API src

Found 1089 results.

Related terms

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

IS GT DS - Informationssystem Geothermie von Nordrhein-Westfalen - Datensatz

Der Datensatz stellt Informationen hinsichtlich oberflächennaher, mitteltiefer und tiefer Geothermie bereit. Die oberflächennahe Geothermie betrachtet die Wärmeleitfähigkeit der Gesteine für Erdwärmesonden bis in 100 Meter Tiefe sowie die geothermische Ergiebigkeit für Erdwärmekollektoren. Hinsichtlich mitteltiefer Geothermie liefert der Datensatz Informationen zur Planung von geothermischen Anlagen bis in 1.000 Meter Tiefe, derzeit für das Rheinland, das zentrale Münsterland sowie den Nordrand des Rheinischen Schiefergebirges. Für die Planung von tiefen geothermischen Anlagen (Dubletten) bis in mehr als 5.000 Meter Tiefe werden geologische Informationen über die als Zielhorizonte in Frage kommenden Kalksteinschichten zur Verfügung gestellt. Der Datensatz liefert damit wertvolle Eckdaten bezüglich der Nutzungsmöglichkeiten von Erdwärme; beispielsweise zum Beheizen oder Klimatisieren von Gebäuden aller Art. Verfügbare Kartenthemen: Wärmeentzugsleistung für Erdwärmekollektoren; Wärmeleitfähigkeit für oberflächennahe Geothermie in 40, 60, 80, 100 Meter Tiefe; Übersichtsdarstellung hydrogeologisch sensibler Bereiche; Bereich erhöhter Fließgeschwindigkeit; Wärmeleitfähigkeit für mitteltiefe Geothermie in 250, 500, 750, 1.000 Meter Tiefe; offene Wärmespeicher (ATES); Dublette; oberkreidezeitliche, unterkarbonzeitliche sowie devonzeitliche Karbonate als Zielhorizonte (Top, Mächtigkeit, Temperatur, Faziesverteilung).

ReFlex: Replicability Concept for Flexible Smart Grids, Wüstenrot Germany

Introduction: By 2020, the community Wuestenrot wants to cover its energy needs through the utilization of renewable energy sources, such as biomass, solar energy, wind power and geothermal energy, within the town area of 3000 hectares. In order to elaborate a practicable scheme for realizing this idea in a 'real' community and to develop a roadmap for implementation, the project 'EnVisaGe' under the leadership of the Stuttgart University of Applied Sciences (HFT Stuttgart) was initiated. Accompanying particular demonstration projects are a) the implementation of a plus-energy district with 16 houses connected to a low exergy grid for heating and cooling, b) a biomass district heating grid with integrated solar thermal plants. Project goal: The aim of the project is to develop a durable roadmap for the energy self-sufficient and energy-plus community of Wüstenrot. The roadmap shall be incorporated in an energy usage plan for the community, that shall be implemented by 2020 and brings Wüstenrot in an energy-plus status on the ecobalance sheet. A main feature within the EnVisaGe project is the implementation of a 14,703-m2 energy-plus model district called 'Vordere Viehweide'. It consists of 16 residential houses, supplied by a cold local heating network connected to a large geothermal ('agrothermal') collector. Here PV systems for generating electricity are combined with decentralised heat pumps and thermal storage systems for providing domestic hot water as well as with batteries for storing electricity. Another demonstration project is a district heating grid fed by biomass and solar thermal energy in the neighbourhood 'Weihenbronn'. It's based on a formerly oil-fired grid for the town hall and was extended to an adjacent residential area.

Ressortforschungsplan 2024, Handlungsbedarf und Optionen zur Regulierung des Stromverbrauchs von Elektrofahrzeugen

Der „European Green Deal“ zielt darauf ab, die EU bis 2050 klimaneutral zu machen. Ein wichtiger Bestandteil dieses Plans ist die Verschärfung der CO2-Flottenzielwerte bei Pkw und leichten Nutzfahrzeugen durch die Verordnung (EU) 2023/851. Diese Verordnung sieht insbesondere vor, dass Neufahrzeuge ab 2035 kein CO2 mehr emittieren. Im Rahmen der Überarbeitung der CO2-Flottenzielwerte für Pkw und leichte Nutzfahrzeuge im Jahr 2022 wurde beschlossen, dass die Europäische Kommission bei der nächsten Überprüfung im Jahr 2026 explizit die Einführung von Mindeststandards für die Energieeffizienz von Nullemissionsfahrzeugen prüfen soll. Vor diesem Hintergrund zielt das Forschungsvorhaben darauf ab, verschiedene regulatorische Optionen zur Reduzierung des Stromverbrauchs von Elektrofahrzeugen zu erarbeiten und deren Auswirkungen umfassend zu bewerten. Dies umfasst die Entwicklung des gesamten Stromverbrauchs und die Analyse wirtschaftlicher, sozialer und ökologischer Folgen durch die Regulierungsoptionen.

Kabelloses Einzelraumtemperatursteuerungssystem

Narkosegas-Belastung in der Raumluft: Einfluss von Narkose-Verfahren und lueftungstechnische Aspekte

Ziel des Forschungsvorhabens ist, die Narkosegas-Belastung fuer Krankenhaus-Personal so gering wie moeglich zu halten. Hierzu wurde die Narkosegas-Belastung an verschiedenen Arbeitsplaetzen im Uniklinikum Tuebingen systematisch erfasst und im Kontext zu verschiedenen Narkose-Verfahren und oertlichen Gegebenheiten bewertet. Ergebnisse bisher: 1) Der Einsatz von Larynxmasken und ungeblockten Endotracheal-Tuben in der Kinder-Anaesthesie fuehrt zu vergleichbarer Narkosegas-Belastung fuer das Personal. In vollklimatisierten OP-Raeumen (Luftwechselzahl 16) koennen bei beiden Narkoseverfahren die vorgeschriebenen Grenzwerte deutlich unterschritten werden. 2) Nachtraeglich eingebaute Lueftungs-Anlagen in Aufwachraeumen koennen zur Reduktion der Narkosegas-Belastung beitragen, auch wenn sie faelschlicherweise unter der Decke und nicht am Boden installiert wurden. 3) Bei voll klimatisierten OP-Raeumen laesst sich Isofluran im Blut von Anaesthesisten nur wenige Minuten nach Masken-Einleitung von Kindern nachweisen. 15 Minuten nach Einleitung ist Isofluran im Blut unter der Nachweisgrenze (1 ng/ml).

FH-Kooperativ 1-2020: Schalltechnische Planungsgrundlagen für Rohrleitungen und Befestigungselemente, FH-Kooperativ 1-2020: Schalltechnische Planungsgrundlagen für Rohrleitungen und Befestigungselemente (SPlanRoB)

Energiehaushalt, Regeln der Baukunde in verschiedenen Gebieten

Ausarbeiten der Grundlagen, publizieren als Normen oder Empfehlungen, Durchfuehrung von Einfuehrungs- und Weiterbildungskursen. Publiziert (neu seit 1980) als Empfehlung - 180/1 Winterlicher Waermeschutz im Hochbau - 180/4 Energiekennzahl - 381/1 Baustoff-Kennwerte - 381/3 Heizgradtage der Schweiz - 384/1 Warmwasser-Zentralheizungen / Technische Anforderungen - 384/2 Waermeleistungsbedarf von Gebaeuden - 384/4 Kamine fuer Gebaeudeheizung, Querschnittbestimmung In Vorbereitung: - 180 Waermeschutz im Hochbau (Revision Ausgabe 1970) - 180/2 Sommerlicher Waermeschutz - 380/1 Energie im Hochbau - 382 Lueftungstechnik - 382/2 Kuehlleistungsbedarf.

Kühle Räume im Sommer

<p>Gegen die Hitze: Das können Sie im Sommer für kühle Räume tun</p><p>Wie Sie Ihr Zuhause kühl halten und der Hitze trotzen</p><p><ul><li>Halten Sie mit dem richtigen Verhalten die Hitze draußen.</li><li>Bauliche Maßnahmen tragen dazu bei, dass Räume kühl bleiben.</li><li>Wenn nichts mehr hilft: klimafreundliches und geräuscharmes Klimagerät anschaffen und sparsam betreiben.</li></ul></p><p>Gewusst wie</p><p>Heiße Sommertage bringen oft Innentemperaturen über 30 °C mit sich. Dafür gibt es verschiedene Ursachen: Die dichte Bebauung in Städten führt tags und nachts zu höheren Temperaturen. Aber auch Mängel am Gebäude und das Nutzerverhalten tragen ihren Teil zur Überhitzung von Räumen bei.</p><p><strong>Mit ihrem Alltagsverhalten</strong> beeinflussen Sie, wie stark sich Ihre Wohnung erwärmt. Ist die Temperatur in der Wohnung erst einmal hoch, ist es schwer, die Raumtemperatur wieder zu senken. Deshalb ist es wichtig, dass sich die Wohnung erst gar nicht aufheizt.</p><p><strong>Bauliche Maßnahmen </strong>begrenzen die Wärmeströme nach innen und sind die Voraussetzung für das richtige Verhalten im Alltag. Sie sollten deshalb bereits bei der Planung eines Neubaus oder einer Sanierung mit den beteiligten Planer*innen besprochen und durchgerechnet werden. Gute Voraussetzungen für angenehme Sommertemperaturen bieten Wohnungen mit folgenden Eigenschaften:</p><p><strong>Wenn sich ein Raum immer noch überhitzt,</strong> sollten Sie ein klimafreundliches Klimagerät auswählen und es möglichst sparsam nutzen:</p><p><strong>Bewegliche Klimageräte vermeiden:</strong> Sie sind ineffizient und sollten, wenn überhaupt, nur ausnahmsweise genutzt werden.1&nbsp;Sie kühlen nicht effektiv, da die warme Abluft nach draußen gefördert wird und die nachströmende Luft den Aufstellraum sogar noch mehr aufheizt. Seit 2020 sind für solche Geräte nur noch Kältemittel mit Treibhauspotenzial (GWP) &lt; 150 zulässig, i.d.R. wird das umweltfreundliche Kältemittel Propan genutzt.</p><p>Hintergrund</p><p><strong>Umweltsituation:</strong></p><p>Die Klimawirkungs- und Risikoanalyse für Deutschland zeigt, dass die Außentemperaturen infolge des Klimawandels auch in Deutschland zunehmen. Trotz aller Bemühungen beim ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠ ist damit zu rechnen, dass beispielsweise die Sommertage (ab 25 °C) um 40 % häufiger werden und die Hitzetage (ab 30 °C) sich verdoppeln können.2 Deswegen werden Lösungen für Gebäudekühlung bereits stärker nachgefragt. Statt aktiver Klimaanlagen, die Energie verbrauchen und Treibhausgasemissionen verursachen, sollten vor allem passive Kühlmaßnahmen wie Sonnenschutz oder Nachtlüftung genutzt werden, die fast ohne Energie auskommen.</p><p>2023 verbrauchten die Klimageräte in Haushalten laut Arbeitsgemeinschaft Energiebilanzen 1,3 ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠ Strom. Das entspricht einem Prozent des Stromverbrauchs aller Haushalte.3 Nicht-Wohngebäude zu kühlen verbrauchte 12,6 TWh Strom. Insgesamt entfielen 2023 in Deutschland 2,8 Prozent des Stromverbrauchs auf die Klimatisierung von Gebäuden.</p><p>Klimaanlagen tragen nicht nur durch den Stromverbrauch, sondern auch durch freigesetzte Kältemittel (mittlerweile bei Neugeräten im Wesentlichen R‑32, GWP=675 gemäß viertem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠ Assessment Report) zur Erderwärmung bei. Das GWP (<em>Global Warming Potential</em>) ist ein Maß für die Treibhauswirksamkeit eines Stoffes. Der GWP für CO2 beträgt 1, sodass im Falle von R-32 die Treibhauswirksamkeit 675mal so groß ist wie die von CO2. Daher haben auch relativ kleine Mengen, die in die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ entweichen, eine hohe klimaschädliche Wirkung. Der Blaue Engel für Raumklimageräte zeigt für Klimageräte, wie es besser geht.</p><p><strong>Gesetzeslage:</strong></p><p>Das <a href="https://www.gesetze-im-internet.de/geg/__14.html">Gebäudeenergiegesetz</a> schreibt vor, dass der Sonneneintrag in Neubauten durch einen ausreichenden sommerlichen Wärmeschutz begrenzt werden muss. Allerdings bezieht sich dieses Kriterium auf das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ der Vergangenheit. Damit blendet es die seither eingetretene und in den nächsten Jahrzehnten noch zu erwartende Klimaerwärmung aus. Für bestehende Gebäude oder für Gebäudesanierungen gelten keine Anforderungen. Es ist daher ratsam, bei Neubau und Sanierung das zukünftige Klima zu berücksichtigen, um Überhitzung auch in den nächsten Jahrzehnten vorzubeugen.</p><p>Die <a href="http://data.europa.eu/eli/reg/2012/206">Verordnung (EU) Nr. 206/2012</a> bewirkt mit den Ökodesign-Anforderungen, dass die ineffizientesten und lautesten Klimageräte bis 12 kW Nennkälteleistung in der EU nicht mehr verkauft werden dürfen. Die Energieverbrauchskennzeichnung nach <a href="http://data.europa.eu/eli/reg_del/2011/626">Verordnung (EU) Nr. 626/2011</a> macht Energieeffizienz und Lautstärke der Klimageräte beim Kauf erkennbar.</p><p>Bestimmte Klimageräte dürfen gemäß Anhang IV der F-Gas-Verordnung (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32024R0573&amp;qid=1706009169366">Verordnung (EU) Nr. 2024/573</a>) nicht mehr auf den europäischen Markt gebracht werden. Seit 2020 zählen hierzu bereits bewegliche Klimageräte mit einem GWP des Kältemittels ≥ 150. Ab dem Jahr 2029 gilt dieser GWP-Grenzwert auch für Split-Klimageräte ("Luft-Luft-Splitsysteme") bis 12 kW Nennkälteleistung. Außerdem wird gemäß Anhang VII die Menge an HFKW (teilfluorierte Kohlenwasserstoffe, z.B. R-32), die auf den europäischen Markt kommt, schrittweise reduziert und bis 2050 auf null gesenkt.</p><p><strong>Marktbeobachtung:</strong></p><p>Die <strong>Wirkung von Sonnenschutz</strong> beschreibt der so genannte Abminderungsfaktor FC gemäß DIN 4108-2. Um effektiv vor Überhitzung zu schützen, sollte er, je nach Bauart des Raums und Größe des Fensters, bei höchstens 0,2-0,1 liegen, also 80 bis 90 Prozent der Sonneneinstrahlung abhalten. Außenliegender Sonnenschutz wie Jalousien, Rollläden, Fensterläden oder durchscheinende Textilscreens erreichen solche Werte problemlos. Zum Vergleich: Innenliegende Rollos halten nur 5 bis 45 Prozent der Sonneneinstrahlung ab – ein entscheidender Unterschied!</p><p>Zwei Arten von Klimageräten sind besonders häufig:</p><p><strong>Split-Klimageräte</strong> bestehen aus zwei Teilen: Das Außengerät mit Kompressor und Kondensator verflüssigt ein Kältemittel, das zum Innengerät geleitet wird, dort verdampft und so dem zu kühlenden Raum Wärme entzieht. Der erwärmte Dampf strömt zurück zum Außengerät, wo die Raumwärme an die Umgebung abgeleitet wird. Die am Innengerät kondensierende Raumfeuchte muss entweder aufgefangen oder mit neu zu verlegenden Kondensatleitungen abgeleitet werden können. Die Kühlwirkung von Split-Geräten ist im Allgemeinen gut. Die Stiftung Warentest rechnet für den Betrieb eines Klimageräts mit Stromkosten über 10 Jahre von 400-560 Euro (1.000-1.400 kWh mit 40 Cent/kWh).</p><p>In Deutschland werden seit dem Jahr 2019 etwa 200.000 Monosplit-Klimageräte jährlich verkauft. Installiert sind fast 1,6 Millionen Geräte, ein Teil davon auch in privaten Haushalten. Diese Zahlen werden im Rahmen der Treibhausgasberichterstattung zur Klimarahmenkonvention (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNFCCC#alphabar">UNFCCC</a>⁠) ermittelt und stützen sich auf Erhebungen der japanischen Kälte/Klima-Fachzeitschriften JARN (<em>Japan Air Conditioning, Heating and Refrigeration News</em>) und des Verbandes JRAIA (<em>Japan Refrigeration and Air Conditioning Industry Association</em>) sowie Expertenschätzungen. &nbsp;</p><p>Bei <strong>beweglichen Klima-</strong> <strong>oder Mono(block)geräten </strong>sind alle Bauteile in einen Apparat integriert. Die Geräte können daher ohne Installationsaufwand nahezu überall eingesetzt werden. Weil sie aber die heiße Abluft über einen Luftschlauch durch ein geöffnetes Fenster ausblasen, strömt im Gegenzug warme Luft von außen in den Raum. Die Folge: Der restliche Raum kann noch wärmer werden, die Kühlwirkung ist vergleichsweise gering, der Stromverbrauch relativ hoch.</p><p>In Deutschland werden jährlich ca. 90.000 mobile Klimageräte verkauft. Der Bestand in allen Sektoren beläuft sich auf etwa 840.000 Geräte.</p><p>Weitere Informationen finden Sie unter:</p><p>&nbsp;</p><p><strong>Quellen:</strong></p><p>1 <a href="https://www.test.de/Klimageraete-im-Test-4722766-0/">Klimageräte im Test</a>, Stiftung Warentest, 2023</p><p>2 <a href="https://www.umweltbundesamt.de/sites/default/files/medien/479/publikationen/cc_14-2023_kuehle_gebaeude_im_sommer.pdf">Kühle Gebäude im Sommer</a>, Umweltbundesamt, 2023</p><p>3 <a href="https://ag-energiebilanzen.de/daten-und-fakten/anwendungsbilanzen/">Endenergieverbrauch nach Energieträgern und Anwendungszwecken</a>, Arbeitsgemeinschaft Energiebilanzen</p>

WD 8 - 006/18 Elektrobus – Einzelfragen zur Spezifikation

Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Elektrobus – Einzelfragen zur Spezifikation In der chinesischen Stadt Shenzhen werden für die ca. 12 Millionen Einwohner hauptsächlich Elektrobusse der Firma „BYD“ eingesetzt. Die aktuelle Spezifikation des „ebus“ bewirbt die ein- gesetzte Batterietechnologie mit einer Reichweite von etwa 250 km bei vollgeladener Batterie. Die Batteriekapazität wird mit 324 kW/h (600 Ah) und 4.000 Ladezyklen angegeben (s.a. Tabelle un- ten). 1 Mittlerweile werden auch in europäischen Städten BYD-Elektrobusse eingesetzt. Ein Elektrobus in London fuhr beispielsweise bei einer 340 kW/h Leistung im normalen Stadtverkehr 190 Kilo- meter. Die Ladezeit betrug 4 Stunden. Der Reisebus C 9 von BYD soll zum Beispiel eine Reich- 2 weite von 200 km ohne und von 140 km mit Betrieb einer Klimaanlage haben. 3 In einem Youtube-Video wird der Elektrobus „K9“ von BYD beworben. Die gefahrene Strecke der Linie 209 in Shenzhen beträgt 35,9 km. Es wurde am Tage gefahren, d.h. ohne Licht. Die Ladean- zeige für die Batterien zeigt am Anfang bei Kilometer 4.819 85 % und am Ende bei 4.855 km 70 %. Das entspricht gefahrenen 36 km und einem Verbrauch von 15 %. Das Aufladen der Batte- rien erfolgt über Nacht im Busterminal. Nach 6 h sind die Batterien zu 100 % geladen. Es gibt auch eine Schnelllademöglichkeit mit 3 h Ladezeit. Solarbatterien auf dem Dach des Busses kön- nen am Tage zum Wiederaufladen genutzt werden. Denkbar wäre, zur Unterstützung der Batte- 4 1 BYD Spezifikation „ebus“, http://www.byd.com/la/auto/ebus.html 2 Renewable Energy Magazine (2016). “BYD puts electric double deckers on to the streets of London“, https://www.renewableenergymagazine.com/electric_hybrid_vehicles/byd-puts-electric-double-deckers-on-to- 20160323 3 Busfahrt (2017)., „IAA 2016: Große Bühne – kleine Schritte“, http://busfahrt.com/component/k2/iaa-2016- grosse-buehne-kleine-schritte 4 BYD, Youtube-Video, “BYD Electric Bus K9 (2011)”, https://www.youtube.com/watch?v=MTlDjY9krjI WD 8 - 3000 - 006/18 (17.1.2018) © 2018 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Elektrobus – Einzelfragen zur Spezifikation rien, die Verwendung des Solarstroms auch für andere Verbraucher wie Klimaanlage oder Hei- zung. Allgemein gilt, dass der Betrieb von Klima-, Heizungs- oder Lichtanlage, Navigationsgerät oder Radio zu Lasten der Reichweite geht. Shenzhen soll 510 Busladestationen und etwa 8.000 in der Stadt verteilte Ladepunkte besitzen. Damit soll die Hälfte der Elektrobusflotte auf einmal geladen werden können. Als Beispiel wird die Station „Qinghu Bus Terminal“ genannt. Nach Aussage des Betreibers laden etwa 30 Lade- punkte 300 Busse innerhalb von 2 Stunden pro Tag auf. 5 Ein Testbericht über Elektrobusse und ein tabellarischer Vergleich der technischen Daten, ohne die Bus Typen der Firma BYD, findet sich hier. 6 *** 5 Clean Technica (2018). “100% — Chinese City’s Record-Smashing 16,359 Electric Bus Fleet”, https://cleantech- nica.com/2018/01/03/100-chinese-citys-record-smashing-16359-electric-bus-fleet/ 6 Busfahrt (2017). „Vergleichstest Elektrobusse: Bonner Runde“, http://busfahrt.com/images/stories/testb richte/elektrobusse_vergleich_0317.pdf Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)

1 2 3 4 5107 108 109