API src

Found 681 results.

Related terms

Luftreinhaltung, Atomrechtliche Aufgaben

Zu den Aufgaben des Referats Luftreinhaltung/ Atomrechtliche Aufgaben gehören: im Bereich Luftreinhaltung > die Bearbeitung von planerischen und grundsätzlichen Fragen der Luftreinhaltung, > die Zuständigkeit für - die Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV), - die Verordnung über Emissionsgrenzwerte für Verbrennungsmotoren (28. BImSchV), - das Hamburgisches Gesetz zur Umsetzung der europäischen Schwefel-Richtlinie 2005/33/EG, > die Steuerung der Luftqualitätsüberwachung (Luftmessnetz), > die Bewertung der Luftqualität, > die Aufstellung und Fortschreibung von Luftreinhalteplänen, > die Entwicklung und Begleitung von Luftreinhaltemaßnahmen, > die Bewertung von Luftreinhaltungsaspekten im Rahmen der Bauleitplanung, > die Mitwirkung an Rechtsetzungsverfahren, > die Vertretung Hamburger Interessen in Bund-Länder-Gremien, im Bereich Atomrechtlicher Aufgaben > die Wahrnehmung atomrechtlicher Aufgaben für das Land Hamburg in der Zusammenarbeit zwischen Bund und Ländern, > die Risikovorsorge und Gefahrenabwehr beim legalen und illegalen Umgang mit Kernbrennstoffen, > die Bearbeitung von Grundsatzfragen beim Schutz der Bevölkerung vor der schädlichen Einwirkung ionisierender Strahlung, > die Optimierung der nuklearen Katastrophenschutzvorsorge für die hamburgische Bevölkerung, im Bereich Emissionskataster > das Führung des Emissionskatasters Luft und die Erteilung von Auskünften, > die Organisation und Durchführung der Datenerhebungen in Hamburg für das Emissionskataster sowie für das nationale und das europäische PRTR (Pollutant Release and Transfer Register, Schadstofffreisetzungs- und -verbringungsregister), > die Erfüllung weiterer nationaler und europäischer Berichtspflichten, > das Verfassen von Stellungnahmen zur Bauleitplanung > die Aufbereitung und Bereitstellung der Informationen für diese Aufgaben in GIS-Systemen, sowie der Immissionsschutz vor elektromagnetischen Feldern bei Anlagen der Energie- und Kommunikationstechnik.

Leichte und heizbare Materialien für den Möbel- und Innenausbau gezeigt am Beispiel der Caravaning-Industrie, Teilvorhaben 3: Fertigung von Prototypen für den Möbel- und Innenausbau

Atomrechtliche Aufsichtsbehörde

Die einzige kerntechnische Anlage in Berlin gemäß § 7 Atomgesetz ist der Forschungsreaktor BER II am Helmholtz-Zentrum Berlin (HZB). Die staatliche Aufsicht überwacht kerntechnische Anlagen kontinuierlich während ihrer gesamten Lebensdauer, einschließlich der Errichtung, Stilllegung und Sicherung. Forschungsreaktor BER II Aufgaben der Atomrechtlichen Aufsichtsbehörde Der Betrieb des Forschungsreaktor BER II am Helmholtz-Zentrum Berlin (HZB) wurde im Dezember 2019 eingestellt. Der BER II diente zur Bereitstellung von Neutronen für die Forschung. Neutronenstrahlung wird von der Wissenschaft, neben Röntgen- und elektromagnetische Strahlung (Gammastrahlung), zur Erforschung der Eigenschaften von Materialien genutzt. Der Zweck des BER II war nicht die Herstellung von Energie, sondern die Bereitstellung von Neutronen. Er war nicht mit einem Kernkraftwerk vergleichbar, da er in einer Umgebung ohne hohe Drücke bei geringen Temperaturen und bei einer Wärmeleistung von gerade einmal 10 MW arbeitete. Andere kerntechnische Anlagen, wie z.B. Kernkraftwerke oder Brennelement-Fabriken, gibt es in Berlin nicht. Es gibt allerdings eine Vielzahl weiterer Einrichtungen, die radioaktive Stoffe in der Medizin, in der Forschung oder zu wirtschaftlichen Zwecken einsetzen bzw. handhaben. Soweit es sich bei diesen radioaktiven Stoffen nicht um Kernbrennstoffe handelt, sind diese Einrichtungen nicht Gegenstand der Atomaufsicht, sondern der für Strahlenschutz zuständigen Behörden. Am Abend des 26. Juni 2017 erfolgte der letzte Abtransport von bestrahlten Brennelementen aus dem BER II in die USA. Pressemitteilung des Bundesministeriums vom 28.06.2017 Informationen zur Stilllegung des BER II (Atomrechtliche Genehmigungsbehörde) Häufig gestellte Fragen zur Sicherheit des Forschungsreaktors BER II (HZB) Forschungsreaktor BER II (HZB) Höchstmögliche Sicherheits­anforderungen Die Atomaufsicht sorgt mit den hinzugezogenen Sachverständigen nach § 20 AtG, im Zusammenwirken mit der Betreiberin des BER II dafür, dass die kerntechnische Anlage BER II den höchstmöglichen Sicherheitsanforderungen gerecht wird. Hierzu gehört eine fortlaufende Anpassung bzw. Verbesserung der sicherheitstechnischen Maßnahmen. Dabei werden neue Erkenntnisse aus Forschung und Entwicklung ebenso berücksichtigt wie Erfahrungen aus dem Betrieb des BER II und dem Betrieb kerntechnischer Anlagen im In- und Ausland. Kerntechnisches Regelwerk Die Aufsichtsbehörde kontrolliert die Einhaltung von Rechtsvorschriften und Neben­bestimmungen, die in atomrechtlichen Genehmigungen festgelegt sind. Weiterhin überwacht sie die Erfüllung von Anordnungen oder Verfügungen nach dem kerntechnischen Regelwerk durch die Genehmigungsinhaber. Sie bearbeitet zustimmungspflichtige Vorhaben und überprüft die Einhaltung der Betriebsvorschriften, die Anforderungen an wiederkehrend zu prüfende sicherheitsrelevante Anlagenteile sowie die betriebsinternen Strahlenschutzmaßnahmen. Umgebungsüberwachung Für die Umgebungsüberwachung des BER II hat die Atomaufsicht jederzeit Zugriff auf ein Fernüberwachungssystem, welches wichtige Anlagenparameter, Emissionsdaten, Wetterparameter und Radioaktivitätsmesswerte erfasst. Erlass von Anordnungen bei Gefahr Darüber hinaus haben die Aufsichtsbehörde und ihre Sachverständigen jederzeit Zutritt zum BER II, falls dies erforderlich sein sollte. Im Bedarfsfall können Anordnungen erlassen, Genehmigungen widerrufen oder die Einstellung des Betriebs angeordnet werden. Dies würde in der Regel der Fall sein, wenn Abweichungen von gesetzlichen Bestimmungen bzw. Genehmigungsauflagen festgestellt würden, die eine Gefahr für Leben, Gesundheit oder Sachgüter darstellen können. Rechtsgrundlagen Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren (Atomgesetz – AtG) Gesetz zum Schutz vor der schädlichen Wirkung ionisierender Strahlung (Strahlenschutzgesetz – StrSchG) Grundgesetz für die Bundesrepublik Deutschland (GG) Sollte es beim BER II zu einem für die kerntechnische Sicherheit bedeutsamen Ereignis kommen, wird dieses von der Betreiberin an die Atomaufsicht gemeldet. Grundlage für dieses Meldeverfahren ist die Atomrechtliche Sicherheitsbeauftragten- und Meldeverordnung ( AtSMV ). Sinn und Zweck des behördlichen Meldeverfahrens ist es, den Sicherheitsstatus der kerntechnischen Anlagen zu überwachen und ihn mit den aus den gemeldeten Ereignissen gewonnenen Erkenntnissen im Rahmen des Aufsichtsverfahrens immer noch weiter zu verbessern. Gemeldet werden müssen auch Ereignisse, die nicht auf eine Sicherheitsgefährdung hindeuten, deren Auswertung aber einen Erkenntnisgewinn verspricht. Für den BER II werden die Meldekriterien für Ereignisse in Forschungsreaktoren in der Anlage 3 der AtSMV angewandt. Ergänzend zu dem gesetzlichen vorgeschriebenen deutschen Meldeverfahren werden meldepflichtige Ereignisse auch nach der internationalen Bewertungsskala INES der International Atomic Energy Agency – IAEA , um die Bedeutung des Ereignisses für die Sicherheit der Anlage und dessen radiologische Auswirkungen auf die Bevölkerung und Umgebung transparent darzustellen. Alle bisherigen Ereignisse beim BER II wurden mit der INES-Stufe 0, d.h.“keine oder sehr geringe unmittelbare sicherheitstechnische bzw. keine radiologische Bedeutung”, gemeldet. Insbesondere traten aufgrund keiner Ereignisse Ableitungen radioaktiver Stoffe oberhalb genehmigter Werte für Fortluft und Abwasser auf. Jedes meldepflichtige Ereignis beim BER II ist in den Monats- und Jahresberichten der Störfallmeldestelle des Bundesamtes für kerntechnische Entsorgungssicherheit aufgeführt. Zu den routinemäßigen und anlassbezogenen Aufgaben der Aufsichtsbehörde gehören die technische Kontrolle und Überwachung des BER II, das Führen von regelmäßigen Aufsichts- und Fachgesprächen mit der Betreiberin und den hinzugezogenen Sachverständigen, die Abnahme von fachlichen Prüfungen am Reaktor zur Bestätigung der erforderlichen Fachkunde die Prüfung und Begleitung von eingereichten Änderungs- und Instandhaltungsanträgen; die Auswertung und Prüfung der Betreiberberichte wie etwa der technischen Monats- und Jahresberichte, die Auswertung und Prüfung der dazugehörenden Stellungnahmen der Sachverständigen. Gemäß Auflage 3.4.3 der Betriebsgenehmigung (dritte Teilgenehmigung zur Änderung des Forschungsreaktors BER II in Berlin Wannsee) ist die Betreiberin verpflichtet, der atomrechtlichen Aufsichtsbehörde schriftlich über den bestimmungsgemäßen Betrieb zu berichten. Dabei wird dargestellt, wie der Betrieb seit der letzten Berichterstattung verlaufen ist, z.B. wann der Reaktor in Betrieb war und welche Störungen auftraten. Ferner enthält der Bericht auch eine Übersicht, welche Arbeiten durchgeführt worden sind. Weiterhin muss jede Bewegung von Kernbrennstoff angezeigt werden. Im Rahmen des Berichtes wird auch darüber informiert, welche Themen innerhalb des Fachkundeerhalts behandelt worden sind. Gemäß Auflage 3.4.4 ist die Betreiberin auch verpflichtet, die nach den Artikel 78 und 79 des Vertrages zur Gründung der Europäischen Atomgemeinschaft (Euratom-Vertrag) zu führenden Aufstellungen über Kernmaterial betreffende Betriebsvorgänge der Atomaufsicht zuzuleiten. Mit der Auflage 3.4.5 ist die Betreiberin weiterhin verpflichtet, vierteljährlich über die Messergebnisse der Umgebungsüberwachung schriftlich zu berichten. Die Atomaufsicht hat über ein entsprechendes Computerprogramm jederzeit Zugriff auf die Daten des Reaktor­fernüberwachungs­systems (RFÜ) . Das RFÜ ist ein komplexes Mess- und Informationssystem, welches rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission) vollautomatisch erfasst und überwacht. Meteorologische Daten zum Standort des BER II in Wannsee und Messwerte aus dem integrierten Mess- und Informationssystem (IMIS) des BfS werden ebenfalls in das RFÜ übernommen. Das RFÜ bietet zahlreiche Möglichkeiten, die gemessenen Werte auszuwerten, darzustellen und auf die Einhaltung von Grenzwerten und Schutzzielen hin zu überprüfen, und dient somit als Instrument der atomrechtlichen Aufsicht. Die wichtigsten Betriebsparameter des BER II, wie z.B. Reaktorleistung, Temperatur und Füllstand im Reaktorbecken und Dosisleistung in verschiedenen Bereichen sowie Radioaktivität in Fortluft und Abwasser werden im RFÜ online überwacht. Die wichtigsten Daten werden regelmäßig durch die Atomaufsicht kontrolliert und bei Auffälligkeiten erfolgt sofort eine Ursachenermittlung. Damit relevante Vorfälle nicht unbemerkt bleiben, erfolgt bei Erreichen von im System eingestellten Schwellwerten eine automatische Alarmierung der Aufsichtsbehörde. Bezüglich der nuklearen Sicherheit steht die Aufsichtsbehörde im ständigen Austausch zu allen relevanten Aufsichtsthemen mit anderen Bundesländern und dem Bund. Hierfür sorgen die seit Jahrzehnten etablierten Bund-Länder-Gremien des Länderausschusses für Atomkernenergie. In diesen Bund-Länder-Gremien arbeitet sie mit an der Weiterentwicklung und Überarbeitung des kerntechnischen Regelwerks . Darüber hinaus arbeitet die Aufsicht auch mit anderen Mitgliedsstaaten der Europäischen Union z.B. beim Erfahrungsaustausch im Rahmen themenbezogenen technischen Selbstbewertungen (gemäß AtG § 24b [1] Selbstbewertung und internationale Prüfung) zusammen. Weiterführende Informationen zum Länderausschuss für Atomkernenergie

Schäume aus Ligninsulfonat für den Einsatz als Kernmaterial in Stoßfängern, Teilvorhaben 3: Anwendungstechnik und Simulation

Der chemische Aufschluss von Pflanzenfasern liefert Zellstoff, der vorwiegend aus Cellulose besteht und zentraler Rohstoff der Papierherstellung ist. 90% des weltweit erzeugten Zellstoffs wird aus Holz hergestellt. Eine effiziente Nutzung von Holz bedeutet auch die Entwicklung von Konzepten zur Verwendung von Nebenprodukten, die bei Prozessen mit dem nachwachsenden Rohstoff anfallen, wie z.B. Ligninsulfonate, die beim Zellstoffaufschluss nach dem Sulfitverfahren entstehen. Mit der Entwicklung von Ligninschäumen für die Anwendung als Kernmaterial für Stoßfänger wird eine Produktinnovation geschaffen, die dazu beiträgt, die potentielle Leistungsfähigkeit von Holz bestmöglich auszuschöpfen und ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche 'Automobil' zu entwickeln. Ligninschäume sind zwar bekannt, ein ausschließlich Lignin-basierter Schaum ist bislang nicht entwickelt. Das Ziel des Vorhabens ist es zudem, die Schäume aus ungereinigtem Ligninsulfonat zu entwickeln. Als Ligninquelle wurden Ligninsulfonate ausgewählt, da das Magnesiumbisulfit-Verfahren in Deutschland aufgrund der geringeren Geruchsbelastung im Vergleich mit dem Sulfatverfahren, in dem Kraft Lignin anfällt, weiter verbreitet ist. Auch weitere Reststoffe des Sulfitaufschlusses wie nicht aufgeschlossene Faserbündel und Spuckstoffe sollen als Verstärkung für die Schäume eingesetzt werden. Als technologisch anspruchsvolles Anwendungsbeispiel für die Automobilindustrie wurde das Kernmaterial für vordere PKW-Stoßfänger, auch als Stoßstange bezeichnet, ausgewählt. Vorrangig werden hier bislang Formteile aus petrochemisch-basierten Partikelschäumen wie expandiertem Polypropylen (EPP) eingesetzt. Ziel ist es, ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche der Automobilindustrie zu entwickeln.

Schäume aus Ligninsulfonat für den Einsatz als Kernmaterial in Stoßfängern

Der chemische Aufschluss von Pflanzenfasern liefert Zellstoff, der vorwiegend aus Cellulose besteht und zentraler Rohstoff der Papierherstellung ist. 90% des weltweit erzeugten Zellstoffs wird aus Holz hergestellt. Eine effiziente Nutzung von Holz bedeutet auch die Entwicklung von Konzepten zur Verwendung von Nebenprodukten, die bei Prozessen mit dem nachwachsenden Rohstoff anfallen, wie z.B. Ligninsulfonate, die beim Zellstoffaufschluss nach dem Sulfitverfahren entstehen. Mit der Entwicklung von Ligninschäumen für die Anwendung als Kernmaterial für Stoßfänger wird eine Produktinnovation geschaffen, die dazu beiträgt, die potentielle Leistungsfähigkeit von Holz bestmöglich auszuschöpfen und ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche 'Automobil' zu entwickeln. Ligninschäume sind zwar bekannt, ein ausschließlich Lignin-basierter Schaum ist bislang nicht entwickelt. Das Ziel des Vorhabens ist es zudem, die Schäume aus ungereinigtem Ligninsulfonat zu entwickeln. Als Ligninquelle wurden Ligninsulfonate ausgewählt, da das Magnesiumbisulfit-Verfahren in Deutschland aufgrund der geringeren Geruchsbelastung im Vergleich mit dem Sulfatverfahren, in dem Kraft Lignin anfällt, weiter verbreitet ist. Auch weitere Reststoffe des Sulfitaufschlusses wie nicht aufgeschlossene Faserbündel und Spuckstoffe sollen als Verstärkung für die Schäume eingesetzt werden. Als technologisch anspruchsvolles Anwendungsbeispiel für die Automobilindustrie wurde das Kernmaterial für vordere PKW-Stoßfänger, auch als Stoßstange bezeichnet, ausgewählt. Vorrangig werden hier bislang Formteile aus petrochemisch-basierten Partikelschäumen wie expandiertem Polypropylen (EPP) eingesetzt. Ziel ist es, ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche der Automobilindustrie zu entwickeln.

Schäume aus Ligninsulfonat für den Einsatz als Kernmaterial in Stoßfängern, Teilvorhaben 1: Entwicklung von Ligninpolymeren

Der chemische Aufschluss von Pflanzenfasern liefert Zellstoff, der vorwiegend aus Cellulose besteht und zentraler Rohstoff der Papierherstellung ist. 90% des weltweit erzeugten Zellstoffs wird aus Holz hergestellt. Eine effiziente Nutzung von Holz bedeutet auch die Entwicklung von Konzepten zur Verwendung von Nebenprodukten, die bei Prozessen mit dem nachwachsenden Rohstoff anfallen, wie z.B. Ligninsulfonate, die beim Zellstoffaufschluss nach dem Sulfitverfahren entstehen. Mit der Entwicklung von Ligninschäumen für die Anwendung als Kernmaterial für Stoßfänger wird eine Produktinnovation geschaffen, die dazu beiträgt, die potentielle Leistungsfähigkeit von Holz bestmöglich auszuschöpfen und ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche 'Automobil' zu entwickeln. Ligninschäume sind zwar bekannt, ein ausschließlich Lignin-basierter Schaum ist bislang nicht entwickelt. Das Ziel des Vorhabens ist es zudem, die Schäume aus ungereinigtem Ligninsulfonat zu entwickeln. Als Ligninquelle wurden Ligninsulfonate ausgewählt, da das Magnesiumbisulfit-Verfahren in Deutschland aufgrund der geringeren Geruchsbelastung im Vergleich mit dem Sulfatverfahren, in dem Kraft Lignin anfällt, weiter verbreitet ist. Auch weitere Reststoffe des Sulfitaufschlusses wie nicht aufgeschlossene Faserbündel und Spuckstoffe sollen als Verstärkung für die Schäume eingesetzt werden. Als technologisch anspruchsvolles Anwendungsbeispiel für die Automobilindustrie wurde das Kernmaterial für vordere PKW-Stoßfänger, auch als Stoßstange bezeichnet, ausgewählt. Vorrangig werden hier bislang Formteile aus petrochemisch-basierten Partikelschäumen wie expandiertem Polypropylen (EPP) eingesetzt. Ziel ist es, ein wirtschaftlich günstiges und gleichzeitig biobasiertes Schaummaterial für die globale Wachstumsbranche der Automobilindustrie zu entwickeln.

Verminderung der Aminkonzentration am Arbeitsplatz und in der Emission bei der Kernherstellung nach dem Cold-Box-Verfahren

Die Herstellung von Kernen nach dem Cold-Box-Verfahren ist energiesparender als die anderen Verfahren. Durch technische Verfahrensaenderungen soll der Amineinsatz minimiert werden. Zur Vermeidung von Belaestigungen muessen geeignete Massnahmen zur Ablufterfassung und -reinigung getroffen werden.

Material- und Prozessoptimierung zur Steigerung der Effizienz von laserbehandeltem kornorientiertem Elektroblech, Teilvorhaben: Entwicklung eines Verteilertransformators m. hoher Energieeffizienz unter Verwendung von fortschrittlichen laserbehandeltem, kornverzinktem Elektroblech

Laser Magnetic Domain Refinement (LMDR) ist eine seit 30 Jahren im industriellen Einsatz befindliche, etablierte Laserbehandlungstechnologie zur Verlustreduzierung hochpermeabler kornorientierter Eisen-Silizium-Bleche, die als Kernmaterial und a. bei Verteiltransformatoren zum Einsatz kommen. Aus Veröffentlichungen ist bekannt, dass das Potential für eine weitere Verlustreduzierung jedoch deutlich höher liegen kann. Aus diesem Grund wird ein Forschungsprojekt Enhanced LMDR vorgeschlagen, dass die Erforschung und Weiterentwicklung des LMDR-Verfahrens mit der Zielstellung der weiteren Verlustreduzierung zum Gegenstand hat. Mit dem Anspruch den besten Transformator bauen zu können, verfolgt das Vorhaben die Verbesserung der magnetischen Eigenschaften durch Materialoptimierung und ein darauf angepasstes Laser Magnetic Domain Refinement. Es sollen Reduzierungen der Ummagnetisierungsverluste über die bisher industriell erzielbaren 10 bis 15 % erreicht werden. Darüber hinaus ist die Beeinflussbarkeit der Magnetostriktion, die Rückschlüsse auf das Geräuschverhalten laserbehandelter Elektrobleche zulässt, Gegenstand der Untersuchungen. Die genannten Maßnahmen und ein entsprechendes Trafodesign sollen einen hocheffizienten und geräuscharmen Transformator ermöglichen. Die im Leerlauf- und Teillastbereich entstehenden Verluste sollen um mindestens 1 … 10 % gesenkt werden.

Potentialuntersuchung faserverstärkter Schäume zum Einsatz in der Windenergie, Teilvorhaben: Fertigungsmethoden für verstärkte Schaumhalbzeuge

Ziel des Projekts ist es, eine Alternative zur Verwendung von Balsaholz als Kernwerkstoff in den Rotorblattschalen von Windenergieanlagen aufzuzeigen. Dies reduziert das Risiko von Lieferengpässen und steigenden Kosten beim Balsaholz, um die Versorgung der nationalen und europäischen Rotorblatthersteller mit Kernmaterialien sicherzustellen. Zudem bestehen Defizite in der Nachhaltigkeit und Ressourceneffizienz durch die langen Transportwege aus Südamerika und die dortigen Anbaubedingungen des Balsaholzes. Das Projekt schafft den für die Bewertung erforderlichen Untersuchungsrahmen, zur Identifikation der Anforderungen an Kernmaterialien und die Entwicklung und Erweiterung der erforderlichen Berechnungsmethoden. Durch die Kombination unterschiedlicher innovativer Materialien geht das Projekt zudem einen Schritt Richtung zukünftiger Materialsysteme, was eine ganzheitliche Betrachtung von Aspekten wie Rezyklierfähigkeit und Nachhaltigkeit erlaubt. Dies ermöglicht einen ressourcen-sparenden und nachhaltigen Einsatz in zukünftigen Rotorblättern. Das Projekt adressiert einen Wissenstransfer aus Branchen außerhalb der Windenergie in denen bereits Erfahrungen mit heterogenen Kernwerkstoffen und Sandwichmaterialien gewonnen werden konnten, um diese Kenntnisse bei der Methodenentwicklung zu berücksichtigen. Neben zahlreichen Akteuren der Materialentwicklung beinhaltet das Projektkonsortium deshalb Partner aus dem Schienenverkehr und der Flugzeugausstattung.

Reaktionen in Metalloberflaechen

Alle unedlen Gebrauchsmetalle, wie Aluminium, Eisen und Zirkon, bilden bei der Reaktion mit Gasen oder waessrigen Medien mehr oder minder festhaftende Grenzschichten, welche den Angriff der korrodierenden Agenzien stark hemmen. Die Herabsetzung der Reaktionsgeschwindigkeit haengt von einer Reihe von Faktoren ab: Temperatur, Dicke und Haftung der Schicht, Diffusionsgeschwindigkeit der Agenzien, z.B. des Sauerstoffs, und der Metallkationen, etc. Die Haftung der Schicht und die Beweglichkeit der Reaktionspartner haengt wesentlich von der Konzentration von Fremdelementen in dem Matrixmetall und in der Schicht ab. Sowohl dieser Einfluss als auch die Abhaengigkeit des Konzentrationsverhaeltnisses der Fremdelemente in der Schicht und der Matrix von den Reaktionsbedingungen soll untersucht werden. Neben der allgemeinen, leicht erkennbaren technischen Bedeutung sind diese Arbeiten auch fuer die Wiederaufbereitung von Kernbrennstoffen von erheblichem Interesse. Wasserstoff bewirkt in vielen Metallen eine Versproedung, welche zu erhoehter Anfaelligkeit des Probestueckes gegen Korrosion und Bruch fuehrt. Generell sind zwei Wege fuer die Aufnahme des Wasserstoffs offen: a) Zersetzung von Wasser an der Oberflaeche und anschliessende Diffusion des Wasserstoffs durch die schuetzende Oxidschicht, b) Zersetzung des Wassers und Aufnahme des Wasserstoffs unmittelbar an der Metalloberflaeche, welche in Ritzen oder nicht festhaftenden Teilen der Schicht fuer einen direkten Kontakt mit der Loesung zugaenglich ist. Beide Wege sollen untersucht werden.

1 2 3 4 567 68 69