Der Antarktische Ozean ist mit Chlorophyllgehalten von weniger als 0,3 my g per Liter und Primärproduktionsraten von weniger als 50 mg C pro m2 pro Tag extrem nährstoffarm oder ultraoligotroph. In den Wintermonaten mit kaum messbarer Photosynthese werden die biologischen Umsetzungen im Pelagial im wesentlichen von den Bakterien dominiert. So konnten obligat und fakultativ oligotrophe Bakterien als die dominante Population über den Gunnerus- und Astrid-Rücken im Antarktischen Ozean nachgewiesen werden. Sie machten hier mit etwa 10 Prozent der gesamten Bakterienzahlen einen beträchtlichen Anteil der kultivierbaren Bakterien aus. Der Arktische Ozean ist dagegen starken terrestrischen Einflüssen durch die Einträge größerer Wasserfrachten von sibirischen Flüßen ausgesetzt. Maximale Produktionsraten von 1320 mg pro m2 pro Tag wurden im Sommer in der Frobisher Bay, Kanada, gemessen. Die Chlorophyllkonzentrationen im Meerwasser schwankten in Abhängigkeit der Wassertiefe zwischen 0,22 und 1,4 my g pro Liter im nördlichen Foxe Basin, im östlichen Teil der kanadischen Arktis. Von 9 Stationen in der Framstraße und der westlichen Grönlandsee konnten obligat oligotrophe Bakterien nur an einer Station nachgewiesen werden. Die Abundanz und Struktur oligotropher Bakteriengemeinschaften in Nord- und Südpolarmeer soll nun mit klassischen und molekularbiologischen Methoden eingehender untersucht werden. Es wird erwartet, dass nach Anreicherung der oligotrophen Bakterien in der Dialysekammer durch den Einsatz der Laserpinzette und Einzelzellkultivierungen der Anteil und die Diversität der oligotrophen Isolate erheblich vergrößert werden können.
Im Lauf der letzten Dekaden wurde für große Teile der Arktis eine signifikante Erwärmung der Erdoberfläche und des oberflächennahen Untergrunds beobachtet. Deren Folgen zeigen sich bereits heute - beispielsweise in einer Ausbreitung der Buschvegetation und einer Vertiefung der saisonalen Auftauschicht. In Anbetracht der Bedeutung von Änderungen in Permafrostregionen für Umwelt, Infrastruktur und Klimasystem besteht ein dringender Bedarf, Parameter dieses Raumes großflächig zu bestimmen und kontinuierlich zu überwachen. Durch die Weite und spärlichen Besiedelung der Arktis sind diese Umweltdaten jedoch nur unzureichend verfügbar und ihre Erhebung ist kostenintensiv. In diesem Kontext können fernerkundliche Daten einen wichtigen Beitrag leisten; Flugzeug- und Satellitengestützte Systeme ermöglichen eine effiziente und flächendeckende Aufnahme von Oberflächeneigenschaften. Ziel des Projekts ist die Identifizierung und Quantifizierung von Zusammenhängen zwischen Eigenschaften der Erdoberfläche, welche durch Fernerkundung abgeleitet werden können, und Eigenschaften des Untergrunds, die den Zustand von Permafrostgebieten charakterisieren. Basierend auf diesen Ergebnissen ist ein weiteres Ziel die Erstellung von konzeptionellen Modellen, welche die Verschränkung und Verbindung von Umwelt-Parameter zeigen. Die Arbeiten werden in einem skalenübergreifenden Multi-Sensor-Ansatz durchgeführt. Der Fokus wird dabei auf die Identifizierung der Kopplungen zwischen Oberfläche und Untergrund, sowie auf den Einfluss des Betrachtungsmaßstabs gelegt. Als fernerkundliche Daten stehen zur Verfügung: (1) grob aufgelöste optische und thermische Satellitendaten, (2) mittel-aufgelöste Radar- und Multi-Spektraldaten und (3) hoch-aufgelöste Thermal-, Hyperspektral- und Laserscanner-Daten von regionalen Befliegungen. Die Charakterisierung des Untergrunds erfolgt mittels (1) geomorphologischer Kartierung, (2) Zeitreihen-Analyse der Temperatur und Bodenfeuchte aus abgeteuften Sensoren, (3) Ground Penetrating Radar (GPR) und (4) elektrischen Widerstandsmessungen. Fernerkundliche Daten der Erdoberfläche und geophysikalische Daten zum Untergrund werden mit multivariaten statistischen Methoden analysiert - mit dem Ziel Zusammenhängen zwischen Oberflächen- und Untergrund-Parametern des periglazialen Systems zu identifizieren und zu quantifizieren. Als Untersuchungsgebiete wurden die Mackenzie Delta Region und das Peel Plateau identifiziert. Beide Regionen liegen in Nord Kanada und zeigen innerhalb geringer Distanzen verschiedenartige, durch Permafrost geprägte Ökosysteme. Zudem stehen durch Vorstudien Daten zur Verfügung; zum einen Referenzdaten von Feld-Kampagnen und zum anderen Satellitenbilder verschiedener Sensoren. Darüber hinaus wird vom Alfred Wegener Institut eine Befliegung dieser Gebiete geplant und finanziert. Das Flugzeug wird mit einer vielfältigen Instrumentenauswahl bestückt; u. a. ein flugzeuggetragenes GPR, ein Laserscanner und eine hyperspektral Kamera.
Grundwasser ist weltweit die wichtigste Trinkwasserressource. Seine Menge und Qualität werden u.a. durch nicht nachhaltige Nutzung, diffuse Schadstoffeinträge und Veränderungen der biogeochemischen Verhältnisse beeinträchtigt. Grundwasserschutz erfordert die Betrachtung des gekoppelten terrestrischen Hydrosystems mit Atmosphären- und Landoberflächenprozessen, Oberflächengewässern, der ungesättigten Bodenzone und den Grundwasserleitern im Einzugsgebietsmaßstab. Die zugehörige Prozessbeschreibung ist unsicher, wird durch Heterogenität beeinflusst und unterliegt permanentem Wandel. Für die nachhaltige Bewirtschaftung von Grundwasserressourcen unter Klima- und Landnutzungswandel sind Modelle erforder-lich, die alle relevanten hydrologischen und (bio)geochemischen Prozesse als gekoppeltes, wechselwirken-des System simulieren. Solche physikalisch-basierten Modelle finden allmählich ersten Eingang in die Wassermengenwirtschaft. Erweiterungen in Bezug auf Wasserqualität stehen jedoch am Anfang und sind mit Schwierigkeiten auf der konzeptionellen Ebene sowie im Upscaling auf die Einzugsgebietsskala konfrontiert. Die Hauptziele des Internationalen Graduiertenkollegs liegen darin (a) Spezialisten aller relevanten Unterdisziplinen für die integrierte Bewertung und Modellierung gekoppelter Hydrosysteme von den Universitäten Tübingen, Waterloo (Kanada), Hohenheim und Stuttgart zusammenzubringen, (b) Doktoranden in den zugrundeliegenden hydrologischen und (bio)geochemischen Prozessen sowie ihrer Modellierung auf der Einzugsgebietsskala gemeinsam auszubilden und (c) Modellwerkzeuge weiterzuentwickeln, um die Prozesse, welche die Wasserqualität auf der Einzugsgebietsskala bestimmen, unter Berücksichtigung der internen Heterogenität und veränderter Antriebe besser zu verstehen. Das Forschungsprogramm ist in vier Themenbereiche gegliedert: A: Flüsse an der Landoberfläche, B: Biogeochemische Reaktionen in Einzugsgebieten, C: Unsicherheitsbewertung großskaliger Modelle und D: Natürliche Entwicklung von Einzugsgebieten. Das Qualifizierungsprogramm umfasst (i) eine Institutionen übergreifende Betreuung, (ii) obligatorische Forschungs- und Ausbildungsaufenthalte an der Partnerinstitution, (iii) gemeinsame Frühjahrs/Herbstschulen, (iv) die Teilnahme an einem strukturierten Doktorandenprogramm und (v) die Förderung von Schlüsselqualifikationen zur Erhöhung der Arbeitsmarktfähigkeit nach dem Abschluss. Das Qualitätsmanagement beruht auf dem plan-do-check-act Prinzip.
Es werden u.a. wissenschaftliche Workshops durchgefuehrt: 22./24. Oktober 1980: Istituto Superiore di Sanita, Roma 25./29. Oktober 1981: Arlington, Virginia (USA) 12./14. Oktober 1982: Kongresszentrum, Salzburg 16./18. Oktober l984: Environment Canada, Ottawa 16./19. September 1985: Universitaet D-8580 Bayreuth untersucht werden Quellen (Unfaelle, Verbrennungsprozesse, Verunreinigungen von Agrochemikalien, usw.), Transport und Umwandlung in der Umwelt, Exposition fuer Pflanzen, Tiere und Menschen, Wirkungen, epidemiologische Studien und die jeweils notwendige hochspezifisch entwickelte Analytik.
Der Bedarf an redox-sensitiven Metallen wie Vanadium (V) steigt im Rahmen der Energiewende, da große Mengen dieser kritischen Metalle für die Produktion wiederaufladbarer Redox-Batterien zur Speicherung erneuerbarer Energie benötigt werden. Diese neuen Hightech-Anwendungen in Verbindung mit der aktuellen Verwendung von V in Stahllegierungen erfordern neue V-Quellen, z.B. V in Schieferlagerstätten. Solche V-reichen Lagerstätten sind in Nordamerika, China und Europa bekannt, aber ihre Entstehung ist unsicher. Alle V-reichen Schieferlagerstätten sind organik-reich, es wird angenommen, dass sie sich in begrenzten Becken unter euxinischen (anoxischen und sulfidischen) Bedingungen bilden. Es gibt anhaltende Debatten über ihre Entstehungsmechanismen: 1) die relative Bedeutung einer Meerwasser- gegenüber einer hydrothermalen Quelle; und 2) ob sich die Lagerstätten unter einer euxinischen Wassersäule oder in der suboxischen Zone mit einer fluktuierenden oxisch-anoxischen Schnittstelle gebildet haben. Da diese Ablagerungen organik-reich sind, werden auch Mikroorganismen bei der Anreicherung von Metallen vermutet, was jedoch wenig erforscht ist. Das Projekt MoVE wird neue Entwicklungen in der Isotopengeochemie und die interdisziplinäre Zusammenarbeit mit Mikrobiologen innovativ kombinieren, um diese Debatten voranzubringen. Ein zentraler Schwerpunkt dieses Projekts ist die Anwendung des neuartigen V-Isotopen-Redox-Proxys auf V-Schieferlagerstätten an zwei Orten: die Jangtse-Plattform in Südchina und das Selwyn-Becken in Nordwest-Kanada. Vanadium-Isotope sind ein leistungsfähiger Redox-Anzeiger, da ihre Isotopensignatur mit der Ausfällung von V unter oxischen, anoxischen und euxinischen Wassersäulen verknüpft ist. Darüber hinaus gibt es eindeutige V-Isotopensignaturen für V-Mineralisation in hydrothermal überprägten Sedimenten. Diese neue V-Isotopendaten wird quantitative Beweise zur Klärung der Frage zur V-Quelle (hydrothermal bzw. Meerwasser) liefern. Wenn die Daten keine hydrothermale V-Quelle anzeigen, werden die V-Isotopendaten zeigen, ob die Wassersäule dauerhaft oxisch, anoxisch bzw. euxinisch war oder zwischen diesen Redoxzuständen oszillierte. Um die Rolle von Organik und Mikroorganismen bei der Anreicherung von Metallen besser zu verstehen, erfolgt ein interdisziplinärer Ansatz:1) Kombination von V-Isotopen- und Stickstoff-Isotopen-Messungen, um die biologische Produktivität während der Entstehung von V-reichen Schieferlagerstätten zu klären, und 2) Erstellung des ersten V-Isotopen-Datensatzes über experimentelle mikrobielle V-Reduktion. Das Projekt MoVE verfolgt also einen interdisziplinären Ansatz, bei dem das V-Isotopensystem als neuer Redox-Anzeiger mit traditionellen stabilen Isotopen und mikrobiellen V-Reduktionsversuchen kombiniert wird. Dieses Projekt wird Modelle für die Entstehung V-Schieferlagerstätten verfeinern und die Zusammenarbeit zwischen Geologen, Geochemikern und Mikrobiologen vertiefen.
<p>Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt.</p><p>Vom Wasser zum Strom</p><p>Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet.</p><p>Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet.</p><p>Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können.</p><p>Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie</p><p>Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserrahmenrichtlinie#alphabar">Wasserrahmenrichtlinie</a> ist bekannt, dass in 37 Prozent aller berichteten <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserkrper#alphabar">Wasserkörper</a> – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen:</p><p>Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen.</p><p>Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz </p><p>Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft:</p><p>Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein <a href="https://www.umweltbundesamt.de/dokument/die-besondere-bedeutung-der-erneuerbaren-energien">Factsheet</a> erstellt.</p><p>Wasserkraftnutzung in Deutschland </p><p>Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten.</p><p>In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller.</p><p>Wasserkraftanlagen in Deutschland</p><p>Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen).</p><p>Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent.</p><p>Stromproduktion aus Wasserkraft in Deutschland</p><p>In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen.</p><p>Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a> bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken.</p><p><a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Aktuelle Zahlen</a> zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die <a href="https://www.bmwk.de/Redaktion/DE/Downloads/S-T/schlussbericht-wasserkraft-231027.pdf?__blob=publicationFile&v=6%20l">EEG-Erfahrungsberichte</a>. Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar.</p><p>Wasserkraftpotenzial in Deutschland</p><p>Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen.</p><p>Die Rolle der Wasserkraft bei der Energiewende</p><p>In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie "<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/szenarien-konzepte-fuer-die-klimaschutz/rescue-wege-in-eine-ressourcenschonende">RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität</a>" des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen Bruttostromerzeugung leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft.</p><p>Wasserkraft und Klimawandel</p><p>Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der Klimawandel mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft <a href="https://www.umweltbundesamt.de/publikationen/klimafolgen-fuer-wasserkraftnutzung-in-deutschland">untersuchen lassen</a>. Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden.</p><p>So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern.</p><p>Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert.</p><p>Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert.</p><p>Wasserkraftanlage in der Sieg (Unkelmühle).</p><p>Demonstration der Nutzung von Wasserkraft.</p><p>Wasserkraftanlage in der Saale bei Öblitz.</p><p>Wasserkraftanlage in der Saale unterhalb von Jena.</p><p>Wasserkraftnutzung im Bayerischen Wald.</p><p>Ausleitungswehr für die Wasserkraftnutzung bei Tübingen.</p><p>Literatur</p><p>Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227.</p><p>Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BMU#alphabar">BMU</a> (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010.</p><p>Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht).</p><p>International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights.</p><p>Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18.</p><p>LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017.</p><p>LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. <a href="https://www.energieatlas.bayern.de/thema_wasser/daten.html">https://www.energieatlas.bayern.de/thema_wasser/daten.html</a>. Zugriff am 04.05.2021.</p><p>MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg.</p><p>Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748.</p><p>Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870.</p><p>Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23.</p><p>Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011.</p><p>TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011.</p><p><a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150.</p><p>UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.</p>
Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 4 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Einzelfragen zum Pariser Klimaschutzübereinkommen Die Antworten zum ersten Teil der Fragen ergeben sich im Wesentlichen aus dem Sachstand der Wissenschaftlichen Dienste WD 8 - 3000 - 077/18, der als Anlage 1 beigefügt wird. Zum Übereinkommen von Paris vom 12. Dezember 2015 Die deutsche Fassung des Pariser Klimaschutzübereinkommens in der Beschlussfassung des Deutschen Bundestages ist unter folgendem Link abrufbar: http://dip21.bundes- tag.de/dip21/btd/18/096/1809650.pdf. Zu den von der EU und Deutschland eingegangenen Minderungsverpflichtungen Europa hat im Rahmen des Pariser Klimaschutzübereinkommens eine Minderung seiner Treib- hausgasemissionen bis 2030 gegenüber 1990 von 40% zugesagt. (Siehe dazu S. 7 Anlage 1). Die komplette Textfassung der eingereichten NDC-Meldung (Nationally Determined Contribution = Minderungszusage, Klimaschutzbeitrag) der EU einschließlich ihrer 28 Mitgliedstaaten ist abruf- bar unter: http://www4.unfccc.int/ndcregistry/PublishedDocuments/Germany%20First/LV-03- 06-EU%20INDC.pdf abrufbar. (Siehe dazu auch die Anmerkung in Fußnote 9 der Anlage 1.) Das 2030-Zwischenziel der EU aus dem ,,Rahmen für die Klima- und Energiepolitik bis 2030" entspricht numerisch der europäischen Minderungszusage für das Pariser Übereinkommen. (S. dazu S. 11 der Anlage 1). Die Erreichung dieses Zieles soll zu 43% über die vom Europäischen Emissionshandelssystem (ETS) erfassten Sektoren und 30% über die nicht darunter fallenden Be- reiche erreicht werden. Für Deutschland gelten dabei nationale zu erreichende Klimaziele für die Sektoren, die nicht unter den ETS fallen. Für 2030 ist dabei eine Minderung um 38% gegenüber 2005 zu erreichen. (Siehe dazu auch Seite 8 der Anlage 1.) Zu Klimazielen weiterer Staaten Die eingereichten (I)NDCs der Volksrepublik China, der Vereinigten Staaten, Russlands, Japans, Irans, Saudi-Arabiens, Südkoreas, Kanadas, Indonesiens, Brasiliens finden unter nachfolgenden Links abrufbar: WD 8 - 3000 - 078/18 (01.08.2018) © 2018 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Einzelfragen zum Pariser Klimaschutzübereinkommen http://www4.unfccc.int/Submissions/INDC/Published%20Documents/China/1/Chi- na's%20INDC%20-%20on%2030%20June%202015.pdf; http://www4.unfccc.int/Submissions/INDC/Published%20Docu- ments/United%20States%20of%20America/1/U.S.%20Cover%20Note%20INDC%20and%20Ac- companying%20Information.pdf; http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx; http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Ja- pan/1/20150717_Japan's%20INDC.pdf; http://www4.unfccc.int/Submissions/INDC/Published%20Docu- ments/Iran/1/INDC%20Iran%20Final%20Text.pdf; http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Saudi%20Arabia/1/KSA- INDCs%20English.pdf; http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Canada/1/INDC%20- %20Canada%20-%20English.pdf; http://www4.unfccc.int/Submissions/INDC/Pub lished%20Documents/Indonesia/1/INDC_RE- PUBLIC%20OF%20INDONESIA.pdf; (Link zur Zeit nicht aktiv) http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Brazil/1/BRA- ZIL%20iNDC%20english%20FINAL.pdf Siehe zur NDC-Meldung Frankreichs und Großbritanniens den Bericht der EU: http://www4.unfccc.int/Submissions/INDC/Published%20Documents/Latvia/1/LV-03-06- EU%20INDC.pdf (=SUBMISSION BY LATVIA AND THE EUROPEAN COMMISSION ON BE- HALF OF THE EUROPEAN UNION AND ITS MEMBER STATES, Riga, 6. March 2015). Dabei ist darauf hinzuweisen, dass es sich bei den NDCs um eingegangene Selbstverpflichtungen handelt, die auch entsprechend unterschiedlich aufgebaut und daher nur schwer vergleichbar sind. Zum Beispiel sind die gesetzten Bezugsjahre zur Emissionsminderung unterschiedlich und nicht alle Staaten formulieren absolute Minderungsziele. Zusatzinformationen zu den konkreten Inhalten der NDC-Mitteilungen der einzelnen Länder (und daraus bereits abgeleiteter Klimaschutzpolitiken) bieten darüber hinaus folgende Sach- stände der Wissenschaftlichen Dienste zu ausgewählten Ländern: WD 8 - 3000 - 073/16: Maßnahmen Frankreichs und der USA zur Umsetzung des Pariser Klima- übereinkommens (Klimaziele 2020 bis 2030/ bzw. bis 2050) – Anlage 2 WD 8 -3000 - 070/16: Klimapolitische Maßnahmen ausgewählter Länder im Zuge der Umsetzung des Paris Abkommens (Klimapolitik-Ziel 2030). Japan, Südafrika, Marokko, Mexiko, China, In- dien. - Anlage 3 Der Sachstand WD 2 - 3000 - 055/17 verweist daneben auf die rechtlichen Aspekte, die jetzt bei einem Austritt der USA aus dem Klimaschutzabkommen zu beachten sind. - Anlage 4 Zur Statistik der 40 größten Kohlenstoffdioxidemittenten, Gesamtemissionen nach Staaten Eine Übersicht zu den CO2-Gesamtemissionen nach Ländern bietet die Internationale Energie- agentur (IEA), die eine autonome Einheit der OECD darstellt: Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 3 Einzelfragen zum Pariser Klimaschutzübereinkommen https://www.iea.org/statistics/?country=WORLD&year=2015&category=Key%20indicators&indi- cator=TotCO2&mode=map&categoryBrowse=false Das Statistische Bundesamt verweist zudem auf eine Übersicht der CO2-Gesamtemissionen aller Staaten im Zeitverlauf, die vom Joint Research Center (JRC-EDGAR, Europäische Kommission) stammt. Diese ist als Anlage 5 angefügt. Zur Statistik aller weltweit in Betrieb, in Bau und in Planung befindlichen großen Kohle- kraftwerke Eine Übersicht der weltweit in Betrieb befindlichen und geplanten Kohlekraftwerke bietet Car- 1 bonBrief : https://www.carbonbrief.org/mapped-worlds-coal-power-plants Zur Statistik aller weltweit in Betrieb, in Bau und in Planung befindlichen Kernreaktoren, Reaktoren nicht Kraftwerksstandorte Eine Tabelle "Nuclear power reactors in operation and under construction in the world (as of 31. December 2016)" findet sich in dem Jahresbericht der Internationalen Atomenergie-Organisation, die mit den Vereinten Nationen über ein Abkommen verbunden sind, auf S. 136: https://www.iaea.org/sites/default/files/publications/reports/2016/gc61-3.pdf Zu Studien zu Kostenschätzungen zur Einhaltung der in Paris eingegangenen Verpflich- tungen Die Bundesregierung hat 2017 im Rahmen ihrer deutschen G20-Präsidentschaft die beiden inter- 2 nationalen Energieagenturen IEA und IRENA beauftragt, mit dem Pariser Klimaziel vereinbare Szenarien zu einer künftigen Transformation des globalen Energiesystems, das weiterhin sicher und bezahlbar sein soll, zu entwickeln und dafür notwendige volkswirtschaftliche Investitions- bedarfe abzuschätzen. Laut IEA wären dafür zwar im Bereich der Energieversorgung bis 2050 mit jährlich ca. 1,6 Billio- nen US$ keine zusätzlichen, aber fundamental umgeleitete Investitionen notwendig. Ein Drittel statt der Hälfte sollte in fossile Brennstoffe, mehr als ein Drittel in Erneuerbare Energien und das letzte knappe Drittel in Atomenergie, CCS und Übertragungs- und Verteilungstechnologien inves- tiert werden. Für die Endverbrauchsbereiche müsste hingegen der Kapitaleinsatz bis 2050 massiv und schnell ansteigen (vor allem im Transport- und Gebäudebereich). Gegenüber den bisher an- gekündigten weltweiten nationalen Klimaschutzbeiträgen (-I-NDCs) würden die zusätzlich benö- tigten Nettoinvestitionen ca. 0,3% des BIP in 2050 entsprechen. Notwendig sei dafür ein ehrgei- ziges Set aus Politikmaßnahmen wie vor allem der Abschaffung aller Subventionen für fossile Brennstoffe bis 2025, der Einführung von CO2-Preisen und ihre Steigerung auf 190 US$ in 2050 1 Empfohlen von der UK Royal Statistical Society. 2 Bei der Internationalen Organisation für erneuerbare Energien (IRENA) handelt es sich um eine Regierungsorga- nisation mit mehr als 170 Mitgliedstaaten. Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)
In dem Bericht geht es um die Erfassung von Emissionen und Kohlenstofffestlegungen im Wald für eine zeitgerechte Abbildung der Klimaschutzfunktion des Waldes. Dabei werden aktuelle Verfahren in Deutschland beschrieben. Im Anschluss erfolgt eine Methodenübersicht gemäß den Richtlinien des IPCC (2006) und es werden genutzte Modelle sowie die Option des Einsatzes von Fernerkundung für die THG-Berichterstattung vorgestellt. Darauf aufbauend analysieren die Autorinnen und Autoren Monitoringsysteme der EU-Länder Deutschland, Finnland, Österreich, Schweden sowie von Kanada. Zuletzt werden die Ergebnisse verglichen und Schlussfolgerungen für eine zeitgerechtere Abbildung der Klimaschutzfunktion des Waldes in Deutschland gezogen. Der Bericht ist Teil des Projekts ‚Szenarien für den natürlichen Klimaschutz (NatKat)‘ des Umweltbundesamts (FKZ 3723 NK 901 0). Veröffentlicht in Fact Sheet.
| Origin | Count |
|---|---|
| Bund | 684 |
| Land | 77 |
| Wissenschaft | 4 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Ereignis | 49 |
| Förderprogramm | 276 |
| Lehrmaterial | 1 |
| Taxon | 3 |
| Text | 309 |
| Umweltprüfung | 1 |
| unbekannt | 81 |
| License | Count |
|---|---|
| geschlossen | 106 |
| offen | 330 |
| unbekannt | 284 |
| Language | Count |
|---|---|
| Deutsch | 640 |
| Englisch | 127 |
| Resource type | Count |
|---|---|
| Archiv | 236 |
| Bild | 3 |
| Datei | 292 |
| Dokument | 300 |
| Keine | 256 |
| Unbekannt | 1 |
| Webseite | 178 |
| Topic | Count |
|---|---|
| Boden | 462 |
| Lebewesen und Lebensräume | 440 |
| Luft | 348 |
| Mensch und Umwelt | 711 |
| Wasser | 318 |
| Weitere | 720 |