API src

Found 2598 results.

Related terms

Mikrobiell katalysierte Elektrosynthese von Bernsteinsäure

Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst ein kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 1 ist die technische Etablierung des neuen Reaktorsystems. Dies insbesondere durch Überarbeitung eines Bioreaktors für den Einsatz mit Elektroden unter besonderer Berücksichtigung von Korrosion im Reaktorraum. Neben den konstruktiven Ansätzen umfasst dies die Erschaffung und Charakterisierung neuer Elektodenoberflächen aus elektrisch leitfähigen, biokompatiblen Hydrogelen. Zugrundeliegende Stoffstrombilanzen werden in ein Modell überführt, um Signifikanzanalysen durchzuführen.

Stickstoffoxid-Emissionen

<p>Stickstoffoxide entstehen hauptsächlich bei Verbrennungsprozessen in Anlagen und Motoren. Geringe Emissionen entstehen auch in bestimmten Industrieprozessen und in der Landwirtschaft. Trotz erheblicher Reduzierungen sind weitere Maßnahmen nötig, um die seit 2010 einzuhaltenden Höchstmengen dauerhaft zu unterschreiten und die Minderungsverpflichtungen seit 2020 und 2030 einzuhalten.</p><p>Entwicklung seit 1990</p><p>Emissionsangaben von Stickstoffoxiden (NOx) werden als NO2 berechnet. Diese übliche Umrechnung erfolgt, weil Stickstoffoxide zwar überwiegend als Stickstoffmonoxid (NO) emittiert werden, anschließend aber atmosphärisch zu Stickstoffdioxid (NO2) oxidieren. Von 1990 bis 2023 ist ein Rückgang der NOx-Emissionen um knapp 2 Millionen Tonnen (Mio. t) oder 70 % zu verzeichnen (siehe Abb. „Stickstoffoxid-Emissionen nach Quellkategorien“). Dieser Rückgang erfolgte in allen Quellkategorien – mit einem Minus von über 1,1 Mio. t am deutlichsten im Verkehr. Trotz dieser Minderung ist der Verkehrsbereich mit einem Emissionsanteil von fast 37 % weiterhin mit Abstand der größte Verursacher von NOx-Emissionen (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Obwohl die Stickstoffoxid-Emissionen im Verkehrssektor insgesamt sinken, nimmt der Anteil des giftigen Stickstoffdioxids an den gesamten Stickstoffoxid-Emissionen zu. Als Grund hierfür wird neben der natürlichen Umwandlung von NO zu NO2 der höhere Anteil von NO2 im Abgas von mit Oxidationskatalysatoren ausgestatteten Dieselfahrzeugen diskutiert. Das in diesen Katalysatoren gebildete NO2 wird direkt emittiert und führt zum Beispiel in verdichteten Innenstädten zu erhöhten Stickstoffdioxid-Konzentrationen.</p><p>Emissionsminderungen in den anderen Bereichen resultierten aus dem Einsatz emissionsärmerer Brennstoffe, dem effizienteren Energieeinsatz, dem Einsatz von mobilen und stationären Katalysatoren sowie historisch in Folge des Strukturwandels in den neuen Bundesländern.</p><p>Die NOx-Freisetzung aus landwirtschaftlichen Böden dominiert die Emissionen aus der Landwirtschaft. Sie gingen zwischen 1990 und 2023 um 31,5 % zurück. Die Stagnation auf hohem Niveau in den Jahren 2014 bis 2016 konnte in den letzten Jahren mit deutlichen Rückgängen beendet werden. 2023 sanken die Emissionen auf den niedrigsten Stand der gesamten Zeitreihe.</p><p>Verursacher</p><p>Zu den Stickstoffoxiden (NOx) zählen Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2). Sie entstehen größtenteils bei Verbrennungsvorgängen in Anlagen und Motoren und werden überwiegend als NO ausgestoßen und anschließend zu NO2 umgewandelt. Der prozessbedingte Anteil (2023 bei ca. sechs Prozent) wird von den energieintensiven Industrien der Wirtschaftssektoren Steine und Erden sowie Metallindustrie dominiert.</p><p>Die Bildung von NOx variiert in den Verbrennungsanlagen stark. Die höchsten Emissionen je Einheit verbrauchter Energie weist der Verkehrsbereich auf, gefolgt von den Kraftwerken. Die niedrigsten spezifischen Emissionen werden an den Kleinfeuerungen der Haushalte festgestellt, in der Summe sind die Emissionen aus diesem Bereich jedoch signifikant. Die entstehenden NOx-Emissionen können durch Nachbehandlung (Katalysatoren im Verkehrsbereich, DENOX-Anlagen bei Großfeuerungen) erheblich vermindert werden. Aber auch die Landwirtschaft (2023: 12 %) ist weiterhin eine relevante Emissionsquelle, wobei vor allem die landwirtschaftlichen Böden NOx emittieren.</p><p>&nbsp;</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠-Luftreinhaltekonvention und in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen NOx-Emissionen ab 2020 um 39 % niedriger sein müssen als 2005. Diese Ziele wurden 2021, 2022 und 2023 eingehalten.&nbsp;</p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 65 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p>

Neuartige Katalysatoren für AEM-WE Membran-Elektroden-Einheiten, Teilvorhaben: Qualifizierung von Materialien für die Fallbeschichtung

GcBÜK400 - Chrom im Oberboden

Chrom ist ein in der Erde weit verbreitetes, in vielen Mineralen vorkommendes Element, das für Mensch und Tier lebensnotwendig ist. Es existiert in mehreren Oxidationsstufen, doch nur die drei- und sechswertigen Verbindungen sind im Boden stabil. Unbelastete Böden haben Chromgehalte zwischen 5 und 100 mg/kg. Der regionale Clarke des Erzgebirges beträgt 52 mg/kg (Totalgehalte). Chrom wird über die Metallurgie und Cr-verarbeitenden Industrien (Farben, Legierungen, Katalysatoren, Beizen, Poliermittel, Bauindustrie) anthropogen in die Umweltmedien eingetragen. In den Böden kann es durch Düngung (Cr im Thomasphosphat) und Klärschlammaufbringung noch zu einer zusätzlichen Belastung mit Chrom kommen. Die regional unterschiedliche Verteilung des Chroms in den sächsischen Böden resultiert aus der geogenen Spezialisierung der Substrate. Bei der Bodenbildung kommt es i. d. R. zu keiner größeren An- bzw. Abreicherung von Chrom. Die Gehalte der Böden liegen in etwa in der Höhe der Ausgangsgesteine. In den nördlichen bzw. nordwestlichen Landesteilen dominieren in den Böden über weitgehend sandigen Lockergesteinen niedrige Chromgehalte unter 20 mg/kg. Die Böden über sauren Magmatiten und Metamorphiten sowie über den Sandsteinen der Elbtalkreide und den Granodioriten der Lausitz liegen ebenfalls im unteren Gehaltsbereich. Über den stärker lössbeeinflussten Lockersedimenten, den Rotliegend-Sedimenten sowie den Tonschiefern, Phylliten, Glimmerschiefern und Paragneisen des Erzgebirges steigen die Chromgehalte in den Böden auf etwa 30 - 40 mg/kg an. Die höchsten Gehalte ( 100 mg/kg) treten in Sachsen punktuell über basischen Vulkaniten (Basalte, Serpentinite, Gabbros), über den größere Flächen bildenden Diabasen des Vogtlandes und lokal über Cr-haltigen Mineralisationen und Verwitterungsbildungen auf (Ni-Hydrosilikate bei St. Egidien). Serpentinite z. B. können bis zu 2000 mg/kg Chrom (Totalgehalte) enthalten. In den Auenböden treten deutliche Beziehungen zwischen den Chromgehalten und den Gesteinen der jeweiligen Einzugsgebiete auf. Die Auenböden der Weißen Elster, der Mulde und der Elbe (Einzugsgebiet Erzgebirge /Vogtland) führen mittlere bis leicht erhöhte Gehalte. Die Gehalte in den Flussauen der Lausitz sind dagegen deutlich niedriger. Infolge der unterschiedlichen Bindungsformen des Chroms in den Primärsubstraten ist die Umrechnung von Cr-Totalgehalten in Cr-Königswassergehalte (KW) äußerst problematisch. Praktische Erfahrungen bei den Bodenuntersuchungen zeigen, dass die KW-Gehalte von basischen bis ultrabasischen Magmatiten und Metamorphiten gegenüber den Totalgehalten bis zu ca. 50 % niedriger sind. Die geochemische Spezialisierung der basischen Substrate tritt deshalb im Kartenbild nur in abgeschwächter Form in Erscheinung. Die in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgelegten Prüfwerte für den Wirkungspfad Boden-Mensch (KW-Gehalte) werden in Sachsen nur punktuell über den o. g. basischen und ultrabasischen Gesteinen überschritten. Im Vogtland kommt es über den Diabasen z. T. flächenhaft zur Überschreitung der Cr-Vorsorgewerte, wobei auf Grund der natürlichen Bindungsform aber keine verstärkte Freisetzung im Boden zu erwarten ist.

Mikrobiell katalysierte Elektrosynthese von Bernsteinsäure, Teilvorhaben 1: Technische Auslegung des Reaktorsystems

Ziel ist die stoffliche Nutzung elektrischer Energie zur mikrobiellen Produktion des Kunststoffmonomers Bernsteinsäure. Hierbei wird der innovative Ansatz der mikrobiellen Elektrosynthese verfolgt. Elektrische Energie wird in den Mikroorganismus Actinobacillus succinogenes transferiert, der zugleich nachwachsende Rohstoffe zur Synthese der Katalysatoren und des Produkts nutzt. Die zusätzlichen Redoxäquivalente (NADH) durch die Aufnahme von Elektronen bewirken eine Veränderung der Stoffwechselproduktzusammensetzung in Richtung zur Bernsteinsäure. Das Konzept erlaubt die Umwandlung elektrischer Energie in komplexe Produkte unter Einsatz des selbstreplizierenden Ganzzellkatalysators unter sehr milden Reaktionsbedingungen (T kleiner als 40 Grad C, pH 7, wässriges Lösungsmittel). Zusätzlich sind die Anforderungen an die Elektroden und die Reinheit der flüssigen Phase bei einer mikrobiellen Elektrosynthese gering und somit der Prozess kostengünstig. Die Technologie der mikrobiellen Elektrosynthese konnte durch die Antragssteller bereits für die Produktion von Butanol etabliert und mehrfach publiziert werden. Im angestrebten Projekt soll ein neues, wirtschaftlich relevantes Bioproduktionsverfahren etabliert und der technologische Reifegrad des Verfahrens erhöht werden. Der Transfer der Power2X-Technologie wird zunächst ein kleinen Reaktionsgefäßen durchgeführt und im Anschluss auf einen technischen Bioreaktor überführt. Hierbei werden Betrachtungen zur Skalierbarkeit durchgeführt. Zielsetzung des TV 1 ist die technische Etablierung des neuen Reaktorsystems. Dies insbesondere durch Überarbeitung eines Bioreaktors für den Einsatz mit Elektroden unter besonderer Berücksichtigung von Korrosion im Reaktorraum. Neben den konstruktiven Ansätzen umfasst dies die Erschaffung und Charakterisierung neuer Elektodenoberflächen aus elektrisch leitfähigen, biokompatiblen Hydrogelen. Zugrundeliegende Stoffstrombilanzen werden in ein Modell überführt, um Signifikanzanalysen durchzuführen.

Entfernung von gelöstem Sauerstoff aus Aminlösungen für die CO2-Abtrennung

MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.

Bewirtschaftung und Biomasseverwertung von nassen Niedermooren in Brandenburg, Teilvorhaben 3: Wissenstransfer und Öffentlichkeitsarbeit, Biodiversitätsmonitoring

In Brandenburg kommen ausgedehnte Niedermoorflächen mit einer großen standörtlichen Vielfalt vor, die nahezu flächendeckend entwässert sind und fortschreitender Degradierung unterliegen. Es gibt Vorarbeiten zur Wiedervernässung in mehreren moorreichen Regionen, langjährige Forschungsaktivitäten zur stofflichen und energetischen Biomasseverwertung. Das Vorhaben WetNetBB soll als Katalysator für eine großflächige Transformation zu einer nachhaltigen Moornutzung fungieren, indem es diese Entwicklungen aufnimmt und zusammenführt, auf typischen Standorten moorerhaltende Wasserstände realisiert, Verfahren für die Flächenbewirtschaftung und Biomasseverwertung als Modell- und Demonstrations-vorhaben exemplarisch umsetzt. Im Ergebnis soll Akzeptanz für eine nachhaltige Moornutzung in den ausgewählten Regionen und darüber hinaus aufgebaut werden. Die HNEE verantwortet dabei den Wissenstransfer und die Öffentlichkeitsarbeit, sowie das Biodiversitätsmonitoring i.R.d. wissenschaftlichen Begleitung. Das Modul Öffentlichkeitsarbeit und Wissenstransfer steuert den der Wissenstransfer nach innen und außen. Kern bildet die Schaffung eines Innovationsforums für nasse Moornutzung, das alle interessierten Stakeholder langfristig miteinander vernetzt und in verschiedenen Formaten Gelegenheitsräume für den Wissenstransfer auf Augenhöhe schafft. Daneben steht die Kommunikation mit der allgemeinen Öffentlichkeit sowie der Politik und Verwaltung im Fokus. Das Biodiversitätsmonitoring wird standörtliche Veränderungen, deren Auswirkungen auf die Vegetation im Zuge der Wiedervernässung und Bewirtschaftung erfassen und die Standortgerechtigkeit und Nachhaltigkeit der Nutzung mit Blick auf eine stabile Biomasseproduktion bewerten, sowie die Wirkungen der Nutzungsumstellung auf die Biodiversität der Flächen mit Blick auf die Lebensraumeignung, den Biotopverbund und das Landschaftsbild einschl. deren Beeinflussung durch eine Anpassung der Bewirtschaftungsvorgänge erfassen und bewerten.

Erstellung und Kennzeichnung poroeser Adsorbentien und Katalysatoren

Ziel der Untersuchung ist es, von quantitativer Einsicht in das Zusammenwirken von Transportvorgaengen, Porenmorphologie und Porenentstehung ausgehend, die Herstellungsverfahren von poroesen Adsorbentien bzw. Katalysatoren methodisch zu begruenden und zu verbessern.

Lebensdauererhöhung der Sauerstoffverzehrkathode für den technischen Einsatz in der Chlor-Alkali-Elektrolyse, Teilvorhaben: GDE-Entwicklung

Lebensdauererhöhung der Sauerstoffverzehrkathode für den technischen Einsatz in der Chlor-Alkali-Elektrolyse, Teilvorhaben: Elektrodenentwicklung, Charakterisierung und Modellierung der GDE

1 2 3 4 5258 259 260