behandlung von teerhaltigem Straßenaufbruch. Dabei soll eine möglichst vollständige Rückgewinnung der enthaltenen hochwertigen Mineralstoffe (Gesteinskörnungen)erfolgen. Gleichzeitig werden die enthaltenen organischen Bestandteile, die in Form von Teerstoffen und Bitumen vorliegen, als Energieträger genutzt. In der innovativen Anlage sollen pro Jahr bis zu 135.000 Tonnen teerhaltiger Straßenaufbruch mittels Drehrohr thermisch aufbereitet werden. Dabei werden im Teer enthaltene besonders schädliche Stoffe wie PAK bei Temperaturen zwischen 550 Grad und 630 Grad Celsius entfernt und in Kombination mit der separaten Nachverbrennung vollständig zerstört, ohne dass das Mineralstoffgemisch zu hohen thermischen Belastungen mit der Gefahr einer ungewollten Kalzinierung ausgesetzt ist. Zurück bleibt ein sauberes, naturfarbenes Gesteinsmaterial (ohne schwarze Restanhaftungen von Kohlenstoff), das für eine höherwertige Wiederverwendung in der Bauwirtschaft geeignet ist. Die mineralischen Bestandteile des Straßenaufbruchs können so nahezu vollständig hochwertig verwendet und analog Primärrohstoffen erneut bei der Asphaltherstellung oder Betonherstellung eingesetzt werden. Die organischen Anteile im Abgas werden mittels Nachverbrennung bei 850 Grad Celsius thermisch umgesetzt und vollständig zerstört. Die dabei entstehende Abwärme wird genutzt, um Thermalöl zu erhitzen, um damit Ammoniumsulfatlösungen einer benachbarten Bleibatterieaufbereitung der IVH einzudampfen, aufzukonzentrieren und so ein vermarktungsfähiges Düngemittel herzustellen. Das Thermalöl wird dazu mit 300 Grad Celsius zu der Batterierecyclinganlage geleitet. Die Wärme ersetzt dabei andere Brennstoffe wie z. B. Erdgas. Die verbleibende Abwärme aus der Nachverbrennung wird mittels drei ORC-Anlagen zur Niedertemperaturverstromung genutzt. Es werden ca. 300 Kilowatt elektrische Energie pro Stunde erzeugt. Die beim RiA-Verfahren entstehenden Abgase werden in einer mehrstufigen Rauchgasreinigung behandelt. Die Abgase der Drehrohr-Anlage werden dazu aufwendig mittels Zyklone und nachgeschaltetem Gewebefilter entstaubt. Schwefeldioxid und Chlorwasserstoff werden mittels trockener Rauchgasreinigung nach Additivzugabe abgeschieden. Die Umwandlung von Stickstoffoxiden erfolgt mittels selektiver katalytischer Reduktion mit Harnstoff als Reduktionsmittel. Die bereits genannte Nachverbrennung zerstört verbliebene organische Reste. Die wesentliche Umweltentlastung des Vorhabens besteht in der stofflichen Rückgewinnung des ursprünglichen hochwertigen Gesteins im teerhaltigen Straßenaufbruch, also durch Herstellung eines wiederverwendbaren PAK-freien Mineralstoffgemisches von gleicher Qualität wie die ursprünglichen Primärrohstoffe. Das heißt die besonders umweltschädlichen PAKs werden nachhaltig aus dem Stoffkreislauf entfernt. Mit der Anlage können von eingesetzten 135.000 Tonnen Straßenaufbruch rund 126.900 Tonnen als Mineralstoffgemisch in Form von Gesteinskörnungen und Füller zurückgewonnen und für die Wiederverwendung bereit gestellt werden. Die Gesamtmenge von 126.900 Tonnen pro Jahr reduziert den jährlichen Bedarf von Gesteinsabbauflächen bei einer Abbautiefe von 30 Meter um rund 1.460 Quadratmeter. Bezogen auf den angenommenen Lebenszyklus von 30 Jahren wird eine Fläche von ca. 4,4 Hektar Abbaugebiet allein durch diese Anlage nicht in Anspruch genommen. Zusätzlich wird in gleichem Maße wertvoller Deponieraum bei knappen Deponiekapazitäten eingespart. Bei erfolgreicher Demonstration der technischen und wirtschaftlichen Realisierbarkeit im industriellen Maßstab, lässt sich diese Technik dezentral auf verschiedene Standorte in Deutschland übertragen. Damit wird dem in der Kreislaufwirtschaft propagierten Näheprinzip entsprochen, das heißt die Transportwege und die damit verbundenen Umweltauswirkungen werden weiter reduziert. Auch der nach Region unterschiedlichen Gesteinsarten wird dabei Rechnung getragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: IVH, Industriepark und Verwertungszentrum Harz GmbH Bundesland: Niedersachsen Laufzeit: seit 2024 Status: Laufend

Glas und Altglas

<p>Altglas kann unendlich oft wieder eingeschmolzen und zur Herstellung neuer Glasprodukte genutzt werden. Solch eine erneute stoffliche Nutzung ist umweltverträglich und kann viel Energie (ca. 10 Prozent) und viele Rohstoffe einsparen, wenn die verschiedenen Glasprodukte wie Flaschen und Fenstergläser an ihrem Lebensende dem richtigen Entsorgungsweg zugeführt werden.</p><p>Massenprodukt Glas</p><p>In Deutschland stellten Glashersteller 2024 rund 6,661 Millionen Tonnen (Mio. t) Glas her. Aus 3,788 Mio. t davon wurde Behälterglas gefertigt, aus 1,794 Mio. t Flachglas. Aus rund 292.500 Tonnen (t) entstanden spezielle Gläser für Haushalte, Forschung und Wirtschaft. Der folgende Text beschreibt die Sammlung und Verwertung dieser Gläser. Zusätzlich gibt es Produzenten von Mineralwollen, die rund 786.000 t Glas- und Steinwolle herstellen, die als Dämmmaterial eingesetzt wurden (siehe Abb. „Glasproduktion im Jahr 2024 und die Anteile der einzelnen Glasbranchen“).</p><p>Glas: gut recycelbar!</p><p>Glas lässt sich unendlich oft wieder verwenden. Es kann beliebig oft in den Schmelzprozess zurückgeführt und zu neuen Produkten verarbeitet werden. Da recyceltes Glas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, sinkt der Energiebedarf, wenn Glasscherben zugesetzt werden. Über den Daumen lässt sich sagen, dass der Energiebedarf um etwa 0,2 bis 0,3 % sinkt, wird ein Prozent Altglas dem Schmelzofen hinzugefügt. Einschmelzen von Altglas schützt so das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ und spart Rohstoffe wie Quarzsand, Soda und Kalk ein. Das trägt ebenfalls zur Verringerung der dem Herstellungsprozess anrechenbaren Umweltbelastungen bei. Weiterhin braucht eingeschmolzenes Altglas nicht deponiert zu werden.</p><p>Glashersteller setzen Scherben, die als Ausschuss bei der Produktion anfallen, wieder ein. Der Einsatz von Altglas hängt aber von den herstellungsspezifischen Anforderungen an den Reinheitsgrad der Scherben ab. So kann gefärbtes Glas nicht zur Herstellung von Weißglas genutzt werden und Keramikscherben oder Steine stören den Produktionsprozess.</p><p>Im Jahr 2015 haben Behälterglashersteller in Glaswannen durchschnittlich 60 % Scherben eingesetzt, bei Grünglas sogar bis zu 90 %.</p><p>Altglassammlung mit Tradition</p><p>Für Behälterglas wurde bereits im Jahr 1974 ein flächendeckendes Sammelsystem eingerichtet. Meist werden Bringcontainersysteme zur getrennten Erfassung von Weiß-, Braun- und Grünglas eingesetzt. Über 250.000 solcher Altglascontainer sind bundesweit im Einsatz.</p><p>Die Aufbereitung des gesammelten Behälterglases erfolgt zwar weitestgehend vollautomatisch. Die Farbsortierung erfordert jedoch aus technischen und ökonomischen Gründen eine nach Farben getrennte Sammlung der Glasbehälter. So ist die Sortenreinheit der gesammelten Glasmengen eine Voraussetzung für die Rückführung von Behälterglasscherben in den Schmelzprozess zur Herstellung neuer Flaschen und Gläser.</p><p>Im Jahr 2006 erreichte die Behälterglasverwertung eine Quote von 83,6 %. Bis zu diesem Jahr hat die Gesellschaft für Glasrecycling und Abfallvermeidung mbH (GGA) die entsprechenden Daten zur Verfügung gestellt. Nach dem kartellrechtlichen Verbot dieser Organisation fehlen verlässliche Daten über das Aufkommen von Behälterglasscherben. Zahlen müssen nunmehr aus den entsprechenden Abfallstatistiken sowie den jährlichen Erhebungen zum Aufkommen und zur Verwertung von Verpackungsabfällen in Deutschland (siehe auch <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/verpackungsabfaelle">„Verpackungsabfälle“</a>) entnommen werden. Diese Veröffentlichung weist für das Jahr 2022 eine Verwertungsquote von 84,6 % für auf den Markt gebrachte Behältergläser aus (siehe Abb. „Verwertung von Glas aus gebrauchten Verpackungen“).&nbsp;</p><p>Generell ist eine Vorsortierung beim Verbraucher unbedingt erforderlich. Fensterglas, Autoglas, Kristallglas und feuerfeste Gläser wie Laborglas, Ceran®, Pyrex® lassen sich bei der Altglasaufbereitung nur schwer aussortieren und können zu hohen Produktionsausfällen oder zur Anreicherung von Schwermetallen im Behälterglaskreislauf führen, zum Beispiel durch Bleikristallglasscherben. Deshalb dürfen diese Gläser nicht in Altglasbehältern entsorgt werden.</p><p>Stoffliche Verwertung von Behälterglas</p><p>In der Behälterglasindustrie stellt Altglas mittlerweile die wichtigste Rohstoffkomponente dar. Eine Tonne Altglas darf jedoch nicht mehr als 25 g an Keramik, Steinen und Porzellan (KSP-Fraktion) enthalten und maximal 5 g an Nichteisenmetallen wie Aluminium. Zudem sind Grenzwerte für Eisenmetalle und für organische Bestandteile wie Kunststoffe und Papier zu unterschreiten.</p><p>Besonders wichtig ist die Farbreinheit der Altglasscherben. Um weißes Behälterglas herzustellen, ist bei einer Altglasscherbenzugabe von 50 % eine Farbreinheit von 99,7 % erforderlich. Der Fehlfarbenanteil im Braunglas darf die 8 %-Marke nicht überschreiten. Lediglich grünes Glas lässt einen Fehlfarbenanteil von bis zu 15 % zu.</p><p>Stoffliche Verwertung von Flachglas</p><p>Für Flachglasprodukte wie Fensterglas und andere Baugläser gelten besondere Qualitätsanforderungen wie Farbreinheit und Blasenfreiheit. Die Flachglasindustrie setzt daher überwiegend sortenreine Glasscherben aus weiterverarbeitenden Betrieben und Eigenscherben ein. In den letzten Jahren wurden die Sammelsysteme zur Erfassung möglichst sortenreiner und fremdstoffarmer Flachglasprodukte im weiterverarbeitenden Gewerbe ausgebaut. Altglas, das nicht den vorgegebenen Anforderungen an den Reinheitsgrad entspricht, muss aufbereitet werden. Hierfür stehen in Deutschland derzeit zehn Aufbereitungsanlagen zur Verfügung.</p><p>Altglasfraktionen, die sich aus Qualitätsgründen nicht für die Herstellung neuer Flachgläser eignen, können in geringem Umfang bei der Herstellung von Behälterglas eingesetzt werden, aber auch bei der Herstellung von Dämmwolle, Schmirgelpapier, Schaumglas und Glasbausteinen.</p><p>Autoscheiben werden geschreddert</p><p>Demontagebetriebe für Altfahrzeuge müssen grundsätzlich Front-, Heck- und Seitenscheiben sowie Glasdächer von Altfahrzeugen ausbauen und dem Recycling zuführen. Das schreibt die Altfahrzeugverordnung vor (siehe <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/altfahrzeugverwertung-fahrzeugverbleib">"Altfahrzeugverwertung und Fahrzeugverbleib"</a>). Im Jahr 2023 nahmen die deutschen Altfahrzeug-Demontagebetriebe 253.195 Altfahrzeuge zur Behandlung an. Sie enthielten im Schnitt etwa 35 kg Fahrzeugglas je Altfahrzeug, insgesamt rund 8.900 t. Aufgrund behördlicher Ausnahmen von der Demontagepflicht haben die Altfahrzeugverwerter nach Angaben des <a href="https://www-genesis.destatis.de/genesis/online?operation=table&amp;code=32111-0004&amp;bypass=true&amp;levelindex=1&amp;levelid=1698847590512#abreadcrumb">Statistischen Bundesamtes</a> (öffentlich verfügbare Werte auf 100 t gerundet) davon nur etwa 7 % – also 578 t – demontiert. Der überwiegende Anteil der Fahrzeugscheiben und Glasdächer gelangt mit den Altfahrzeugen in Schredderanlagen. Die dabei anfallenden nichtmetallischen mineralischen Rückstände wurden im Jahr 2023 überwiegend verwertet, etwa als Bergversatz oder im Deponiebau, und teilweise beseitigt.</p><p>Über die Ersatzverglasung, also den Anfall von Fahrzeugglas durch Scheibenwechsel, liegt eine grobe Schätzung für das Jahr 2020 vor: In Markenwerkstätten wurden in Deutschland schätzungsweise rund 1,7 Millionen Verbundglasscheiben ersetzt. Geht man von einem durchschnittlichen Gewicht einer Windschutzscheibe von knapp 10 kg aus, so bedeutet dies einen Anfall von etwa 16.000 t an Verbundsicherheitsglas (VSG). Hinzu kommt noch eine unbekannte Menge aus der Ersatzverglasung aus weiteren Werkstätten. Etwa 90 % der Altgläser aus der Ersatzverglasung werden einer Verwertung zugeführt.</p>

Vergleich zyto- und gentoxischer Wirkungen des Abgaspartikulats von verschiedenen Dieselfahrzeugen bei Betrieb mit fossilem Brennstoff und Rapsoelmethylester (Biodiesel)

Dieselmotoremissionen (DME) haben sich bei Verbrennung fossiler Kraftstoffe als mutagen erwiesen. Die Karzinogenitaet wurde von der IARC im Tierversuch als gesichert (sufficient evidence) und fuer den Menschen als wahrscheinlich (limited evidence) eingestuft. In unseren Studien werden die DME beim Betrieb von PKW und Traktoren mit Rapsoelmethylester (RME) und herkoemmlichem Dieselkraftstoff (DK) untersucht. Das filtergesammelte Abgaspartikulat wird schonend extrahiert, mit HPLC auf PAH analysiert und im direkten Vergleich zwischen RME und DK im AMES-Test auf seine mutagenen Eigenschaften und im Neutralrot-Test auf Zytotoxizitaet untersucht. In den bisher durchgefuehrten Versuchen waren die Filterextrakte bei RME-Betrieb trotz hoeherer absoluter Masse in fast allen Laststufen und Fahrzyklen deutlich weniger mutagen als die DK-Extrakte. Dies ist wahrscheinlich auf die niedrigere PAH-Konzentration im Abgas bei RME-Betrieb zurueckzufuehren. Sollte sich bestaetigen, dass RME-Abgase eine niedrigere mutagene Potenz aufweisen als DK-Abgase, so muss ein Ersatz von DK durch RME beim Betrieb von Dieselfahrzeugen an besonders kritischen Arbeitsplaetzen (in Hallen, unter Tage) und anderen Stellen (z.B. Taxis und Busse in Innenstaedten) diskutiert werden.

1 2 3 4 5506 507 508