Schutz der Bevoelkerung vor Inkorporation von radioaktiven Stoffen mit der Nahrung; Feststellung der Kontamination der verschiedenen Glieder der Nahrungskette Boden - Bewuchs - Milch mit Radioisotopen, die durch Kernwaffen oder aus nuklearen Anlagen in die Umwelt gelangen.
Die bisherigen Vorstellungen ueber die Hoehe des Strahlenkrebsrisikos muessen anhand neuerer und neuester Erkenntnisse revidiert werden. Dies sollte bei einer Novellierung der Strahlenschutzgesetzgebung Beruecksichtigung finden.
Kernkraftwerke, Wiederaufarbeitungsanlagen, Kernwaffen und Nuklearmedizin sowie die Wirtschaft geben zum Teil langlebige Nuklide an die Biosphaere ab. (Tc99, C-14, Actiniden Ni-59 usw.). Lager fuer radioaktive Abfaelle muessen auf eventuelle Abgaben von Radionukliden ueberwacht werden (Pu, Np). Im Rahmen des NAGRA-Projektes und unabhaengig davon werden die Gehalte von Quellen und Tiefenwaessern an natuerlichen Radionukliden (Uran, Thorium, Radon) und deren Isotopenverteilung bestimmt. Beim Abbruch von Kernkraftwerken muss eine Aktivitaetsbilanzierung des Bauschutts und der Komponenten durchgefuehrt werden. Fuer all diese Probleme muessen chemische Trennmethoden und eine apparative low-level-Spektrometrie entwickelt und betrieben werden. Die Hauptarbeit faellt im Laborbereich an. Dieses Projekt ist verknuepft mit anderen EIR- Projekten.
Aktivitaetsmessungen von Schneeproben aus vergletscherten Gebieten im Zusammenhang mit den atmosphaerischen Kernwaffentests und dem Tschernobyl-Unfall.
Die Messung von radioaktiven Edelgasen am BfS und ihr Beitrag zur Nichtverbreitung von Kernwaffen Anfang 30.09.2025 10:30 Uhr Ende 30.09.2025 11:30 Uhr Radioxenon wird bei Kernwaffentests freigesetzt und international im Rahmen des Kernwaffenteststoppabkommens ( CTBT ) überwacht. Krypton-85 wird bei der Wiederaufbereitung abgebrannter Kernbrennstoffe – u.a. für die Herstellung von waffenfähigem Plutonium – in die Atmosphäre freigesetzt. Das BfS überwacht beide radioaktiven Edelgase seit vielen Jahrzehnten mit Sammelstellen weltweit und Messungen im akkreditieren Edelgaslabor in Freiburg. Bei Interesse an diesem Vortrag bitten wir um eine E-Mail -Anfrage an kolloquium@bfs.de . Der Link zum Vortrag wird Ihnen dann per E-Mail mitgeteilt. Sie möchten über anstehende Vorträge im BfS -Kolloquium informiert werden und wünschen die Aufnahme in unseren E-Mail Verteiler? Dann schreiben Sie eine E-Mail (mit der Angabe Ihrer Kontaktdaten) an kolloquium@bfs.de . Sie erhalten anschließend eine Bestätigung von uns. Messstation auf dem Schauinsland Radioxenon wird bei Kernwaffentests freigesetzt und international im Rahmen des Kernwaffenteststoppabkommens ( CTBT ) überwacht. Eine der Messstationen des internationalen Messnetzes befindet sich auf dem Schauinsland bei Freiburg und wird vom Bundesamt für Strahlenschutz ( BfS ) betrieben. Darüber hinaus betreibt das BfS seit 1973 ein Netzwerk mit wöchentlicher Probennahme an bis zu 26 Stationen in Deutschland und weltweit. Die Luftproben werden im Edelgaslabor des BfS in Freiburg nicht nur auf Radioxenon, sondern auch auf Krypton-85 untersucht. Das Labor ist nach DIN EN ISO/IEC 17025 akkreditiert und international sehr anerkannt. Das radioaktive Edelgas Krypton-85 wird bei der Wiederaufbereitung abgebrannter Kernbrennstoffe in die Atmosphäre freigesetzt. Die Wiederaufbereitung begann in den 1940er Jahren hauptsächlich zur Gewinnung von Plutonium für militärische Zwecke. Ein möglicher Vertrag über das Verbot der Herstellung von spaltbarem Material (Fissile Material Cut-Off Treaty, FMCT) wird seit vielen Jahren diskutiert. Dieser könnte die Überwachung von Krypton-85 als Indikator für heimliche Plutoniumproduktion beinhalten – ähnlich wie Radioxenon beim CTBT . Sowohl für Radioxenon als auch für Krypton existieren auch zivile Emittenten, die zum Hintergrund beitragen. Die Zuordnung von Messungen zu Quellen ist daher komplex und bedarf umfangreicher atmosphärischer Transportmodellierung. Im Rahmen des Online -Vortrages am 30. September 2025 diskutiert Sofia Brander diese Messungen und die Möglichkeit, verschiedene Quellen zu unterscheiden. Hinweis: Co-Autor*innen sind Dr. Andreas Bollhöfer, Sabine Schmid und Martina Konrad vom Bundesamt für Strahlenschutz, sowie Dr. J. Ole Ross von der Bundesanstalt für Geowissenschaften und Rohstoffe (GBR). Adresse Bundesamt für Strahlenschutz Dienststelle München (Neuherberg) Ingolstädter Landstraße 1 85764 Oberschleißheim Deutschland Kontakt Bundesamt für Strahlenschutz Kolloquium E-Mail kolloquium@bfs.de Stand: 22.09.2025
Was denkt Deutschland über Strahlung? - Umfrage 2022 Forschungs-/ Auftragnehmer: GIM ‐ Gesellschaft für Innovative Marktforschung GmbH Projektleitung: Dr. T. Jerković, A. Wachenfeld-Schell Beginn: 01.10.2021 Ende: 30.06.2022 Finanzierung: Forschungsprogramm Strahlenschutz des Bundesumweltministeriums, Fördermittel 155.771 Euro Ein zentraler Bestandteil des Strahlenschutzes ist die Information der Bevölkerung über Strahlenwirkungen und Strahlenrisiko sowie über das richtige Strahlenschutzverhalten. Als Basis für diese Aufgabe wurde im Rahmen einer zweijährlichen Untersuchung der gesellschaftliche Umgang mit ausgewählten Strahlenthemen erfasst. Die Erhebung soll wichtige Erkenntnisse liefern über das Umfeld, in dem sich das BfS mit seinen wissenschaftlichen Arbeiten und Informations- sowie Kommunikationsmaßnahmen bewegt. Die Ergebnisse fließen in die Gestaltung von Informations- und Kommunikationsmaßnahmen ein und dienen dazu, bei Bedarf Strahlenschutzkonzepte an den gesellschaftlichen Umgang mit Strahlung und Strahlenschutz anzupassen. Die Studie 2021/22 war nach 2019 die zweite Erhebung dieser Art. Die Studien sollen einen Vergleich der erfassten Themen im Zeitverlauf ermöglichen. Dafür wird ein Teil der Fragen jeweils weitergeführt. Ein kleinerer Teil wird an aktuelle Ereignisse oder Erkenntnisbedarfe angepasst. Zielsetzung Ziel des Forschungsvorhabens war es, die allgemeine gesellschaftliche Verankerung von Strahlung und Strahlenschutz , die Wahrnehmungen, Kenntnisse und Informationsbedürfnisse der Bevölkerung in Deutschland zu erheben. Um diese Ziele zu erreichen, wurde eine mehrphasige sozialwissenschaftliche Studie initiiert mit folgenden Fragestellungen: Wissen und Wahrnehmung zu Strahlung allgemein Risikowahrnehmung von Strahlung Strahlenschutzverhalten bzw. -absicht Informationsverhalten und -bedarf Wahrnehmung des BfS sowie Erwartungen an Informationsmaßnahmen Methodik und Durchführung Zur Beantwortung der Forschungsfragen wurde ein Forschungsdesign in zwei Schritten gewählt. Im Rahmen einer qualitativen Primärdatenerhebung wurde der kollektive Diskurs rund um Strahlung nachvollzogen bzw. die individuelle Perspektive auf Strahlung und Strahlenschutz erforscht. Dazu wurden folgende Untersuchungen durchgeführt: zwei Gruppendiskussionen von je 2,5 Stunden Dauer und 40 Einzelinterviews von je einer Stunde Dauer. Besonders individuelle Themen wie Barrieren, Motive, Ängste, individuelles Wissen und (Fehl-)Konzeptionen sowie der individuelle Umgang mit Risiken wurden vertiefend diskutiert. Im zweiten Schritt folgte eine quantitative Primärdatenerhebung. Um einen bevölkerungsrepräsentativen Querschnitt der deutschsprachigen Wohnbevölkerung ab 16 Jahren zu befragen, wurden 2000 Telefoninterviews auf Basis einer Dual Frame Stichprobe (kombinierte Festnetz- und Mobilfunkstichprobe) durchgeführt. Die durchschnittliche Interviewdauer betrug dabei 27 Minuten. Ergebnisse Die qualitativen Ergebnisse zeigen ein sehr heterogenes Ergebnisspektrum bei der Beantwortung der Frage: "Was denkt Deutschland über Strahlung ?". Wissen, Bewertungen und assoziierte Emotionen streuen sehr stark nicht nur zwischen den Befragten, sondern auch bei einzelnen Individuen, wenn es um den Vergleich von Strahlungsarten geht. Diese Heterogenität lässt sich qualitativ anhand einer Reihe von Faktoren erklären: Informiertheit, Betroffenheit, Risikoaffinität, Vertrauen in staatliche Institutionen, allgemeine Lebenseinstellung, Geschlecht, geographische Nähe zu potenziellen Strahlungsquellen, Kontrollierbarkeit der Exposition , Kosten-Nutzen-Analyse, Wahrnehmbarkeit der Strahlung , Wissen um Schutzmaßnahmen sowie mediale Präsenz des jeweiligen Strahlenthemas. Die quantitative Studie zeigt, dass sich die Menschen durch staatliche Institutionen bei Strahlung noch besser informiert und geschützt fühlen als noch 2019. Hinsichtlich der Assoziationen im Kontext Strahlung wird in der quantitativen Studie am häufigsten Radioaktivität bzw. Atomwaffen genannt. Der Krieg in der Ukraine hat die Bedeutung des radiologischen Notfallschutzes wieder stärker in das Bewusstsein der Bevölkerung gerückt. Allerdings kennen viele Menschen im Falle eines nuklearen Unfalls keine Anlaufstelle für Informationen oder wüssten nicht, was zu tun wäre. Neben Radioaktivität folgen sehr häufig Assoziationen im Zusammenhang mit Mobilfunk und der UV - Strahlung / Sonnenstrahlung. Daneben gibt es auch Themen im Bereich Strahlung , bei denen weniger Besorgnis besteht, nämlich die Strahlung im medizinischen Bereich, Strahlung durch Hochspannungsleitungen und Strahlung beim Fliegen. Das Informationsverhalten in Bezug auf Strahlung verläuft meist passiv. In der Regel besteht kein Informationsinteresse und -bedürfnis, insbesondere bei Strahlenarten, die weder als besonders riskant noch als besonders relevant für den eigenen Alltag erlebt werden oder die als "etablierte" Strahlenarten als lang bekannt gelten mit ihren jeweiligen Risiken. Stand: 26.08.2025
Atombomben auf Hiroshima und Nagasaki: Bedeutung für den Strahlenschutz Im August 1945 wurden in der Endphase des Zweiten Weltkrieges zum ersten und einzigen Mal Atomwaffen in einem militärischen Konflikt eingesetzt . Die erste von zwei amerikanischen Atombomben wurde am 6. August über der japanischen Stadt Hiroshima abgeworfen. Der zweite Bombenangriff auf die Stadt Nagasaki erfolgte drei Tage später. Das heutige Wissen über die gesundheitlichen Risiken ionisierender Strahlung basiert zu einem wichtigen Teil auf den Beobachtungen an den Überlebenden der Atombombenabwürfe. Insbesondere auf den Ergebnissen der sogenannten Life Span Study, einer epidemiologischen Kohortenstudie an den Atombombenüberlebenden. Die Studienergebnisse bilden eine wichtige Grundlage für den Strahlenschutz, insbesondere für die Festlegung von Grenzwerten. Auch in Zukunft sind wichtige Erkenntnisse aus dieser Studie zu erwarten. Historie Atombombenabwürfe: Auswirkungen Historie Friedensdenkmal in Hiroshima: Gedenkstätte für den ersten kriegerischen Einsatz einer Atombombe Während des Pazifikkriegs zwischen Japan und China beschloss die amerikanische Regierung, den Export von Erdöl und Stahl nach Japan einzuschränken, um die Kriegsausweitung nach Südostasien zu verhindern. Dieses wirtschaftliche Embargo führte am 7. Dezember 1941 zum japanischen Angriff auf Pearl Harbor und zur Ausweitung des Pazifikkrieges auf Amerika. Die USA begannen daraufhin im Jahr 1942 mit der Entwicklung und dem Bau der Atombombe ("Manhattan Project"), die im Juli 1945 in Los Alamos erfolgreich getestet wurde ("Trinity Test"). Nach fast vier Jahren andauernder Kriegsführung und der Ablehnung eines Kapitulationsultimatums seitens Japans bat die US-Militärführung um die Erlaubnis für den Einsatz der Atombombe. Obwohl viele an der Entwicklung beteiligte Wissenschaftler davon abrieten, wurde 1945 beschlossen, die Atombombe einzusetzen. Als Ziel für den Abwurf am 6. August wurde Hiroshima gewählt. Es war Sitz des Hauptquartiers der 2. Hauptarmee Japans und diente gleichzeitig zur Lagerung kriegswichtiger Güter. Zudem befand sich dort kein Kriegsgefangenenlager (mit US-Insassen). Als Ziel für den Abwurf der zweiten Atombombe am 9. August war ursprünglich die für die Rüstungsindustrie wichtige Stadt Kokura vorgesehen. Wegen schlechter Sicht wurde jedoch Nagasaki angeflogen, das Sitz des Rüstungskonzerns Mitsubishi war. Atombombenabwürfe: Auswirkungen Durch die Druck- und Hitzewellen (von mindestens 6.000 °C ) waren Sekunden nach den Abwürfen 80% der Innenstädte völlig zerstört. Die daraufhin aufsteigenden Atompilze bestanden aus aufgewirbeltem Staub und Asche, an die sich radioaktive Teilchen anhefteten. Diese Staubwolke ging ca. 20 Minuten später als radioaktiver Niederschlag (sogenannter Fall-out ) auf die Umgebung nieder. Die Opfer der Atombombenabwürfe kamen zum einen unmittelbar durch die Explosion ums Leben, zum anderen verstarben sie an den Akut- und Spätschäden der ionisierenden Strahlung. Eine eindeutige Unterscheidung der Todesursachen nach Verbrennungen, Verletzungen oder Strahlung war unmöglich, da auch die Druck- und Hitzewellen eine Rolle spielten. Da alle wichtigen Aufzeichnungen und Register in den Städten zerstört wurden, ist die genaue Anzahl der durch die Explosion Getöteten bis heute unklar. Nach Schätzungen starben in Hiroshima bis zu 80.000 und in Nagasaki bis zu 40.000 Menschen direkt, ebenso viele wurden verletzt. Abschätzung der Einwohnerzahl sowie der akuten Todesfälle in beiden Städten zum Zeitpunkt des Abwurfes bis 4 Monate danach Stadt Geschätzte Einwohnerzahl zum Zeitpunkt der Abwürfe Geschätzte Anzahl akuter Todesfälle Hiroshima 340.000 bis 350.000 90.000 bis 166.000 Nagasaki 250.000 bis 270.000 60.000 bis 80.000 Quelle: www.rerf.jp Die Anzahl der Überlebenden, die ionisierender Strahlung ausgesetzt waren, wurde in einem Zensus der japanischen Regierung auf etwa 280.000 Personen geschätzt. Als Maß für die Strahlenbelastung der Überlebenden verwendet die Radiation Effects Research Foundation (RERF) die mittlere, gewichtete Strahlendosis des Darms (Gewichtung: Gamma- Dosis des Darms + 10*Neutronen- Dosis des Darms). Diese hängt vom Aufenthaltsort zum Zeitpunkt der Explosion ab und steigt mit der Nähe zum Zentrum der Explosion (dem sogenannten Hypozentrum) stark an. Schätzung der mittleren gewichteten Strahlendosis der Überlebenden in Abhängigkeit von der Distanz zum Hypozentrum in beiden Städten Gewichtete Strahlendosis des Darms in Gray ( Gy ) Distanz Hypozentrum Hiroshima Distanz Hypozentrum Nagasaki 0,005 Gy 2.500 m 2.700 m 0,05 Gy 1.900 m 2.050 m 0,1 Gy 1.700 m 1.850 m 0,5 Gy 1.250 m 1.450 m 1 Gy 1.100 m 1.250 m Quelle: www.rerf.jp Epidemiologische Studien Um die Effekte von ionisierender Strahlung auf den Menschen zu erforschen, wurde 1950 eine Kohortenstudie ( Life Span Study ) begonnen, in die ca. 120.000 Überlebende einbezogen wurden. Zudem wurden mit Teilen dieser Kohorte folgende kleinere Kohortenstudien durchgeführt: eine Studie mit 20.000 Teilnehmenden, die regelmäßig körperlichen Untersuchungen unterzogen werden ( The Adult Health Survey ) eine Studie mit 77.000 Nachkommen von Überlebenden (F1-Studie) eine Studie mit 3.600 Teilnehmenden, die der ionisierenden Strahlung vor ihrer Geburt (in utero) ausgesetzt waren (In-utero study ) sowie eine Studie, in der anhand von 1.703 vorhandenen Blutproben von Überlebenden genetische Veränderungen erforscht werden. Die Life Span Study hat wegen ihrer großen Studienpopulation, einer relativ präzisen individuellen Dosisabschätzung, einem langen Beobachtungszeitraum und der Beobachtung zahlreicher Krankheiten eine große Bedeutung für die Erforschung der gesundheitlichen Auswirkungen ionisierender Strahlung . Im Jahr 2009 waren insgesamt ca. 38 % der Studienpopulation noch am Leben (Altersdurchschnitt 78 Jahre). Von denen, die zum Zeitpunkt der Abwürfe unter 10 Jahre alt waren, lebten im Jahr 2009 noch ca. 83 % . 2 Akute Strahlenschäden ( deterministische Strahlenwirkungen) Unmittelbar nach den Atombombenabwürfen erlitten die Betroffenen akute Strahlenschäden, sogenannte deterministische Strahlenwirkungen . Dabei handelt es sich um Gewebereaktionen, die durch das massive Absterben von Zellen verursacht werden und erst oberhalb einer Schwellendosis auftreten. Zu den deterministischen Strahlenwirkungen gehören beispielsweise die akute Strahlenkrankheit und Fehlbildungen nach Bestrahlung in-utero. Spätschäden (stochastische Strahlenwirkungen) Jahre bis Jahrzehnte nach den Atombombenabwürfen traten bei den Überlebenden Spätschäden, sogenannte stochastische Strahlenwirkungen (wie z.B. Krebs, Leukämien und genetische Wirkungen ), auf. Diese können auch von Strahlendosen verursacht werden, die unterhalb der Schwelle für deterministische Strahlenwirkungen liegen. Stochastisch bedeutet, dass diese Wirkungen nur mit einer bestimmten Wahrscheinlichkeit auftreten. Sie resultieren aus DNA -Mutationen (Schädigungen der Erbsubstanz der Zellen), die Krebs oder Leukämien auslösen können und die erst nach Jahren als klinisches Krankheitsbild in Erscheinung treten. Mutationen in den Ei- und Samenzellen (Keimzellen) können in den nachfolgenden Generationen Fehlbildungen oder Erbkrankheiten zur Folge haben. In den epidemiologischen Studien werden diese stochastischen Strahlenwirkungen untersucht. Bedeutung für den Strahlenschutz Die Daten aus verschiedenen epidemiologischen Studien werden von nationalen und internationalen wissenschaftlichen Gremien, wie der japanisch-amerikanischen Radiation Effects Research Foundation (RERF), ausgewertet und spielen eine wichtige Rolle für die Bewertung des Strahlenrisikos, z. B. durch das wissenschaftliche Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen ( UNSCEAR ) und auch durch die deutsche Strahlenschutzkommission ( SSK ). Die Ergebnisse der Life Span Study , der größten Studie an Atombombenüberlebenden, bilden eine wichtige Grundlage für die Abschätzung strahlenbedingter Risiken und die Ableitung von Grenzwerten für Strahlenbelastungen und Strahlenschutzregelungen. Da die Atombombenüberlebenden jedoch einer hohen akuten Strahlenexposition ausgesetzt waren, ist die Abschätzung der Risiken durch niedrige oder chronische Strahlenexpositionen (wie sie heute eher relevant sind) aufgrund dieser Daten schwierig und wird bis heute kontrovers diskutiert. Die Aussagekraft der Life Span Study steigt mit zunehmender Beobachtungsdauer und es ist mit einer noch genaueren Beschreibung der Dosis-Wirkungs-Beziehung zu rechnen ( z. B. hinsichtlich Alters- und Geschlechtsunterschieden bei der Wirkung ionisierender Strahlung ). Literatur 1 Hsu, W. L., D. L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, M. Iwanaga, Y. Miyazaki, H. M. Cullings, A. Suyama, K. Ozasa, R. E. Shore and K. Mabuchi (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors : 1950-2001 . Radiat Res 179(3): 361-382. 2 Grant, E. J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E. K. Cahoon, C. M. Milder, M. Soda, H. M. Cullings, D. L. Preston, K. Mabuchid and K. Ozasa (2017). Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat Res 187(5): 513-537. 3 Preston, D. L., E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi and K. Kodama (2007). Solid cancer incidence in atomic bomb survivors: 1958-1998 . Radiat Res 168(1): 1-64. 4 Ozasa, K., Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama and K. Kodama (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases . Radiat Res 177(3): 229-243. Stand: 04.08.2025
Der Vertrag über das umfassende Verbot von Nuklearversuchen (Kernwaffenteststopp-Vertrag: CTBT) und seine Überwachung Der Vertrag über das umfassende Verbot von Nuklearversuchen ( CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Der CTBT wurde 1996 zur Unterzeichnung ausgelegt. Von den 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft treten kann, fehlen bis heute drei Länder, die den Vertrag noch unterzeichnen und ratifizieren müssen. Mit der De-Ratifizierung des Vertrages durch Russland Ende 2023 sind es nunmehr sechs Länder, die den Kernwaffenteststopp-Vertrag zwar unterschrieben, jedoch nicht ratifiziert haben. Die Organisation zur Überwachung des Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrags mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Mehrere Dutzend untereinander vernetzte Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das BfS beteiligt sich mit Radioaktivitätsüberwachungen an der Kontrolle und betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Der umfassende Kernwaffenteststopp-Vertrag ( engl. Comprehensive Nuclear-Test-Ban Treaty , CTBT ) ist eines der zentralen internationalen Abkommen zur Verhinderung der Weiterverbreitung von Kernwaffen. Obwohl er noch nicht in Kraft getreten ist, wird seit über 2 Jahrzehnten ein weltweites Messnetz zu Überwachung des Teststopps aufgebaut und erfolgreich betrieben. Der Kernwaffenteststopp-Vertrag Überwachung des Kernwaffenteststopp-Vertrags Der Kernwaffenteststopp-Vertrag Anzahl der weltweit durchgeführten Kernwaffen-Versuche bis 2022. Seit 2017 wurden keine Kernwaffenversuche mehr durchgeführt. Beginn der Kernwaffentests Mit dem sogenannten "Trinity"-Test am 16. Juli 1945 in den USA wurde zum ersten Mal in der Menschheitsgeschichte eine Nuklearwaffe gezündet. Einen Monat später erfolgte der erste militärische Einsatz durch die Abwürfe der Nuklearwaffen über Hiroshima und Nagasaki am Ende des zweiten Weltkrieges. Trotz früher Überlegungen zu einer internationalen Kontrolle von spaltbarem Material für den Bau von Kernwaffen erlangten weitere Nationen die Fähigkeit zur Herstellung dieser Waffen (Sowjetunion: 1949, Vereinigtes Königreich: 1952). In den 1950er Jahren begannen die USA und die Sowjetunion mit dem Testen sogenannter thermonuklearer Waffen (umgangssprachlich "Wasserstoffbomben"), die eine höhere Sprengkraft besitzen und entsprechend größere Mengen an radioaktivem Fallout produzieren. Partieller Teststopp-Vertrag Unter anderem führte die Kritik an diesen Tests dazu, dass sich 1963 die USA , die Sowjetunion und das Vereinigte Königreich über ein Verbot von Tests in der Atmosphäre, unter Wasser und im Weltraum verständigten. Dies wurde in einem internationalen Vertrag, dem partiellen Teststopp-Vertrag niedergelegt ( engl. Partial Nuclear Test-Ban Treaty , PTBT). Frankreich (erster Test 1960) und China (erster Test 1964) unterschrieben diesen Vertrag jedoch nicht und führten noch bis 1980 Kernwaffentests in der Atmosphäre durch. Vom partiellen zum umfassenden Teststopp Das Internationale Messnetz IMS Quelle: CTBTO https://www.ctbto.org/map/ Die Unterzeichnerstaaten des PTBT hielten sich an die Vertragsregeln, wodurch die Zahl der atmosphärischen (oberirdischen) Tests, und der damit verbundene radioaktive Fallout verringert werden konnte. Die Gesamtzahl aller Atomwaffen-Tests verringerte sich jedoch nicht, sie wurden jetzt nur mehrheitlich unter der Erdoberfläche durchgeführt. Bis heute wurden über 2.000 Kernwaffentests gezählt. Auf diplomatischer Ebene wurde nach dem Inkrafttreten des PTBT über einen umfassenden Teststopp-Vertrag diskutiert und 1976 die sogenannte " Group of Scientific Experts " (GSE) eingerichtet. Ihre Aufgabe war es zu klären, ob und wie die Einhaltung eines solchen Vertrags geprüft werden kann, denn ein verlässliches Verifikationssystem ist eine entscheidende Voraussetzung dafür, dass sich Staaten völkerrechtlich an ein Verbot binden. Über die Möglichkeiten und Grenzen der Verifikation (wissenschaftliche Nachweisführung) liefen die Meinungen zunächst weit auseinander. Umfassender Kernwaffenteststopp-Vertrag Es dauerte bis zum Ende des Kalten Krieges, bis formelle Verhandlungen bei den Vereinten Nationen in der Genfer Abrüstungskonferenz aufgenommen wurde. Die Beratungen, an denen auch Experten des BfS maßgeblich beteiligt waren, konnten bereits zwei Jahre später abgeschlossen und der umfassende Kernwaffenteststopp-Vertrag (Comprehensive Nuclear-Test-Ban Treaty, CTBT ) 1996 zur Unterzeichnung ausgelegt werden. Die Verhandlungsparteien wollten sicherstellen, dass die Unterzeichner des Vertrags erst dann bindende Verpflichtungen eingehen, wenn alle Staaten mit nukleartechnischen Einrichtungen – und damit der theoretischen Fähigkeit zum Kernwaffenbau - beigetreten sind. Daher enthält das Dokument eine Liste mit 44 Staaten ( sog. Annex 2-Staaten), die den Vertrag ratifizieren müssen, bevor er in Kraft tritt. Bis heute fehlen von diesen 44 Staaten drei, die den Vertrag vor Inkrafttreten unterzeichnen und ratifizieren müssen (Indien, Nordkorea, Pakistan) sowie seit 2023, mit der De-Ratifizierung des Vertrages in Russland, sechs Länder, die den Vertrag zwar unterschrieben, jedoch noch nicht ratifiziert haben (Ägypten, China, Iran, Israel, USA, Russland). Umsetzung des Kernwaffenteststopp-Vertrags Wenn der Zeitpunkt des Inkrafttretens erreicht wird, muss die Verifikation des Verbots sofort möglich sein. Daher wurde in Wien die sogenannte Vorbereitende Kommission für den CTBT gegründet, deren Aufgabe insbesondere der Aufbau eines internationalen Monitoring-Netzwerks mit 337 Messstationen ist. Mit Hilfe dieses Messnetzes kann die Vertragseinhaltung verlässlich überwacht werden. Daneben bereitet die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) Vor-Ort-Inspektionen konzeptionell vor, entwickelt dafür Messmethoden und führt Übungen durch. Überwachung des Kernwaffenteststopp-Vertrags Die Organisation zur Überwachung des Internationalen Kernwaffenteststopp-Vertrags ( CTBTO ) überwacht die Einhaltung des Vertrages mit seismischen Messungen, Radioaktivitätsmessungen und Spezialmikrophonen in den Ozeanen und der Atmosphäre. Das Bundesamt für Strahlenschutz ( BfS ) beteiligt sich mit Messungen radiaktiver Stoffe in der Atmosphäre an der Kontrolle und unterstützt das Auswärtige Amt durch fachliche Auswertung und Bewertung der Daten. Überwachung des Internationalen Kernwaffenteststopp-Vertrags Die CTBTO ist als internationales Netzwerk darauf ausgerichtet, weltweit geheime Kernwaffentests aufzuspüren. Seismische Messungen können einen ersten Hinweis auf einen unterirdischen Atomwaffentest geben. Mit einer zeitlichen Verzögerung können bei einem Atomwaffentest entstehende radioaktive Edelgase durch das Erdreich in die Atmosphäre gelangen. Wenn dies geschieht, lassen sich diese Gase mit den hoch empfindlichen Radioaktivitätsmessstationen der CTBTO nachweisen und auf einen Atomwaffentest zurückführen. Mehrere Dutzend dieser untereinander vernetzten Messstationen weltweit können geringste Spuren von Radioaktivität in der Luft erfassen. Das Bundesamt für Strahlenschutz betreibt die einzige Station für hochempfindliche Radioaktivitätsmessungen in Mitteleuropa auf dem Schauinsland bei Freiburg. Weltweites Überwachungssystem Die Vertragsorganisation mit Sitz in Wien baut zurzeit mit Hilfe der Signatarstaaten ein weltweites Überwachungssystem mit einem Netz von 321 Messstationen und 16 Laboren auf. Es ist in der Lage, eine nukleare Explosion an jedem Ort der Erde mit hoher Wahrscheinlichkeit zu entdecken, zu identifizieren und auch zu lokalisieren. Dieses System beruht auf 170 Seismographen in der Erde, 11 Unterwassermikrophonen in den Ozeanen, 60 Infraschallmikrophonen in der Atmosphäre und 80 Spurenmessstationen für Radioaktivität in der Luft Eine dieser Spurenmessstationen ist die Station Schauinsland des BfS (Radionuklidstation RN33). Zur Qualitätssicherung werden die 80 Radionuklidstationen durch 16 Radionuklidlaboratorien ergänzt. Die Bedeutung von Radioaktivitätsmessungen Die drei geophysikalischen Techniken - Seismik , Infraschall und Hydroakustik - können zeitnah Explosionen mit einer Stärke über 1 Kilotonne Trinitrotoluol (TNT) Äquivalent (Maßeinheit für die bei einer Explosion freiwerdende Energie) registrieren und lokalisieren. Die Radionuklid -Messtechnik hat anschließend die Aufgabe, den nuklearen Charakter einer Explosion zweifelsfrei nachzuweisen. Detoniert ein nuklearer Sprengkörper, dann entsteht eine Vielzahl radioaktiver Spaltprodukte . Die meisten so gebildeten Radionuklide kommen in der Natur nicht vor und unterscheiden sich auch deutlich in ihrer Zusammensetzung von Radioaktivität aus Kernkraftwerken. Eine Eingrenzung von Freisetzungsort und Freisetzungszeit ist zusätzlich mit Hilfe von atmosphärischen Ausbreitungsrechnungen möglich. Was wird gemessen? An allen im Endausbau des Messnetzes vorgesehenen 80 Radionuklidmessstationen wird die Luft auf Spuren von an Luftstaub gebundenen Gammastrahlern untersucht. An 40 der 80 Stationen, darunter auch auf der Station Schauinsland, wird zusätzlich nach radioaktiven Isotopen des Edelgases Xenon (Xenon-131m, Xenon-133, Xenon-133m und Xenon-135) gefahndet. Mindestanforderungen an die technische Ausstattung der Messstationen Aerosole Edelgase (radioaktives Xenon) Messtechnik Reinstgermaniumdetektor Reinstgermaniumdetektor oder Beta-/Gamma-Koinzidenz Luftdurchsatz mindestens 500 Kubikmeter pro Stunde mindestens 0,4 Kubikmeter pro Stunde Nachweisgrenze 10 bis 30 Microbecquerel pro Kubikmeter Luft bezogen auf Barium-140 1 Millibecquerel pro Kubikmeter Luft bezogen auf Xenon-133 Radioaktive Edelgase wurden in das Messnetz einbezogen, weil diese auch bei unterirdischen und verdeckten Kernwaffentests in die Atmosphäre entweichen können und damit das Risiko für einen potentiellen Vertragsbrecher erhöhen, entdeckt zu werden. Wichtig ist hierbei, dass anhand der isotopenspezifischen Messungen zwischen Radioaktivität aus zivilen Quellen und aus eventuellen Kernwaffentests - die eine Vertragsverletzung darstellen würden - unterschieden werden kann. Auswertung der Daten Sämtliche Messdaten werden über VPN oder ein satellitengestütztes Kommunikationssystem an das Internationale Datenzentrum ( IDC ) der CTBTO in Wien übermittelt. Dort werden sie ausgewertet, an die Unterzeichnerstaaten verteilt und archiviert. Stand: 04.08.2025
Origin | Count |
---|---|
Bund | 62 |
Type | Count |
---|---|
Ereignis | 6 |
Förderprogramm | 20 |
unbekannt | 36 |
License | Count |
---|---|
geschlossen | 36 |
offen | 26 |
Language | Count |
---|---|
Deutsch | 52 |
Englisch | 20 |
Resource type | Count |
---|---|
Datei | 6 |
Dokument | 11 |
Keine | 39 |
Multimedia | 1 |
Webseite | 11 |
Topic | Count |
---|---|
Boden | 32 |
Lebewesen und Lebensräume | 38 |
Luft | 34 |
Mensch und Umwelt | 62 |
Wasser | 33 |
Weitere | 58 |