Mehr als 90 Prozent der anthropogen emittierten Stickstoffoxide entstehen als Nebenprodukte von Verbrennungsvorgängen. Verursacher sind Kfz-Motoren, Feuerungsanlagen der Kraftwerke, Industriebetriebe und Hausheizungen. Der Verkehr ist die Emittentengruppe mit den höchsten Anteilen an Stickstoffoxiden (NOX). Trotz der in den vergangenen Jahren verstärkten Anstrengungen, die NOX-Emissionen zu reduzieren (Kfz-Katalysatoren, Rauchgasentstickungsanlagen) führen hohe Verkehrsdichten in Ballungsräumen und oftmalige Inversionswetterlagen zu erheblichen NOX-Belastungen. So kommt es, dass in Innenstadtbereichen trotz der erwähnten Emissionsminderungsmaßnahmen, aufgrund des ständig steigenden Verkehrsaufkommens, Grenz- bzw. Richtwerte überschritten werden. Ein neues Verfahren zur Minimierung der Immissionen basiert darauf, vorhandene Gebäudeoberflächen (z. B. Dächer, Häuserfassaden, Verglasungen) zur Reduktion von Stickoxiden in städtischen Atmosphären zu nutzen. Hierzu sollen die katalytischen bzw. photokatalytischen Eigenschaften bestimmter Substanzen gezielt baulich eingesetzt werden. Der katalytische Abbau von NOX in Rauchgasentstickungsanlagen ist ein umfangreich erforschtes Gebiet der technischen Chemie. Erst oberhalb Temperaturen von 250 - 400 Grad C erreichen die Katalysatoren Umsatzgeschwindigkeiten, die für die technische Nutzung brauchbar sind. In Großstädten stehen ausgedehnte Gebäudeflächen zur Verfügung. Würde ein Teil dieser Flächen aus katalytisch aktiver Bausubstanz bestehen, so wären hier auch langsame, auf niedrigem Temperaturniveau (Sommeraußentemperatur) stattfindende katalytische Reaktionen interessant, da die großen Flächen den Nachteil geringer Umsätze kompensieren würden. Diese neue Gruppe von funktionellen Baustoffen für den passiven katalytischen Schadstoffabbau werden als p-Baustoffe (Protective Integrated Building Materials) bezeichnet. Erste Voruntersuchungen mit beschichteten Dachsteinen waren erfolgreich.
Im Rahmen des geplanten Forschungsvorhabens soll eine verbesserte Methode zur Bestimmung kinetischer Daten von Mehrphasenreaktionen entwickelt und getestet werden. Dabei soll ein Zweiphasenreaktor (Flüssigkeit und Katalysator) mit einer Vorsättigung der flüssigen Phase (z.B. bei Hydrierungen mit Wasserstoff) eingesetzt werden. Da nur eine fluide Phase vorliegt, wird der Einfluss der Fluiddynamik überschaubar. Da außerdem kein Stofftransport mehr aus der Gasphase in die Flüssigkeit erfolgt, bestimmen neben der chemischen Reaktion 'nur' noch Diffusionsvorgänge in der flüssigen (Kern)Phase bzw. in den Katalysatorproben die (effektive) Reaktionskinetik. Dieses wesentlich einfachere Reaktionssystem kann sehr genau untersucht werden, und zwar unter Bedingungen (Partikelgröße, Fluidgeschwindigkeit), die auch in technischen Reaktoren herrschen. Durch den anschließenden Vergleich mit Untersuchungen in einem Dreiphasenreaktor kann dann der Einfluss der Fluiddynamik und des Stofftransportes Gas/Flüssigkeit besser als mit den oben beschriebenen üblichen Methoden beurteilt werden. Diese Methode bietet sich allerdings nicht nur für kinetische Untersuchungen an, sondern auch für eine verbesserte Reaktionsführung bei Mehrphasenreaktionen. (...) Folgende Reaktionen, die in der chemischen Praxis bisher in Dreiphasen-Festbettreaktoren durchgeführt wurden, sollen näher untersucht werden: Hydrierung ungesättigter Kohlenwasserstoffe, Entschwefelung von Erdölfraktionen, die Hydrierung von Nitroaromaten, die Umsetzung von Kohlenmonoxid mit Wasserstoff in höhere Kohlenwasserstoffe wie z.B. Dieselöl durch Fischer-Tropsch-Synthese. Diese Modellsysteme wurden ausgewählt, da sie sich hinsichtlich der Kinetik und der notwendigen Reaktionsführung sehr deutlich unterscheiden. Auf diese Weise soll das Prinzip des Zweiphasenreaktors mit Vorsättigung der flüssigen Phase als Methode für kinetische Untersuchungen und als eine Alternative im Hinblick auf die Reaktionsführung von Mehrphasenreaktoren auf einer möglichst breiten Basis untersucht werden.
Die Oligomerisierung der Kohlenwasserstoffe der C4 -Fraktion wird bereits seit einigen Jahrzehnten intensiv erforscht. Die n-Butene fallen vor allem bei thermischen und katalytischen Crack-Verfahren als Nebenprodukte in dem sogenannten C4 -Schnitt an. Dieser setzt sich aus verschiedenen Kohlenwasserstoffen zusammen, welche alle vier Kohlenstoffatome besitzen. Die Aufarbeitung dieses Gemisches ist aufgrund der vielen Teilprozesse zum Abtrennen bzw. Anreichern einzelner Komponenten äußerst energieaufwendig. Eine Gesamtverwertung der C4 -Fraktion ist daher von großem wirtschaftlichen Interesse. Ein möglicher Prozess auf dem Weg zur Verarbeitung einer Gesamtfraktion ist die Oligomerisierung der Butene. Im Ergebnis der Untersuchung werden vertiefte Kenntnisse über die Wirkungsweise von metallbeladenen mikro/mesoporösen Alumosilicaten in der Olefinoligomerisierung erwartet.
Die Charakterisierung der Schadstoffkomponenten auf Luftaerosolen und Filterstaubproben aus Muellverbrennungsanlagen laesst Rueckschluesse auf die Prozesse bei der Entstehung, Ausbreitung und Filterung zu. Mit Hilfe oberflaechenanalytischer Methoden, insbesondere XPS und AES, werden Zusammensetzung und chemische Form von Schadstoffen bestimmt. Geplant sind ferner Untersuchungen zur katalytischen Schadstoffumwandlung an Modellaerosolen unter besonderer Beruecksichtigung der Schwermetallspezies und Untersuchungen zur Konzentrationsverteilung ueber den Teilchenquerschnitt, die Eignung oxidischer Substanzen in Aerosolen als Gassensoren soll geprueft werden. Aus bisherigen Arbeiten im Rahmen des POETA-Programms zeigt sich die besondere Bedeutung des Nachweises von Schwefelspezies sowie die Notwendigkeit grundlegender Untersuchungen zum Probenverhalten unter dem Einfluss von Roentgen- oder Elektronenbestrahlung.
Im Zusammenhang mit der Reinigung von durch Kohlenwasserstoffe bzw. Stickoxide belasteten Abgasen ist der Einsatz von Halbleitern, wie z.B. TiO2, als Photokatalysatoren vor allem deshalb interessant, weil die Verbrennungs- bzw. Reduktionsreaktionen bei Raumtemperatur ablaufen können. Die praktische Anwendung ist allerdings durch die bisher erreichten, noch zu geringen Katalysatoraktivitäten begrenzt. Im Rahmen des Projektes sollen der Einfluss von Lichtwellenlänge, Lichtintensität und Kristallitgröße auf Geschwindigkeit und Selektivität (z.B. NO2, NO, N2O, N2) der Umsetzung untersucht werden. Es umfasst die Katalyse aus Sicht der Technischen Chemie und das Problem der Herstellung und Charakterisierung nanokristalliner, d.h. grenzflächendominierter Materialien aus Sicht der Festkörper Physikochemie. Ziel dieser Zusammenarbeit ist es vor allem, am Beispiel ausgewählter Reaktionen die Einflüsse der Eigenschaften des Katalysatormaterials auf den Ablauf von mit Photohalbleitern katalysierten Gasreaktionen herauszuarbeiten und in einem Modell zusammenzuführen.
Die rasante Urbanisierung und Industrialisierung in den vergangenen Jahrzehnten hat zu einer Vielzahl von Umweltkontaminationen mit halogenierten organischen Verbindungen (HOCs) sowohl in China als auch Europa geführt. Ziel des vorgeschlagenen Projektes ist es, neue Erkenntnisse und ein vertieftes Prozessverständnis für die Synthese von biobasierten nFe(0)/Pd/C-Kompositen und deren Reaktionen mit HOCs in der Grundwasserreinigung zu gewinnen. Dies beinhaltet die Identifizierung von Synthese-optionen für Partikel mit maßgeschneiderten und verbesserten Eigenschaften mithilfe der Hydrothermalen Karbonisierung (HTC). Ein tiefgreifendes mechanistisches Verständnis der beteiligten Prozesse, d.h. Sorption, Reaktion und Transport reaktiver Spezies so-wie Katalyse sowie deren Synergien dient einer zielgerichteten Optimierung der Partikel und der Erkundung ihrer Anwendungsgebiete. Die nFe(0)/Pd/C-Komposite sollen speziell für die in-situ Grundwasserreinigung geeignet sein und verbesserte Eigenschaften insbesondere für solche Anwendungsfälle besitzen, bei denen bekannte Konzepte der in-situ-Sanierung mit Nanopartikeln (Nanoremediation) nicht greifen. Die synergistische Kombination verschiedener Wirkprinzipien erlaubt Multikatalyse-Prozesse sowie die sequentielle Behandlung von verschiedenen Kontaminanten. Zunächst werden verschiedene Optionen für die Einbettung von Metallen in oder auf die Kohlepartikel untersucht, die erhaltenen Produkte detailliert durch physikalisch-chemische Methoden charakterisiert und auf ihre Reaktivität getestet. Danach werden Reaktionen in Batch-Ansätzen für die Aufklärung der zugrundeliegenden Mechanismen, wie das Zusammenspiel von Pd, Kohleoberfläche und Fe-Spezies, der beteiligten Reaktionswege und reaktiven Spezies, durchgeführt. Weiterhin werden Optionen für Multikatalyse und sequentielle Reduktions-/Oxidationsprozesse untersucht. Abschließend werden die entwickelten Materialien und Prozesse im Labor für die Behandlung von Wasser von kontaminierten Standorten in Deutschland und China erprobt. Dieses kooperative Forschungsvorhaben von chinesischen und deutschen Partnern wird zu einem signifikanten Fortschritt in der Sanierungsforschung für industriell kontaminierte Standorte, insbesondere auch in China, führen.
The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.
Untersuchung von photoelektrochemischen Systemen am Beispiel von n-TiO2-Halbleiterelektroden. Zusammenhang zwischen photophysikalischen, elektrochemischen und halbleiterphysikalischen Daten von unterschiedlich hergestellten polikristallinen TiO2-Schichten. Vergleich thermisch oxidierter, anodisch oxidierter und vakuum-aufgedampfter Halbleiter. Messung ihrer Stabilitaet und der Photoeffizienz. Untersuchung von Farbstoffen hinsichtlich Stabilitaet gegenueber Angriff von H- und OH-Radikalen, die bei der photokatalytischen H2O-Spaltung entstehen. Untersuchung von Methylenblau, Thionin, Acridinorange, Rhuteniumpyridil, Prophyrine etc. TiO2-Suspensionen als Photokatalysator fuer O2-Entwicklung aus sauren und Ce4+-haltigen waessrigen Systemen. Farbstoffsensibilisierung an Halbleiterelektroden: Farbstoffe im Elektrolyten oder adsorbiert an der Halbleiteroberflaeche.
Gebrauchte oder minderwertige native Fette und Öle sind eine interessante Energiequelle für Dieselmaschinen, die sich durch eine ausgezeichnete Ökobilanz auszeichnen und nicht in Konkurrenz zu Nahrungs- oder Futtermitteln stehen. Dem Einsatz in Dieselmschinen stehen der i.d.R. hohe Gehalt an Schlackebildnern (Ca, Mg, Na, K, P) und an freien Fettsäuren entgegen. Ziel des Vorhabens ist es, ein Verfahren zu entwickeln, mit dem die o.g. Rohstoffe so aufzuarbeiten sind, dass sie ohne weiteres in Dieselmaschinen eingesetzt werden können. Dazu wurde der Rohstoff einer sauer katalysierten Veresterung mit biogenem Ethanol unterworfen, mit dem die Gehalte sowohl an freien Fettsäuren, als auch an den genannten Schlackebildnern soweit gesenkt werden konnten, dass die Maßgaben der DIN-VN 51 605 erfüllt werden. Abgesehen davon, dass die so gewonnen Treibstoffe aus rein biogenen Rohstoffen bestehen, weisen sie Stockpunkte von teilweise unter -20 Grad Celsius auf.
| Origin | Count |
|---|---|
| Bund | 1717 |
| Type | Count |
|---|---|
| Förderprogramm | 1717 |
| License | Count |
|---|---|
| offen | 1717 |
| Language | Count |
|---|---|
| Deutsch | 1644 |
| Englisch | 165 |
| Resource type | Count |
|---|---|
| Keine | 1044 |
| Webseite | 673 |
| Topic | Count |
|---|---|
| Boden | 1213 |
| Lebewesen und Lebensräume | 1256 |
| Luft | 1012 |
| Mensch und Umwelt | 1716 |
| Wasser | 1043 |
| Weitere | 1717 |