Berichtsjahr: 2014 Adresse: An der Hütte 1 06311 Helbra Bundesland: Sachsen-Anhalt Flusseinzugsgebiet: Elbe/Labe Betreiber: CATALYSIS AG Haupttätigkeit: Beseitigung oder Verwertung v. gefährlichen Abfällen > 10 t/d
Salpetersäure wird durch Oxidation von Ammoniak und anschließende Adsorbtion der nitrosen Gase in Wasser gewonnen. Im ersten Schritt wird Ammoniak an Platin- Rhodium Netzen mit Luft zu Stickstoffmonoxid oxidiert. Als Nebenreaktion tritt die Oxidation zu Lachgas (N2O) und Stickstoff (N2) auf. Nach Abkühlung der Prozeßgase wird das Gas in einen Adsorbtion mit Wasser zu Salpetersäure (65 Gew.-% HNO3) umgesetzt. Zur Produktion von 100% HNO3 werden Spezialverfahren oder die 65% HNO3 wird weiter aufkonzentriert. Alle Angaben beziehen sich auf 100% HNO3 in der Lieferform wässrige Salpetersäure (50-65%). Die Technik der Salpetersäure-Herstellung ist alt und gut untersucht. Als Basis der Bilanz wird die Aufstellung der Hochdruck-Oxidation ( 1 MPa) nach (Ullmann 1985) gewählt. Die Anwendung höhere Drücke haben Vorteile hinsichtlich der Emissionsminderung und werden als zukunftsweisend angesehen. Zwischen den verschiedenen Technikkonzepten bestehen nur geringfügige Unterschiede hinsichtlich Material- und Energiebilanz. Die „Hochdruck-Version" verzeichnen allerdings einen höheren Platinverlust. Die ausgewählte Technik repräsentiert Anlagen, die ab 1980 in Westeuropa gebaut worden sind. Emissionen beziehen sich nur auf Deutschland. Allokation: Als Koppelprodukt entsteht Dampf, der teilweise intern verbraucht wird. Bilanziert wird der Überschußdampf. Genese der Kenndaten Die Material- und Energiebilanz wurde aus #1 für eine „Hochdruckversion" entnommen. Andere Verfahrenskonzepte sehen niedrigere Drücke von bis zu 0,5 MPa oder unterschiedliche Drücke zwischen Oxidation (0,5 MPa) und Adsorbtionsstufe (1,1 MPa) vor. Die Unterschiede in der Material- und Energiebilanzbilanz zwischen den Version sind gering (kleiner 5%). Zur Katalyse der Ammoniakoxidation werden Platin / Rhodium (90:10) eingesetzt. Platin und in geringerem Ausmaß Rhodium werden als feine Partikel oder als Oxid abgetragen. Sie werden zu einem großen Anteil in nachgeschalteten Filtern wiedergewonnen. Der Platinverlust steigt mit zunehmenden Betriebsdruck, da die mechanische Beanspruchung der Katalysatornetze zunimmt. Es ist unklar, ob die Platinverluste brutto- oder netto-Verluste darstellen. Der zusätzliche Verlust an Palladium durch den Betrieb der Rückgewinnungsnetze aus Palladium ist nicht beziffert. Emissionen für Salpersäureherstellung werden in (Schön 1993) (N2O), #3 (NO2; N2O) und #2 (NO2, NH3). Für NO2 werden 4 kg/t (#3) bzw. 1 kg/t (#2) angegeben. Für Lachgas (N2O) werden Emissionsfaktoren von 3,1 bis 6,2 kg N2O /t (Schön 1993) und 5,5 kg /t (#3) angegeben. #2 gibt zusätzlich noch 0,1 kg NH3/ t an. Es wurden die Emissionsfaktoren von #3 übernommen (4 kg NO3/t; 5,5 kg N2O /t), da sie die deutsche Situation am treffensten wiederspiegeln. Bedarf an: Palladium - 10e-7 kg/kg Platin - 2,5 e-7 kg/kg Rhodium - 1,5 e-8 kg Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 354% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Salpetersäure wird durch Oxidation von Ammoniak und anschließende Adsorbtion der nitrosen Gase in Wasser gewonnen. Im ersten Schritt wird Ammoniak an Platin- Rhodium Netzen mit Luft zu Stickstoffmonoxid oxidiert. Als Nebenreaktion tritt die Oxidation zu Lachgas (N2O) und Stickstoff (N2) auf. Nach Abkühlung der Prozessgase wird das Gas in einen Adsorbtion mit Wasser zu Salpetersäure (65 Gew.-% HNO3) umgesetzt. Zur Produktion von 100% HNO3 werden Spezialverfahren oder die 65% HNO3 wird weiter aufkonzentriert. Alle Angaben beziehen sich auf 100% HNO3 in der Lieferform wässrige Salpetersäure (50-65%). Als Basis der Bilanz wird die Aufstellung der Hochdruck-Oxidation ( 1 MPa) nach (Ullmann 1985) gewählt. Die Anwendung höhere Drücke haben Vorteile hinsichtlich der Emissionsminderung und werden als zukunftsweisend angesehen. Zwischen den verschiedenen Technikkonzepten bestehen nur geringfügige Unterschiede hinsichtlich Material- und Energiebilanz. Die „Hochdruck-Version" verzeichnen allerdings einen höheren Platinverlust. Die ausgewählte Technik repräsentiert Anlagen, die ab 1980 in Westeuropa gebaut worden sind. Emissionen beziehen sich nur auf Deutschland. Allokation: Als Koppelprodukt entsteht Dampf, der teilweise intern verbraucht wird. Bilanziert wird der Überschußdampf. Genese der Kenndaten: Die Material- und Energiebilanz wurde aus #1 für eine „Hochdruckversion" entnommen. Andere Verfahrenskonzepte sehen niedrigere Drücke von bis zu 0,5 MPa oder unterschiedliche Drücke zwischen Oxidation (0,5 MPa) und Adsorbtionsstufe (1,1 MPa) vor. Die Unterschiede in der Material- und Energiebilanzbilanz zwischen den Version sind gering (kleiner 5%). Zur Katalyse der Ammoniakoxidation werden Platin / Rhodium (90:10) eingesetzt. Platin und in geringerem Ausmaß Rhodium werden als feine Partikel oder als Oxid abgetragen. Sie werden zu einem großen Anteil in nachgeschalteten Filtern wiedergewonnen. Der Platinverlust steigt mit zunehmenden Betriebsdruck, da die mechanische Beanspruchung der Katalysatornetze zunimmt. Es ist unklar, ob die Platinverluste brutto- oder netto-Verluste darstellen. Der zusätzliche Verlust an Palladium durch den Betrieb der Rückgewinnungsnetze aus Palladium ist nicht beziffert. Emissionen für Salpersäureherstellung werden in (Schön 1993) (N2O), #3 (NO2; N2O) und #2 (NO2, NH3). Für NO2 werden 4 kg/t (#3) bzw. 1 kg/t (#2) angegeben. Für Lachgas (N2O) werden Emissionsfaktoren von 3,1 bis 6,2 kg N2O /t (Schön 1993) und 5,5 kg /t (#3) angegeben. #2 gibt zusätzlich noch 0,1 kg NH3/ t an. Es wurden die Emissionsfaktoren von #3 übernommen (4 kg NO3/t; 5,5 kg N2O /t), da sie die deutsche Situation am treffensten wiederspiegeln. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 354% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften
Die steigenden Rohstoff- und Energiepreise machen sich derzeit deutlich sowohl in der Wirtschaft als auch der Industrie bemerkbar. Daher ist es für Unternehmen aktuell – auch mit Blick auf die derzeit vorherrschenden Krisen – mehr denn je von besonderer Relevanz, ressourcensparend(er) zu agieren und zugleich bestehende Rohstoff- und Lieferkettenabhängigkeiten ab- und eine robustere wie resilientere Wertschöpfung aufzubauen. Diesem Ziel hat sich auch ein Hersteller von anorganischen Spezialchemikalien aus Thüringen verschrieben und ein innovatives Konzept entwickelt, mit dem es u.a. für die eigene Produktion benötigte Rohstoffe erdgas- und CO₂-sparend selbst herstellen kann. Vom Abprodukt zum Allrounder Damit die eigene Fertigung jetzt und in Zukunft so effizient und resilient wie möglich aufgestellt ist, hat die CWK Chemiewerk Bad Köstritz GmbH ein Verfahrenskonzept entwickelt, im Zuge dessen es aus flüssigem Schwefel direkt vor Ort weitere benötigte Rohstoffe herstellt – und das zugleich ressourcenschonend und energieeffizient. Zentrales Element ist dabei eine Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt aus Entschwefelungsprozessen bspw. in umliegenden Raffinerien oder Kraftwerken anfällt. Das im Zuge dieser Verbrennung entstehende Schwefeldioxid (SO₂) kühlt im Anschluss mithilfe eines Abhitzekessels ab. Ein Teil des so verfügbar gemachten SO₂ wird dann unter Rückgriff auf eine Adsorptionskälteanlage sukzessive verflüssigt, der andere Teil über Katalyse zu Schwefeltrioxid (SO₃) oxidiert und mittels Adsorber in Schwefelsäure (H₂SO₄) umgewandelt. Eine Besonderheit dabei ist, dass das Verhältnis von erzeugtem SO₂ und H₂SO₄ ganz variabel an die jeweilige Bedarfslage angepasst werden. Die im Rahmen der Prozesse entstehende Wärme wiederum wird nicht ungenutzt in die Umgebung geleitet, sondern zur Dampferzeugung verwendet, der dann selbst wieder an verschiedenen Stellen der Produktionsanlage Verwendung findet. So wird der Dampf beispielsweise für den Antrieb des Gebläses, das für die Verbrennungsluft im Einsatz ist, benötigt, ebenso wie für den Betrieb der Adsorptionskälteanlage. Außerdem treibt der Dampf eine Turbine zur Stromerzeugung an. Der so erzeugte Strom wird dann wiederum zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort aufgewendet. Ressourcen und Energie sparen durch eine bedarfsgerechte Produktion Dieses ganzheitlich gedachte Konzept macht deutlich, wie aus einem einzigen Ausgangsstoff – Schwefel – verschiedene Produkte hergestellt werden können, ohne dass sich dabei ökonomische Aspekte wie Effizienz und Wirtschaftlichkeit und ökologische Gesichtspunkte wie bedarfsgerechte Produktion und Ressourcenschonung konterkarieren. So trägt beispielsweise bereits die Reduktion der Rohstofftransporte zur Entlastung der Umwelt bei. Darüber hinaus erzeugt das Verfahren selbst keinerlei Abfälle oder Abwasser. Ein weiterer Punkt: Durch die konsequente Nutzung der eigenen Prozessabwärme zur Dampferzeugung kann das Unternehmen etwa die Hälfte seines Grundbedarfs an Dampf decken. Daraus resultieren Einsparungen beim Einsatz von extern bezogenem Erdgas in Höhe von circa 50 Prozent. So können verglichen mit dem (noch) etablierten Herstellungsverfahren insgesamt ca. 3.400 Tonnen CO₂-Emissionen jährlich vermieden werden – eine Verminderung von etwa 33 Prozent. Weitere Technologien und Prozesse, die sich bereits in der Praxis als ressourceneffizient bewährt haben, finden Sie in der Datenbank Gute-Praxis-Beispiele .
Kultusministerium - Pressemitteilung Nr.: 187/03 Kultusministerium - Pressemitteilung Nr.: 187/03 Magdeburg, den 19. September 2003 Materialforscher an der Martin-Luther Universität in Halle- Wittenberg bekamen Bestnoten Eine Gutachtergruppe der Deutschen Forschungsgemeinschaft (DFG) hat am 3. und 4. September 2003 an der Martin-Luther-Universität Halle-Wittenberg die Weichen für die zweite Förderperiode des Projekts ¿Oxidische Grenzflächen¿ gestellt. Oxide stellen eine Materialklasse dar, die in vielen Bereichen der Grundlagenforschung untersucht und in der Katalyse, Elektrotechnik, Photonik und Optoelektronik angewandt werden. Die Forschergruppe will in ihrer Arbeit die physikalischen Eigenschaften der Oxide aufklären. Sprecherin ist Frau Prof. Dr. Mertig von der Martin-Luther-Universität. Die Forschergruppe hat durch Zusammenarbeit mit der Universität Leipzig und dem Max-Planck-Institut für Mikrostrukturphysik in Halle ein exzellentes Forschungsnetzwerk in Mitteldeutschland errichtet, das international konkurrenzfähig ist und als Keimzelle für eine Führungsrolle in der Welt auf diesem Spezialgebiet der Physik bezeichnet werden kann, so die Gutachtergruppe der Deutschen Forschungsgemeinschaft unter der Leitung von Prof. Dr. Albrecht Goldmann von der Universität Kassel. Das Zentralprojekt und 16 Teilprojekte werden zur Förderung durch die DFG empfohlen. Darin sind für die zweite Periode bis 2006 sieben neue Forschungsvorhaben enthalten. Die Forschergruppe wurde bereits in der gegenwärtigen Phase eine internationale Spitzenstellung bescheinigt, dem Land eine gute Berufungspolitik. ¿Ich freue mich sehr über diese Anerkennung der exzellenten Leistungen der Forschergruppe¿, sagte Kultusminister Olbertz. Er sei überzeugt, dass die von der Landesregierung eingeleitete Hochschulstrukturreform zu einer Stärkung und zum Ausbau der standortprägenden Forschungsprofile der Universitäten und Fachhochschulen führen werde. Zu diesen gehören an der Martin-Luther-Universität insbesondere die Materialwissenschaften und die Physik. Sie haben das Potential, so Olbertz, sich ab 2006 zu einem eigenständigen Sonderforschungsbereich zu entwickeln. Das Land werde alles tun, um diesen Prozess zu unterstützen. Impressum: Kultusministerium des Landes Sachsen-Anhalt Pressestelle Turmschanzentr. 32 39114 Magdeburg Tel: (0391) 567-3710 Fax: (0391) 567-3775 Mail: presse@mk.sachsen-anhalt.de Web-Adresse Kultusministerium: https://www.mk.sachsen-anhalt.de Web-Adresse Pressestelle Kultusministerium: https://www.sachsen-anhalt.de/rcs/LSA/pub/Ch1/fld8311011390180834/mainfldvnb71elznj/fldg8s6ujfdyi/fldjagm4uronl/ Impressum:Ministerium für Bildung des LandesSachsen-AnhaltPressestelleTurmschanzenstr. 3239114 MagdeburgTel: (0391) 567-7777mb-presse@sachsen-anhalt.dewww.mb.sachsen-anhalt.de
Im mitteldeutschen Chemiedreieck könnten wichtige Weichen gestellt werden für eine klimaneutrale Transformation der gesamten chemischen Industrie in Deutschland und weltweit. Die interdisziplinäre Exzellenzcluster-Initiative „SmartProSys“ hat das Ziel, die chemischen und biotechnologischen Produktionsprozesse nachhaltig umzugestalten − auf der Grundlage einer grünen Kreislaufwirtschaft für Kohlenstoff. Dabei dreht sich alles um die Frage, wie sich Plastikmüll und biogene Rest- und Abfallstoffe systematisch und effizient in wertvolle Moleküle für neue Produkte umwandeln lassen. Denn bis 2050 soll die chemische Industrie klimaneutral produzieren. Nicht mehr mit fossilen, sondern mit erneuerbaren Kohlenstoffquellen. Die dafür notwendigen Technologien gibt es aber erst zum Teil. Daher will das Forschungsteam mit neuen Methoden und Wegen eine Grundlage für verfahrenstechnische Prozesse der chemischen Industrie von Morgen schaffen. Mit leistungsstarken Berechnungsmethoden und Algorithmen wollen sie die Grundlagen für die Simulation, Optimierung und Steuerung intelligenter Prozesssysteme schaffen. Das beantragte Exzellenzcluster nimmt dafür auch die gesellschaftlichen Aspekte des Übergangs in die Kreislaufwirtschaft in den Blick. Prozessebene: ressourcen- und energieeffiziente mechanische, chemische und biologische Zerlegung von Rest- und Abfallstoffen in verwertbare Bausteine und die (Re-)Synthese von Wertstoffen und Wertprodukten Molekulare Ebene: Identifikation intelligenter katalytischer Konversionspfade und Trennprinzipien für komplexe Mehrstoffgemische Systemebene: Analyse wirtschaftlicher, politischer, verhaltens- und gesellschaftsbezogener Rahmenbedingungen Die Exzellenzcluster-Initiative „SmartProSys“ geht aus einer langjährigen, sehr erfolgreichen Kooperation zwischen der Ottovon-Guericke-Universität Magdeburg und dem Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg (MPI-DCTS) auf dem Gebiet des „Systems Engineering" hervor. Ergebnisse daraus waren bereits gemeinsame Berufungen und Drittmitteleinwerbungen, gemeinsam gestaltete Studiengänge und die Etablierung des Magdeburger Forschungszentrums für Dynamische Systeme (CDS). Darüber hinaus kommt aus dem Leibniz-Institut für Katalyse (LIKAT) in Rostock eine weltweit führende Expertise im Bereich der Katalyse und aus der Brandenburgischen Technischen Universität (BTU) Forschung zu soziotechnischen Transformationsprozessen hinzu. Längerfristig sollen grundlegende Forschungsergebnisse von „SmartProSys“ in die industrielle Anwendung übertragen werden, insbesondere durch eine enge Zusammenarbeit mit dem neu gegründeten Center for the Transformation of Chemistry (CTC) mit Sitz in Delitzsch. Netzwerk Federführende Einrichtung: Otto-von-Guericke-Universität Magdeburg Weitere beteiligte Einrichtungen: Max-Planck-Institut für Dynamik komplexer technischer Systeme (MPI-DCTS), Magdeburg Leibniz-Institut für Katalyse (LIKAT), Rostock Brandenburgische Technische Universität (BTU), Cottbus Kooperationspartner: Center for the Transformation of Chemistry (CTC), Delitzsch
Das Projekt "Teilvorhaben 3" wird vom Umweltbundesamt gefördert und von Hirschmann Laborgeräte GmbH & Co. KG durchgeführt. Die Hirschmann GmbH & Co. KG ist Komponentenhersteller für Geräte und Systeme in der Blutanalytik, DNA-Analytik, Gasspürtechnik und der einzige deutsche Hersteller von Präzisionsglaskapillaren. In einem gemeinsamen Projekt mit der Firma KACO Gerätetechnik GmbH und dem DLR, Institut für Technische Thermodynamik planen wir die Entwicklung eines durchgängig optimierten solaren Receiverreaktors, der einfach und kostengünstig mit neuen kommerziellen Katalysatorbeschichtungen ausgestattet werden kann. Unsere Arbeiten umfassen dabei die Entwicklung der Beschichtungsverfahren und der beschichteten Glasrohre sowie des Receivers an sich. Dazu sind unter anderem Dichtkonzepte, Dichtungen, Verteilerstrukturen, Sammler und weitere Einzelkomponenten zu entwickeln und in ein Receiversystem zu integrieren.
Das Projekt "Katalyseforschung fuer die Verringerung der Gasemission" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Laboratorium für Technische Chemie durchgeführt. Einen ersten Projektschwerpunkt bildet die Studie von Katalysatoren, mit denen man Schwefel und Stickstoff aus Oel entfernen kann. Die Emissionen von Schwefeldioxid und Stickoxid sind bei entschwefeltem und entsticktem Oel viel niedriger. Der zweite Schwerpunkt beinhaltet das grundlegende Studium von Katalysatoren, durch die Kohlenmonoxid und Stickoxid in unschaedliche Komponenten umgewandelt werden koennen.
Das Projekt "Gas heated reformer" wird vom Umweltbundesamt gefördert und von Linde GmbH durchgeführt. Objective: The engineering and construction of a gas-heated reformer to produce hydrogen, carbon monoxide and carbon dioxide and mixtures of syn-gas in an energy efficient manner, dedicated tuned to the needs of the customer. This new technology replaces conventional steam reformer, whereby energy is saved and environmental advantages are realised. General Information: The syn-gas production unit will consist of a gas heated reformer, combined with CO2 wash-unit; a cold box for separation of hydrogen and CO recycling and a PSA unit for production of pure hydrogen. The gas-heated reformer is based on a new process, in which no steam reforming furnace is necessary. The reforming process is realised by adding pure oxygen to the natural gas flow. This leads to an auto thermal reaction, of which the heat is used to realise the steam reforming. The risks of this new reforming process are the critical conditions of the controlled oxidation of natural gas in the oxygen-fired auto-thermal reactor. The use of catalysts, the working conditions in terms of pressure and the piping materials in the reactor are still under development. The process conditions are determined by the end-products needed by the customers. the engineering is focussed on minimal maintenance costs and maximum production time. The existing steam reforming processes use a natural gas fired furnace to produce the heat needed to realise the steam reforming. The heat of the exothermal process of the gas-heated reformer is used to react the steam and the natural gas in the steam reforming part of the gas-heated reformer. This technology is new in relation to conventional steam reforming for this capacity and demands thorough engineering to make the process conditions flexible and related to the product-mix required. It is assumed that energy savings lie in terms of 20 per cent in relation to the natural gas use in conventional steam reformers with the same capacity, no exhaust of flue-gas and waste heat is produced and emission of CO2 is significantly reduced. The investment costs are expected to lay significantly under the level of a conventional steam reformer. The reason is that no furnace is needed because the reforming process is realised in the auto thermal section and the steam reforming section. Achievements: The energy balance of the gas-heated reformer is calculated in Nm3 natural gas. The existing steam reformer uses energy in terms of natural gas: 74375 Nm3/hr. The gas heated reformer will use 60208 Nm3/hr that will result in hourly saving 14167 Nm3/hr. Prime Contractor: Linde AG, Werksgruppe TVT München; Hollriegelskreuth; Germany.
Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Forschungszentrum Karlsruhe GmbH in der Helmholtz-Gemeinschaft, Institut für Technische Chemie durchgeführt. Das Ziel dieses Projektes war es, den Nachweis zu erbringen, dass hydrothermale Vergasung und SOFC zur Stromerzeugung sinnvoll und effektiv gekoppelt werden können. Der Schwerpunkt der Untersuchungen lag in der Identifikation von Gaszusammensetzungen und Betriebsbedingungen, unter denen ein stabiler Betrieb der SOFC möglich ist. Deshalb wurden SOFC-Einzelzellen mit den am KIT Campus Nord über hydrothermale Vergasung hergestellten Brenngasen (im Nachfolgenden als Biogas bezeichnet) betrieben. Die Leistungsfähigkeit und die Stabilität der SOFC wurden in Abhängigkeit der Gaszusammensetzung und der Betriebsparameter der Zelle ermittelt. Im Laufe des Projektes hat sich herausgestellt, dass zwar hohe Leistungsdichten (1.26W/cm2 bei T=793 C und S/C=4) erreicht werden können, jedoch ein kohlenstofffreier Betrieb unter typischen SOFC Betriebsbedingungen nicht möglich ist. Versuche, die Gasqualität anlagenseitig zu erhöhen, sprich die Kohlenstoffketten in Richtung C1Komponenten zu verschieben, wurden nicht unternommen weil nicht von technischer Relevanz. Aus diesem Grund wurde der Schwerpunkt der Untersuchungen auf die Kohlenstoffbildung gelegt. Durch systematische Untersuchungen mit unterschiedlichen Modellgasen konnte der Einfluss einzelner Kohlenwasserstoffkomponenten auf die Kohlenstoffbildung ermittelt werden. Parallel zu diesen Untersuchungen wurden SOFC - Einzelzellen mittels Impedanzspektroskopie und Strom/Spannungs-Kennlinien elektrochemisch charakterisiert. Eine hochauflösende Messdatenauswertung ermöglichte eine eindeutige Identifizierung aller zum Gesamtwiderstand der Einzelzelle beitragenden Verlustprozesse. Auf Basis dieser Erkenntnisse wurde ein eindimensionales stationäres Modell zur Vorhersage des Strom/Spannungsverhaltens von planaren anodengestützten SOFC Einzelzellen entwickelt. Die Simulationsresultate zeigen eine hervorragende Übereinstimmung mit den experimentell ermittelten Daten. Durch die gerechtfertigte Annahme, dass die Elektrooxidation der Brenngase ausschließlich über den Wasserstoffpfad abläuft, ist das Modell in der Lage, bei bekannter lokaler Gaszusammensetzung, das Stromspannungsverhalten der Zelle im Biogasbetrieb sehr gut wiederzugeben. Das entwickelte elektrochemische Modell kann zukünftig ohne weiteres in ein Gesamtmodell, welches dann auch die heterogene Katalyse von kohlenwasserstoffhaltigen Brenngasen beinhaltet, integriert werden.
Origin | Count |
---|---|
Bund | 1796 |
Land | 2 |
Type | Count |
---|---|
Förderprogramm | 1792 |
Text | 5 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 3 |
offen | 1793 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 1798 |
Englisch | 158 |
Resource type | Count |
---|---|
Archiv | 2 |
Datei | 2 |
Dokument | 2 |
Keine | 1093 |
Webseite | 703 |
Topic | Count |
---|---|
Boden | 1298 |
Lebewesen & Lebensräume | 1252 |
Luft | 1117 |
Mensch & Umwelt | 1798 |
Wasser | 1096 |
Weitere | 1783 |