API src

Found 793 results.

Related terms

Bestimmung kanzerogener aromatischer Amine aus verbotenen Azofarbstoffen der Textilindustrie

Spaltung und Extraktion von aromatischen Aminen aus Azofarbstoffen auf Textilien; Bestimmung bestimmter kanzerogener Verbindungen

Remanufacturing von PEM-Brennstoffzellenstacks für eine nachhaltige Kreislaufwirtschaft, Teilvorhaben: Optische Inspektion von Bipolarplatten

Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Denn (Primär-)Platin, das Teil der MEA ist, hat einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks. Außerdem haben Brennstoffzellensysteme eine hohe Wertschöpfung, die am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Brennstoffzellekomponenten, insbesondere die MEA, weisen nach einer gewissen Betriebszeit chemische Degradationserscheinungen auf und können nicht unmittelbar weiterverwendet werden. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, muss sein Zustand beurteilt werden. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls nicht, muss der Brennstoffzellenstack demontiert, entsprechend befundet und ggf. Einzelkomponenten wiederaufbereitet werden, um der Anforderung eines möglichst hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen im Sinne der Nachhaltigkeit möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen. ISRA untersucht im Teilvorhaben in AP3 Inline-Messtechniken zur Erkennung von Korrosion, Deformation und Anhaftung von Dichtungsresten bei demontierten Bipolarplatten. In AP4 wird ISRA versuchen, mit Hilfe von Methoden der Produktionsanalyse bei der Untersuchung der Korrelationen der Parameter für den Aufbau eines vereinfachten Alterungsmodells mitzuwirken. In AP5 werden die Ergebnisse aus AP3 in einen Demonstrator überführt.

Energiehaushalt, Regeln der Baukunde in verschiedenen Gebieten

Ausarbeiten der Grundlagen, publizieren als Normen oder Empfehlungen, Durchfuehrung von Einfuehrungs- und Weiterbildungskursen. Publiziert (neu seit 1980) als Empfehlung - 180/1 Winterlicher Waermeschutz im Hochbau - 180/4 Energiekennzahl - 381/1 Baustoff-Kennwerte - 381/3 Heizgradtage der Schweiz - 384/1 Warmwasser-Zentralheizungen / Technische Anforderungen - 384/2 Waermeleistungsbedarf von Gebaeuden - 384/4 Kamine fuer Gebaeudeheizung, Querschnittbestimmung In Vorbereitung: - 180 Waermeschutz im Hochbau (Revision Ausgabe 1970) - 180/2 Sommerlicher Waermeschutz - 380/1 Energie im Hochbau - 382 Lueftungstechnik - 382/2 Kuehlleistungsbedarf.

Regelungen für bestehende Einzelraumfeuerungsanlagen unter Verwendung fester Brennstoffe Arten von Einzelraumfeuerungsanlagen Zulässige Brennstoffe Grenzwerte und Nachrüstverpflichtungen Antike Öfen Offene Kamine Grundöfen Herde, Backöfen, Küchenöfen, Heizungsherde Sonstige Einzelraumfeuerungsanlagen Nachrüstung von Staubminderungseinrichtungen

Mit Ende des Jahres 2024 müssen nach den "Regelungen für Einzelraumfeuerungsanlagen unter Verwendung von Feststoffen" alte Einzelraumfeuerungsanlagen Außerbetrieb genommen bzw. nachgerüstet werden. Welche Einzelraumfeuerungsanlagen betroffen sind, wird nachfolgend beschrieben. Unter Einzelraumfeuerungsanlage versteht man eine Feuerungsanlage, die vorrangig zur Beheizung des Aufstellraumes verwendet wird. Dazu zählen: offene Kamine vor Ort gesetzte Grundöfen Herde und Backöfen, Küchenöfen Industriell gefertigte Speicheröfen, Specksteinöfen Kaminöfen Kamineinsätze, Kachelofeneinsätze oder vergleichbare Ofeneinsätze Pelletöfen Saunaöfen Als feste Brennstoffe dürfen folgende Regelbrennstoffe eingesetzt werden, sofern die Feuerungsanlage nach Angaben des Herstellers für deren Einsatz geeignet ist: Steinkohlen, nicht pechgebundene Steinkohlenbriketts, Steinkohlenkoks Braunkohlen, Braunkohlenbriketts, Braunkohlenkoks Brenntorf, Presslinge aus Brenntorf Grill-Holzkohle, Grill-Holzkohlebriketts nach DIN EN 1860, Ausgabe September 2005 naturbelassenes stückiges Holz einschließlich anhaftender Rinde, insbesondere in Form von Scheitholz und Hackschnitzeln, sowie Reisig und Zapfen naturbelassenes nicht stückiges Holz, insbesondere in Form von Sägemehl, Spänen und Schleifstaub, sowie Rinde Presslinge aus naturbelassenem Holz in Form von Holzbriketts nach DIN 51731, Ausgabe Oktober 1996, oder in Form von Holzpellets nach den brennstofftechnischen Anforderungen des DINplus-Zertifizierungsprogramms „Holzpellets zur Verwendung in Kleinfeuerstätten nach DIN 51731-HP 5“, Ausgabe August 2007, sowie andere Holzbriketts oder Holzpellets aus naturbelassenem Holz mit gleichwertiger Qualität Stroh und ähnliche pflanzliche Stoffe (nur in automatisch beschickten Feuerungsanlagen, die im Rahmen der Typprüfung mit den jeweiligen Brennstoffen geprüft wurden) Die rechtlichen Rahmenbedingungen (z.B. einzuhaltende Emissionsgrenzwerte, Überprüfung durch Schornsteinfeger, einzusetzende Brennstoffe) sind in der 1. BImSchV festgeschrieben (Verordnung über kleine und mittlere Feuerungsanlagen). Im Folgenden sind Informationen zu den geltenden Anforderungen der verschiedenen Feuerungsanlagen zusammengestellt. Ansprechpartner für den benötigten Nachweis sind die Schornsteinfegerinnen und Schornsteinfeger. Fachfragen beantworten auch die Umweltämter der Landkreise und der kreisfreien Städte. (Kontaktdaten rechts). Antike Öfen Errichtung oder Herstellung vor 01.01.1950 keine Nachrüst- oder Außerbetriebnahmeverpflichtung Offene Kamine dürfen nur gelegentlich betrieben werden (weniger als 30 Tage im Jahr) zugelassene Brennstoffe: naturbelassenes, stückiges Holz Holzbriketts nach DIN 51731 keine Nachrüst- oder Außerbetriebnahmeverpflichtung Grundöfen Grundöfen sind Wärmespeicheröfen aus mineralischen Speichermaterialien, die an Ort und Stelle handwerklich gesetzt werden. Errichtung bis einschließlich 31.12.2014 Keine Nachrüst- oder Außerbetriebnahmeverpflichtung Errichtung ab 01.01.2015 Ausstattung mit nachgeschalteter Einrichtung zur Staubminderung nach dem Stand der Technik, es sei denn, sie halten folgende Grenzwerte ein: Feuerstättenart CO [g/m³] Staub [g/m³] Grundöfen 1,25 0,04 Der Nachweis über die Einhaltung der Grenzwerte kann entweder durch eine Prüfstandsmessbescheinigung des Herstellers, oder durch eine Messung vor Ort durch einen Schornsteinfeger geführt werden. Herde, Backöfen, Küchenöfen, Heizungsherde Errichtung bis einschließlich 21.03.2010 bei nichtgewerblichem Gebrauch und einer Nennwärmeleistung unter 15 kW besteht keine Nachrüst- oder Außerbetriebnahmeverpflichtung Errichtung ab 22.03.2010 bis einschließlich 31.12.2024 Feuerstättenart CO [g/m³] Staub [g/m³] Herde 3,0 0,075 Heizungsherde 3,5 0,075 Errichtung ab 01.01.2025 Feuerstättenart CO [g/m³] Staub [g/m³] Herde 1,5 0,04 Heizungsherde 1,5 0,04 Sonstige Einzelraumfeuerungsanlagen Alle Feuerstättenarten, die in der Tabelle bislang nicht genannt wurden (z.B. Kamin- und Pelletöfen, Kachelofeneinsätze) unterliegen den folgenden Regelungen. Errichtung bis einschließlich 21.03.2010 Weiterbetrieb nur unter Einhaltung folgender Grenzwerte: Feuerstättenart CO [g/m³] Staub [g/m³] Einzelraumfeuerung 4,0 0,15 Der Nachweis über die Einhaltung der Grenzwerte kann entweder durch eine Prüfstandsmessbescheinigung des Herstellers, oder durch eine Messung vor Ort durch einen Schornsteinfeger geführt werden. Kann ein solcher Nachweis nicht geführt werden (Grenzwerte werden nicht eingehalten), sind die Feuerungsanlagen zu folgenden Zeitpunkten mit einer Einrichtung zur Reduzierung der Staubemissionen nach dem Stand der Technik nachzurüsten oder außer Betrieb zu nehmen. Datum auf Typenschild Zeitpunkt der Nachrüstung oder Außerbetriebnahme Bis einschließlich 31.12.1974 oder nicht mehr feststellbar 31.12.2014 01.01.1975 bis 31.12.1984 31.12.2017 01.01.1985 bis 31.12.1994 31.12.2020 01.01.1995 bis einschließlich 21.03.2010 31.12.2024 Errichtung ab 22.03.2010 bis einschließlich 31.12.2014 Einhaltung folgender Grenzwerte: Feuerstättenart CO [g/m³] Staub [g/m³] Mindestwirkungsgrad [%] Raumheizer mit Flachfeuerung 2,0 0,075 73 Raumheizer mit Füllfeuerung 2,5 0,075 70 Speicheröfen, Kamineinsätze 2,0 0,075 75 Kachelofeneinsätze mit Flachfeuerung 2,0 0,075 80 Kachelofeneinsätze mit Füllfeuerung 2,5 0,075 80 Pelletöfen ohne Wassertasche 0,40 0,05 85 Pelletöfen mit Wassertasche 0,40 0,03 90 Der Nachweis über die Einhaltung der Grenzwerte wird durch eine Prüfstandsmessbescheinigung des Herstellers (Typprüfung) geführt. Errichtung ab 01.01.2015 Einhaltung folgender Grenzwerte: Feuerstättenart CO [g/m³] Staub [g/m³] Mindestwirkungsgrad [%] Raumheizer mit Flachfeuerung 1,25 0,04 73 Raumheizer mit Füllfeuerung 1,25 0,04 70 Speicheröfen, Kamineinsätze 1,25 0,04 75 Kachelofeneinsätze mit Flachfeuerung 1,25 0,04 80 Kachelofeneinsätze mit Füllfeuerung 1,25 0,04 80 Pelletöfen ohne Wassertasche 0,25 0,03 85 Pelletöfen mit Wassertasche 0,25 0,02 90 Der Nachweis über die Einhaltung der Grenzwerte wird durch eine Prüfstandsmessbescheinigung des Herstellers (Typprüfung) geführt. Wie in der obenstehenden Tabelle dargestellt, müssen einige Feuerungsanlagen mit einer Staubminderungsanlage nach dem Stand der Technik (Staubabscheider) nachgerüstet werden, damit sie die geforderten (Staub-)Grenzwerte einhalten und weiter betrieben werden können. Ein Staubabscheider darf nur verwendet werden, wenn für ihn eine Bauartzulassung vorliegt. Die Bauartzulassung wird i.d.R. vom Deutschen Institut für Bautechnik (DIBt) erteilt, welches auch eine Liste an zugelassenen Staubabscheidern auf seiner Internetseite veröffentlicht ( Staubabscheider für Feuerungsanlagen | DIBt - Deutsches Institut für Bautechnik ). Um dem Stand der Technik zu entsprechen, muss der Staubabscheider einen Staubabscheidegrad von mindestens 50 % erreichen (VDI 3670:2016). Für Einzelraumfeuerungsanlagen werden in der Regel elektrostatische Abscheider oder filternde Abscheider genutzt. Der Einbau eines Staubabscheiders sollte frühzeitig mit dem zuständigen Schornsteinfeger abgestimmt und von einem Schornsteinbau- oder Ofenbaufachbetrieb durchgeführt werden, um sicher zu gehen, dass alle Anforderungen erfüllt sind. Neue Einzelraumfeuerungsanlagen werden sowohl als Kompaktanlagen mit integrierten Emissionseinrichtungen (Staubabscheider, Katalysator) als auch Öfen mit separatem Zubehör für die Rauchgasreinigung vertrieben. Auf dem deutschen Markt dürfen nur Einzelraumfeuerungsanlagen angeboten werden, die für das Gesamtsystem, das heißt Ofen gemeinsam mit Emissionsminderungseinrichtung, die Typprüfung nachweislich bestanden haben. Bei der Beschaffung (z. B. über den internationalen Online-Handel) ist darauf zu achten, dass eine Ofenanlage mit dem gegebenenfalls notwendigen Zubehör für die Rauchgasreinigung erworben wird.

Emissionen persistenter organischer Schadstoffe

<p>Die Emissionsentwicklung persistenter organischer Schadstoffe verläuft uneinheitlich. Minderungserfolge sind bei den polyzyklischen aromatischen Kohlenwasserstoffen zu verzeichnen.</p><p>Umweltwirksamkeit von persistenten organischen Schadstoffen</p><p>Persistente organische Schadstoffe (Persistent Organic Pollutants, POPs) werden in der Umwelt nur langsam abgebaut. Besondere Umweltrelevanz ergibt sich daraus, dass sie nach ihrer Freisetzung in der Umwelt verbleiben und sich in der Nahrungskette anreichern. Damit können sie ihre schädigende Wirkung auf Ökosysteme und Mensch langfristig entfalten. Einige POPs weisen eine hohe Toxizität auf – in der breiten Öffentlichkeit wurde dies durch Unglücke wie in Seveso deutlich. Da sie weiträumig transportiert werden, können sie nach ihrer ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ selbst in entlegenen Gebieten zu einer Belastung führen. Zu den POPs gehören Chemikalien, die zu bestimmten Anwendungszwecken hergestellt werden (zum Beispiel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a>⁠ und Industriechemikalien), aber auch solche, die unbeabsichtigt bei Verbrennungs- oder anderen thermischen Prozessen entstehen (sogenannte <em>u</em>POPs wie polychlorierte Dibenzo-p-dioxine und –furane (PCDD/F) oder polyaromatische Kohlenwasserstoffe (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PAK#alphabar">PAK</a>⁠) (siehe Tab. „Emissionen persistenter organischer Schadstoffe nach Quellkategorien“).</p><p>Internationale Regelungen zum Schutz vor persistenten organischen Schadstoffen</p><p>Im Rahmen der Konvention über weiträumige grenzüberschreitende Luftverunreinigungen (<a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Convention on Long-Range Transboundary Air Pollution</a>, CLRTAP) der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UN#alphabar">UN</a>⁠-Wirtschaftskommission für Europa (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠) wurde 1998 ein <a href="https://unece.org/environment-policy/air/protocol-persistent-organic-pollutants-pops">Protokoll zur Reduktion der POP-Emissionen</a> von 32 Staaten und der EU unterzeichnet. Deutschland hatte hierzu unter Federführung des Umweltbundesamts technische Basisdokumente erstellt, zum Beispiel zum Stand der Technik der Emissionskontrolle stationärer Quellen. 2009 wurde das Protokoll novelliert; Regelungen zu sieben weiteren POPs wurden aufgenommen und bestehende Regelungen aktualisiert.</p><p>Darüber hinaus ist seit 2004 das weltweit geltende <a href="http://chm.pops.int/Home/tabid/2121/Default.aspx">Stockholmer Übereinkommen</a> zu POPs in Kraft, das inzwischen von 186 Staaten ratifiziert wurde.</p><p>Beide Vertragswerke, das POPs-Protokoll und die Stockholm-Konvention, regeln derzeit über 20 verschiedene POPs, die aber nicht alle deckungsgleich in beiden Abkommen vertreten sind. Zudem werden neue POPs aufgenommen. Die formulierten Ziele der Abkommen richten sich im Detail nach dem jeweils betroffenen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stoff#alphabar">Stoff</a>⁠ und umfassen alle Möglichkeiten vom Verbot über Substitution bis hin zu der Anforderung, dass die Emissionen des Stoffes den Wert eines Referenzjahres zukünftig nicht überschreiten darf.</p><p>Umfang der Emissionen</p><p>Die Schätzungen der Emissionen unbeabsichtigt freigesetzter POPs (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=uPOPs#alphabar">uPOPs</a>⁠) sind in der Regel mit größeren Unsicherheiten behaftet als die der Schadstoffe, die beabsichtigt eingesetzt werden.</p><p>Polychlorierte Biphenyle (PCB)</p><p>Polychlorierte Biphenyle (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PCB#alphabar">PCB</a>⁠) sind in ihrer Anwendung strikt reglementiert, teilweise bereits seit Jahrzehnten. Rund zwei Drittel der insgesamt eingesetzten PCB von rund 100 Tausend Tonnen (Tsd. t) befinden sich geschlossen in Trafos, Kondensatoren oder Hydraulikflüssigkeit. Die restlichen Anwendungen in offenen Systemen (zum Beispiel Dichtungsstoffe, Anstriche und Weichmacher) liegen schon lange zurück. Daher werden die verbleibenden Emissionen der laufenden Anwendungen nur noch gering eingeschätzt (1990: 1.736 kg, 2023: 204 kg). Die Entsorgungssituation ist dennoch problematisch, da bei nicht kontrolliertem Verbleib von erheblichen Re-Emissionen auszugehen ist.</p><p>Dioxine und Furane</p><p>Polychlorierte Dibenzodioxine und -furane (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PCDDPCDF#alphabar">PCDD/PCDF</a>⁠, kurz oft ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Dioxine#alphabar">Dioxine</a>⁠ genannt) entstehen in Gegenwart von Chlorverbindungen bei jeder nicht vollständigen Verbrennung. Größte Quelle war 1990 noch die Abfallverbrennung in der Energiewirtschaft, deren Eintrag heute jedoch vernachlässigbar ist. Von insgesamt ca. 111 Gramm (Emissionsangaben in I-⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TEQ#alphabar">TEQ</a>⁠: Internationales Toxizitätsäquivalent) im Jahr 2023 stammten 45 % aus der Energiewirtschaft und 14 % aus den Industrieprozessen, dort fast ausschließlich aus der Metallindustrie (größtenteils aus Sinteranlagen). 38 % stammen aus Haus- und Autobränden. Insgesamt sanken die Emissionen zwischen 1990 und 2009 um etwa 85 % und stagnieren seither auf diesem Niveau beziehungsweise fluktuieren leicht.</p><p>Polyzyklische aromatische Kohlenwasserstoffe (PAK) </p><p>Zu den polyzyklischen aromatischen Kohlenwasserstoffen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PAK#alphabar">PAK</a>⁠) gehören über 100 Verbindungen.<br><br>PAK entstehen durch unvollständige Verbrennung. Hauptquellgruppe sind mit Abstand die kleinen Feuerungsanlagen der Haushalte. Die vorhandenen Messwerte sind jedoch mit hohen Unsicherheiten verbunden, da ähnlich wie bei den Dioxinen eine repräsentative Aussage zum Nutzerverhalten bei kleinen Feststofffeuerungen nicht möglich ist. Weiterhin gibt es Schätzungen (unterschiedlicher Qualität) zu PAK-Emissionen der Stahl- und mineralischen Industrie sowie von Kraftwerken und Abfallverbrennungsanlagen. Insgesamt ist das deutsche PAK-Inventar jedoch fast vollständig, da diese Emissionen weitestgehend aus Verbrennungsprozessen entstehen, die gut überwacht werden.</p><p>Hexachlorbenzol (HCB)</p><p>Die Datenlage für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=HCB#alphabar">HCB</a>⁠ ist deutlich schlechter als für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Dioxine#alphabar">Dioxine</a>⁠/Furane und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PAK#alphabar">PAK</a>⁠. Dieser Schadstoff wird in Anlagen normalerweise nicht gemessen, da er nicht gesetzlich geregelt ist. Seit 1977 ist HCB als reiner Wirkstoff in der Anwendung als ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a>⁠ verboten. Jedoch kann es als chemische Verunreinigung in anderen Wirkstoffen vorkommen. Mit Hilfe des Bundesamts für Verbraucherschutz und Lebensmittelsicherheit (BVL) konnten erstmals für die Berichterstattung 2016 HCB-Emissionen für diesen Bereich über die Inlandsabsätze der Pflanzenschutzmittel mit den Wirkstoffen Chlorthalonil und Picloram seit 1990 bis 2016 und der zulässigen HCB-Maximalgehalte ermittelt werden. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Lindan#alphabar">Lindan</a>⁠ ist bis zum Anwendungsverbot im Jahr 1997 berücksichtigt. Der rückläufige Trend ist nicht nur auf verminderte Maximalgehalte zurückzuführen, sondern auch auf die schwankenden Absatzmengen sowie die jeweiligen Wirkstoffzulassungen.</p><p>Verschiedene Branchen, bei denen HCB-Emissionen zu erwarten wären, sind derzeit noch unberücksichtigt, wie zum Beispiel die Metallindustrie und die Zementindustrie.</p><p>Weitere POPs</p><p>Für weitere prioritär betrachtete POPs liegen wenig belastbare oder sehr geringe Emissionsschätzungen vor oder die Substanzen wurden in Deutschland weder hergestellt noch angewendet. Gleichwohl sind Immissionen über den Import nicht auszuschließen. Gleiches gilt für Ausgasungen von im Inland früher einmal verwendeten Produkten, für die die großräumige Immissionssituation vernachlässigbar ist (zum Beispiel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DDT#alphabar">DDT</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/l?tag=Lindan#alphabar">Lindan</a>⁠ im Holzschutz von Innenbauten der neuen Länder).&nbsp;</p><p>Trends</p><p>Weitere Emissionsminderungen sind bei Dioxinen (PCDD/F) aufgrund der bereits vollzogenen Maßnahmen nur noch in geringem Umfang zu erwarten. Die Benzo(a)pyren- (BaP-) Emissionen dürften sich großräumig bei den Kleinfeuerungen (Kamine, Öfen) durch Brennstoffsubstitution und -einsparung weiter verringern, solange der Holzeinsatz in der Kleinfeuerung nicht weiter zunimmt. Die hier vereinzelt bei Anlagen der Eisen- und Stahlindustrie noch vorhandenen Reduktionspotenziale haben vor allem lokale Bedeutung. Bei ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PCB#alphabar">PCB</a>⁠ könnte die Altlastenproblematik mangels Kontrolle der umweltgerechten Rückführung vornehmlich durch Aufklärung entschärft werden. Bei Chlorparaffinen gibt es ein Stoffsubstitutionspotenzial kurzkettiger durch langkettige Stoffe. Die Verwendung kurzkettiger Chlorparaffine in der metallverarbeitenden Industrie und in der Lederverarbeitung und Zurichtung wurde in der EU mit der <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1532938868225&amp;uri=CELEX:32002L0045">Richtlinie 2002/45/EG</a> im Jahre 2002 verboten.</p>

Bebauungsplan Hummelsbüttel 4-Poppenbüttel 8 1. Änderung Hamburg

Gesetz zur Änderung des Gesetzes über den Bebauungsplan Hummelsbüttel 4 / Poppenbüttel 8 Vom 25. April 1977 Der Senat verkündet das nachstehende von der Bürgerschaft beschlossene Gesetz: Artikel 1 Das Gesetz über den Bebauungsplan Hummelsbüttel 4 / Poppenbüttel 8 vom 10. Dezember 1973 (Hamburgisches Gesetz und Verordnungsblatt Seite 529) wird wie folgt geändert: 1.In der zeichnerischen Darstellung wird die Festsetzung der Bauweise Gartenhofhäuser GHM gestrichen. 2.In § 2 Nummer 1 wird folgender Satz angefügt: "Kamine sind zulässig, sofern sie mit Holz oder Gas befeuert werden oder elektrische Energie verwendet wird.14 3.In § 2 Nummer 8 werden die Wörter ¿der Gartenhofhausgebiete" ersetzt durch die Wörter "der eingeschossigen reinen Wohngebiete ohne Festsetzung einer Bauweise".

Berücksichtigung von unebenem Gelände bei der Bestimmung der Schornsteinhöhe nach TA Luft

Ortsabhängige Mindestwerte in Metern über Grund, auf die die Schornsteinhöhe gemäß TA Luft 2021 Nummer 5.5.2.3 Absatz 5 zur Berücksichtigung von unebenem Gelände erhöht werden soll. Auf dem 10m x 10m Raster dieses Datensatzes werden ortsabhängige Mindesthöhen in Metern über Grund angegeben, auf die die Schornsteinhöhe gemäß TA Luft Nummer 5.5.2.3 Absatz 5 zur Berücksichtigung von unebenem Gelände erhöht werden soll. Es handelt sich um Orientierungswerte für die Planung und Plausibilitätsprüfung neuer Schornsteine in NRW. TA Luft Nummer 5.5.2.3 Absatz 5: „Liegt der Landschaftshorizont, von der Mündung des Schornsteins aus betrachtet, über der Horizontalen und ist sein Winkel zur Horizontalen in einem mindestens 20 Grad breiten Richtungssektor größer als 15 Grad, soll die Schornsteinhöhe so weit erhöht werden, bis dieser Winkel kleiner oder gleich 15 Grad ist. Die dargestellten Pixelwerte in Metern über Grund ergeben sich aus dieser Bedingung auf Basis des DGM10 von Geobasis NRW. Die hier angegebenen Werte sind vor ihrer Anwendung durch eine Geländebegehung auf Plausibilität zu überprüfen und gegebenenfalls unter Berücksichtigung weiterer Details, welche im DGM10 nicht abgebildet sind, zu korrigieren.

Änderungsgenehmigung nach § 16 BImSchG: Erweiterung einer Biogasanlage in Deffersdorf

Die Biogasanlage Bioenergie Deffersdorf GmbH & Co. KG beantragt die immissionsschutzrechtliche Genehmigung nach § 16 Abs. 1 BImSchG für die Erweiterung der bestehenden Anlage über folgende Antragsgegenstände: Antragsgegenstand: Austausch: - Tragluftdächer an F, NG, GL - BHKW 1 (neu: E3268 LE262, 320 kWel, 764 kWFWL), inkl. neuem Katsystems Errichtung: - AdBlue-Tank 5.000 l - Abfüllplatz für AdBlue Tank Erhöhung: - Gaslagerkapazität (neu: 8.954 kg) - Gesamtleistung (neu: 640 kWel, 1.625 kWFWL) Änderung: - Gasfackel MTU 200/100, Durchsatz 300 m³/h, (neu: automatisch) - Erhöhung Kamine auf je 14 m bei BHKW 1 + 2

Remanufacturing von PEM-Brennstoffzellenstacks für eine nachhaltige Kreislaufwirtschaft, Teilvorhaben: Forschung und Technologietransfer

Brennstoffzellensysteme werden erst wirtschaftlich und ökologisch nachhaltig, wenn eine Kreislaufwirtschaft um das Produkt aufgebaut wird. Dies liegt zum einen darin begründet, dass (Primär-)Platin, das Teil der MEA ist, einen erheblichen Anteil am CO2-Fußabdruck und den Kosten eines Brennstoffzellenstacks hat und zum anderen, dass Brennstoffzellensysteme eine hohe Wertschöpfung haben, welche am Ende des ersten Produktlebenszyklus so weit wie möglich erhalten bleiben sollte. Da verschiedene Komponenten der Brennstoffzelle, insbesondere die MEA, nach einer gewissen Betriebszeit chemische Degradationserscheinungen aufweisen, ist eine unmittelbare Weiterverwendung ausgeschlossen. Sobald ein Brennstoffzellenstack an sein Lebensende gelangt oder aufgrund eines Defekts frühzeitig ausfällt, bedarf es einer Zustandsbeurteilung des Stacks. Daraus muss abgeleitet werden, ob eine Reparatur des Stacks in Form eines Austauschs degradierter Zellen möglich ist. Falls dies nicht mehr möglich ist, bedarf es der Demontage des Brennstoffzellenstacks sowie einer entsprechenden Befundung und ggf. Wiederaufbereitung der Einzelkomponenten, um der Anforderung eines hohen Wertschöpfungserhalts gerecht zu werden. Komponenten, die aufgrund irreversibler Degradationserscheinungen nicht mehr aufbereitet werden können, müssen möglichst sortenrein einem Recycling zugeführt werden. Unter Berücksichtigung der erwarteten Stückzahlen müssen daher bereits jetzt Konzepte für die automatisierte Zustandsbeurteilung und Demontage von Brennstoffzellenstacks, mit dem Ziel einer Kreislaufwirtschaft, entwickelt werden, um langfristig zum Erfolg der Technologie beizutragen. Der Fokus des wbks liegt einem Demonstrator für die automatisierte Demontage unter Berücksichtigung der genannten Herausforderungen. Der Demonstrator bildet Aspekte der Handhabung und Qualitätssicherung ab und ist für verschiedene Stackdesigns befähigt.

Grüner industrieller Wasserstoff durch Hochtemperatur-Dampfelektrolyse in einer Stahlwerksumgebung, Teilprojekt: Experimentelle Entwicklung von Kreislaufverfahren und Ökobilanzierung (LCA) von SOEC-Stacks

Das beantragte Vorhaben hat zum Ziel, die neueste Generation der Hochtemperatur-Dampfelektrolyse in einer Stahlwerksumgebung erstmalig zum Einsatz zu bringen und im Langzeitbetrieb zu validieren. Dazu werden im Stahlwerk der Salzgitter Flachstahl GmbH zwei Testmodule als Technologieträger für die für Industrialisierung gestaltete Stacks sowie für eine großserientaugliche verfahrenstechnische Systemstruktur installiert und für drei Jahre betrieben. Die Gesamtelektrolyseleistung wird ca. 540 kW betragen, entsprechend einer Produktionsleistung von ca. 153 Nm³/h. Der produzierte Wasserstoff wird für die Versorgung einer Forschungsanlage zur Eisendirektreduktion sowie für Wärmebehandlungsanlagen eingesetzt. Die Anlage knüpft an das erfolgreiche Projekt GrInHy2.0 an, welches die vorige Generation der HTE am selben Standort integrierte Forschungsschwerpunkte sind die optimale Verschaltung und Betriebsstrategien von zwei Modulen im Systemkontext und die Auswertung des Betriebs und Validierung der neuen Stack- und Systemtechnologien. Darüber hinaus sollen ökobilanzielle Betrachtungen für die Elektrolyseure durchgeführt werden, die durch die Entwicklung von praktikablen Recyclingkonzepte untermauert werden.

1 2 3 4 578 79 80