This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.
Global Cloud-Top Height (CTH) as derived from the Sentinel-5P/TROPOMI instrument. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.
Wissenschaftler sowie Politiker erwägen die regionale Verwendung von Marine Cloud Brightening (RegMCB) als mögliche Solar Radiation Management Technologie um die Erderwärmung durch anthropogene Treibhausgase gezielt zu verlangsamen. Während theoretische Arbeiten bezeugen, dass dieser Ansatz prinzipiell einen kühlenden Effekt im Klimasystem erzeugen kann, verbleiben enorme Unsicherheiten bezüglich der Wirksamkeit und der potentiellen Auswirkungen dieses Ansatzes. Dennoch werden erste MCB Feldexperimente in Australien bereits durchgeführt und sind auch in anderen Ländern in der Planung.Der aufhellende Effekt in marinen Wolken durch die kontinuierliche Emission von Seesalz in die untere Troposphäre ist bis heute nur hinreichend verstanden. Der Grad der Wirksamkeit dieser Technologie basiert hauptsächlich auf entweder hoch-aufgelösten Modellrechnungen, welche räumlich und zeitlich stark eingeschränkt sind, oder auf globalen Klimamodellrechnungen, welche auf stark vereinfachten Annahmen über den Ausstoß von Seesalzpartikeln basieren. Diese Lücke zwischen bisher verwendeten Modellansätzen werden wir innerhalb dieses Forschungsantrags schließen. Mit Hilfe von Simulationen von möglichen MCB Strategien innerhalb des Kalifornischen Stratocumulus Wolkendecks, werden wir den Wirksamkeitsgrad dieser Technologie unter realistischen Annahmen quantifizieren, und gleichzeitig potentielle Auswirkungen auf der regionalen Skala identifizieren und quantifizieren können.Innerhalb dieses Projektes werden wir eine vereinfachte Version von ICON-HAM, einem Klimamodell mit einer umfassenden Parametrisierung der Aerosolmikrophysik inklusive Strahlungskopplung und Aerosol-Wolken-Wechselwirkungen, entwickeln und verifizieren. Unser Modellansatz beinhaltet die volle Komplexität ICON-HAMs für Seesalzgrößenverteilungen während alle anderen Aerosolspezien mit konstanten Hintergrundkonzentrationen vorgeschrieben werden. Diese Modellversion wird wir mithilfe von Beobachtungen des Kalifornischen Stratocumulus Wolkendecks verifiziert werden. Das Kalifornische Deck ist eins der vier subtropischen Stratocumulusregionen weltweit und ist im Vergleich zu den anderen Decks am umfassendsten vermessen und verstanden. Innerhalb von RegMCB werden wissenschaftliche Erkenntnisse gewonnen welche uns helfen werden den Wirksamkeitsgrad und die Grenzen dieser Technologie zu quantifizieren. Innerhalb dieses Antrages werden erstmals Simulationen durchgeführt welche auf realistischen MCB Szenarien basieren und die nötige Komplexität beinhalten Aerosol-Wolken-Wechselwirkungen korrekt abzubilden. Gleichzeitig tragen die hier vorgeschlagenen Arbeiten zu einer Verbesserung unseres Verständnisses und der Repräsentation von Aerosol-Wolken-Wechselwirkungen in marinen Stratocumuli allgmein bei.
Die Ozeane sind allein schon durch ihre Masse ein zentrales Element des Klimasystems und des Kohlenstoffkreislaufes. Sie nehmen sehr hohe Mengen an Wärme und CO2 auf, verteilen sie über die Ozeanströmungen und puffern so unter anderem auch die anthropogenen Treibhausgase und Temperaturerhöhungen ab. Insbesondere die polaren Ozeane sind aufgrund der Bildung von Tiefenwasser wichtige CO2-Senken, die durch die zunehmende Erwärmung, den verstärkten Süßwassereintrag auf Grund der Land- und Meereisschmelze und auch durch die veränderte Meereschemie (z.B. Versauerung) gefährdet sind. Gleichzeitig nehmen Anzeichen zu, dass die globalen Meeresströmungen sich verändern und somit auch die Umverteilung von Wärme und Gasen beeinflusst wird. Das Vorhaben soll analysieren, welche Kipppunkte des Erd-Klimasystems in den Polargebieten verortet sind und welche Wissenslücken zur CO2-Aufnahmekapazität, insbesondere im Zusammenhang mit der biologischen Kohlenstoffpumpe, bestehen. Auf dieser Basis sollen die arktischen CO2-Senken definiert und quantifiziert sowie ihre zukünftige Rolle im sich veränderten globalen Klimasystem entsprechend aktueller IPCC-Klimaszenarien, bewertet werden. Dafür sollen im Vorhaben (Teil 1, Fokus Arktis) alle verfügbaren Daten für die Arktis gezielt weiterverarbeitet, ausgewertet und aufbereitet werden. Das übergeordnete Ziel ist, die politische Entscheidungsebene besser zu informieren und so die verstärkt benötigten Schutzambitionen in den Polarregionen zu unterstützen. Antarktisspezifische Analysen sind in einem zweiten Teilvorhaben geplant (vsl. 02/2025 bis 02/2026) und sollen - soweit möglich - in das Gesamtergebnis einfließen. Die vorläufigen Ergebnisse des Vorhabens sollen im Frühjahr 2025 in einer internationalen Fachveranstaltung (Fachkonferenz/Workshop) diskutiert und - soweit möglich - peer-reviewed publiziert werden.
Das Klima ist ein angetriebenes, dissipatives Nichtgleichgewichtssystem, wobei unsere Fähigkeiten die beteiligten Prozesse zu verstehen und simulieren begrenzt sind. Meteorologie und Klimaforschung verfügen noch nicht über eine Theorie zur Beschreibung von Instabilitäten, Gleichgewichtsrelaxation, Vorhersagbarkeit, Variabilität, und der Antwort auf Störungen. Trotz großer Fortschritte stoßen Klima- und Wettervorhersagemodelle nach wie vor auf Barrieren aufgrund der komplexen Randbedingungen und der Multiskaleneffekte. Diese Effekte erfordern die Parametrisierung der nicht aufgelösten Prozesse mit der Folge großer systematischer Fehler. Wir nutzen drei erfolgreiche Ansätze aus der statistischen Mechanik und der Theorie dynamischer Systeme: Covariante Lyapunov Vektoren (CLV), instabile periodische Orbits (UPO) und die Response-Theorie (RT). Dies wird uns erlauben, relevante Probleme der geophysikalischen Strömungsdynamik (GFD) im turbulenten Bereich anzugehen. Wir werden diese Ideen auf komplexere numerische Modelle als frühere Studien ausdehnen.1) Instabilitäten: Wir werden Instabilitäten in turbulenten geophysikalischen Strömungen durch CLVs beschreiben. Im Gegensatz zu klassischen Lyapunov-Vektoren bieten CLVs eine kovariante Aufspaltung der Strömung und physikalisch interpretierbare Muster und erlauben damit eine neue Interpretation von Instabilitäten. Dies wird es uns ermöglichen, eine Verbindung zwischen der Energetik und der dynamischen Eigenschaften herzustellen und damit die mesoskopischen mit den makroskopischen Eigenschaften der Strömung zu verknüpfen.2) Vorhersagbarkeit: Wir werden CLVs und UPOs nutzen, um die Vorhersagbarkeit zu analysieren und Zustände hoher und niedriger Vorhersagbarkeit besser zu verstehen. Wir werden untersuchen auf welche Weise Schwankungen der Lyapunov Exponenten (LE) mit bestimmten Eigenschaften der entsprechenden CLVs zusammenhängen. Wir werden den sogenannten Return-of-Skill in Vorhersagen von Strömungen in einen Zusammenhang mit vorübergehenden Abweichungen in der Summe der positive LEs der Strömung bringen und damit die in der Wettervorhersage beobachteten Schwankungen der Vorhersagbarkeit erklären. Wir werden die Hypothese prüfen inwieweit UPOs die niederfrequente atmosphärische Variabilität erklären können.3) Antworttheorie: Auf der Basis der RT werden wir berechnen wie eine Strömung auf Störungen reagiert, indem nur die Gleichgewichtseigenschaften verwendet werden. Wir werden aus kleinen Ensembles von gestörten Simulationen den Responseoperator empirisch für Klimamodelle ableiten. Dies wird uns eine neue Methode zur Projektion auf verschiedene räumliche und zeitliche Skalen liefern. Wir werden die Antwort von baroklinen Strömungen auf Störungen (z.B. Erwärmung und CO2-Konzentration) analysieren. Wir werden die CLVs nutzen, um die Responseoperatoren in die stabilen, instabilen und neutralen Richtungen zu zerlegen und die Hypothese prüfen inwieweit UPOs mit Resonanzen verbunden sind.
The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Im Lauf der letzten Dekaden wurde für große Teile der Arktis eine signifikante Erwärmung der Erdoberfläche und des oberflächennahen Untergrunds beobachtet. Deren Folgen zeigen sich bereits heute - beispielsweise in einer Ausbreitung der Buschvegetation und einer Vertiefung der saisonalen Auftauschicht. In Anbetracht der Bedeutung von Änderungen in Permafrostregionen für Umwelt, Infrastruktur und Klimasystem besteht ein dringender Bedarf, Parameter dieses Raumes großflächig zu bestimmen und kontinuierlich zu überwachen. Durch die Weite und spärlichen Besiedelung der Arktis sind diese Umweltdaten jedoch nur unzureichend verfügbar und ihre Erhebung ist kostenintensiv. In diesem Kontext können fernerkundliche Daten einen wichtigen Beitrag leisten; Flugzeug- und Satellitengestützte Systeme ermöglichen eine effiziente und flächendeckende Aufnahme von Oberflächeneigenschaften. Ziel des Projekts ist die Identifizierung und Quantifizierung von Zusammenhängen zwischen Eigenschaften der Erdoberfläche, welche durch Fernerkundung abgeleitet werden können, und Eigenschaften des Untergrunds, die den Zustand von Permafrostgebieten charakterisieren. Basierend auf diesen Ergebnissen ist ein weiteres Ziel die Erstellung von konzeptionellen Modellen, welche die Verschränkung und Verbindung von Umwelt-Parameter zeigen. Die Arbeiten werden in einem skalenübergreifenden Multi-Sensor-Ansatz durchgeführt. Der Fokus wird dabei auf die Identifizierung der Kopplungen zwischen Oberfläche und Untergrund, sowie auf den Einfluss des Betrachtungsmaßstabs gelegt. Als fernerkundliche Daten stehen zur Verfügung: (1) grob aufgelöste optische und thermische Satellitendaten, (2) mittel-aufgelöste Radar- und Multi-Spektraldaten und (3) hoch-aufgelöste Thermal-, Hyperspektral- und Laserscanner-Daten von regionalen Befliegungen. Die Charakterisierung des Untergrunds erfolgt mittels (1) geomorphologischer Kartierung, (2) Zeitreihen-Analyse der Temperatur und Bodenfeuchte aus abgeteuften Sensoren, (3) Ground Penetrating Radar (GPR) und (4) elektrischen Widerstandsmessungen. Fernerkundliche Daten der Erdoberfläche und geophysikalische Daten zum Untergrund werden mit multivariaten statistischen Methoden analysiert - mit dem Ziel Zusammenhängen zwischen Oberflächen- und Untergrund-Parametern des periglazialen Systems zu identifizieren und zu quantifizieren. Als Untersuchungsgebiete wurden die Mackenzie Delta Region und das Peel Plateau identifiziert. Beide Regionen liegen in Nord Kanada und zeigen innerhalb geringer Distanzen verschiedenartige, durch Permafrost geprägte Ökosysteme. Zudem stehen durch Vorstudien Daten zur Verfügung; zum einen Referenzdaten von Feld-Kampagnen und zum anderen Satellitenbilder verschiedener Sensoren. Darüber hinaus wird vom Alfred Wegener Institut eine Befliegung dieser Gebiete geplant und finanziert. Das Flugzeug wird mit einer vielfältigen Instrumentenauswahl bestückt; u. a. ein flugzeuggetragenes GPR, ein Laserscanner und eine hyperspektral Kamera.
Die voranschreitenden, anthropogenen CO2-Emissionen verändern das Klima mit bedrohlichen, weit reichenden und irreversiblen Auswirkungen. Daher steigt das Interesse an sogenannten Carbon Dioxide Removal (CDR) Maßnahmen, um so zusätzlich zur Migration und Adaption, die Möglichkeit negativer Emissionen zu eröffnen. Die potenziellen positiven und negativen Auswirkungen durch CDR sind jedoch nicht ausreichend verstanden und quantifiziert. Das Hauptziel des Projektes ist die Analyse der Experimente aus der 1. Phase des Carbon Dioxide Removal Model Intercomparison Projects (CDR-MIP), um das Potenzial und die Risiken großskaliger CDR Methoden besser bewerten zu können. CDR-MIP ist eine neu gegründete Initiative, die eine Reihe von Erdsystemmodellen zusammenbringt, um CDR in einem einheitlichen Rahmen zu untersuchen. Die erste Projektphase, bestehend aus idealisierten Experimenten zu CO2 Entnahme aus der Atmosphäre, Aufforstung und Ozean-Alkalinisierung. Sie dient der Beantwortung folgender Kernfragen a) Reversibilität der Klimaänderung (z.B. zu heutige oder vorindustrielle CO2 Konzentration in der Atmosphäre) und b) potenzielle Wirksamkeit, Feedbacks, zeitlicher Rahmen und Nebenwirkungen unterschiedlicher CDR Maßnahmen. Die bisherige Arbeit diente der Entwicklung der Struktur des CDR-MIPs und weltweit haben sich einige Modellgruppen dazu bereit erklärt die entsprechenden Simulationen durchzuführen. Das Projekt beruht bislang auf freiwilliger Basis. Das macht eine schnelle Verarbeitung der Ergebnisse unwahrscheinlich. Folglich wird eine gezielte Förderung benötigt, um eine zeitnahe Analyse der Ergebnisse und deren öffentlichen Verbreitung zu gewährleisten. Die Analyseergebnisse sollen darüber hinaus die angenommenen Effektivität von CDR Technologien in den 'Integrated Assessment Model (IAM) - generierten Shared Socioeconomic Pathway (SSP) Szenarien informieren, welche die Forschung und Bewertung des Klimawandels unterstützen. Bislang werden bei in den IAM Simulation mit CDR keine Feedbacks des Kohlenstoffkreislaufes berücksichtigt. Eine Wissenslücke die wir schließen wollen. Wir schlagen vor die Ergebnisse aus CDR-MIP zu nutzen, um eine auf den Feedbacks im Kohlenstoffkreislaufes basierende Discount-Rate zu berechnen, die dann für die Kalibrierung der SSP Szenarien und erneuter Modellläufe in einem IAM genutzt werden kann. Zusätzlich werden neue Experimente erstellt und durchgeführt, um die Reaktion des Klimasystems auf die gleichzeitige Anwendung mehrerer CDR Methoden analysieren zu können. Die Kombination der Methoden basiert auf den gegebenen CDR-MIP Experimenten und beinhaltet z.B. eine Kombination von Aufforstung und der Ozean-Alkalinisierung. Anschließende Analysen ermöglichen den Vergleich der Wirksamkeit und Risiken kombinierter und einzelner CDR Methoden. Die Projektergebnisse würden eine umfassende Bewertung von CDR bieten, die allen Projekten innerhalb des SPP verfügbar gemacht und mit den Projektpartnern iterativ diskutiert werden.
Wolken beeinflussen den Energiehaushalt durch Streuung des Sonnenlichts und Absorption der Wärmestrahlung der Erde und gelten daher als wichtiger Faktor im Klimasystem. Die Untersuchung von atmosphärischen Prozessen im Allgemeinen und der Eisnukleation im Besonderen ist von grundlegender Bedeutung für unser Verständnis der mit Wolkenbildung, Niederschlagsentwicklung und Wechselwirkung mit der Strahlung zusammenhängenden Mechanismen. Mineralstaub, der den größten Teil der atmosphärischen Aerosole ausmacht, kann bei geringen Sättigungen und Temperaturen, die über dem homogenen Gefrierpunkt liegen, Eisbildung initiieren und auf diese Weise die Wolkendynamik und auch die Mikrophysik sowie die Eigenschaften der Wolken beeinflussen. Trotz zahlreicher Untersuchungen zum Einfluss von Partikelgröße und Oberflächeneigenschaften von Eiskeimen wissen wir über die heterogene Eisnukleation auf molekularer Ebene immer noch sehr wenig. Übergeordnetes Ziel des vorliegenden Projektverlängerungsantrags ist die Untersuchung der Bedeutung von OH-Gruppen an den Oberflächen mineralischer Aerosolpartikel in heterogenen Eisnukleationsprozessen mit Hilfe der nichtlinearen optischen (NLO-)Spektroskopie und insbesondere der Summenfrequenzspektroskopie bei tiefen Temperaturen. Im DFG-Projekt AB 604/1-1 wurde bereits der Grundstein für das neue Forschungsfeld (Atmosphärische Oberflächenwissenschaft) am IMK-AAF des Karlsruher Instituts für Technologie (KIT) gelegt. Das Projekt hat deutlich gezeigt, dass sich die NLO-Spektroskopie für die Untersuchung von heterogenen Eisnukleationsprozessen auf molekularer Ebene eignet. Im Rahmen des hier vorgeschlagenen Projekts sollen daher im Wesentlichen Wasser und Hydroxylgruppen an den Oberflächen zweier atmosphärisch relevanter Mineraloxide mit unterschiedlichem Eisnukleationsvermögen (Feldspat und Quarz) während des heterogenen Gefrierens untersucht werden. Mit Hilfe der Summenfrequenzspektroskopie bei tiefen Temperaturen sollen die Grenzflächenwasser (flüssig und Eis) auf mineralischen Oberflächen analysiert sowie der Einfluss der OH-Gruppen an der Oberfläche auf den heterogenen Gefrierprozess bestimmt werden. Die hier geplanten Untersuchungen werden als Grundlage für eine deterministische Beschreibung des Prozesses des heterogenen Gefrierens an atmosphärischen Aerosolpartikeln mineralischen Ursprungs dienen. Solche Studien sind für unser Verständnis der atmosphärischen Prozesse und somit auch des Klimasystems von großer Bedeutung und darüber hinaus auch im Hinblick auf die lokale Wettermodifikation (z.B. Wolkenimpfung, Hagelabwehr) und die Klimaschutzpolitik von besonderem Interesse.
| Origin | Count |
|---|---|
| Bund | 578 |
| Global | 3 |
| Land | 25 |
| Wissenschaft | 16 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Daten und Messstellen | 10 |
| Ereignis | 4 |
| Förderprogramm | 511 |
| Taxon | 1 |
| Text | 56 |
| unbekannt | 28 |
| License | Count |
|---|---|
| geschlossen | 71 |
| offen | 531 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 430 |
| Englisch | 265 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Bild | 1 |
| Datei | 8 |
| Dokument | 41 |
| Keine | 325 |
| Unbekannt | 2 |
| Webdienst | 2 |
| Webseite | 249 |
| Topic | Count |
|---|---|
| Boden | 448 |
| Lebewesen und Lebensräume | 445 |
| Luft | 609 |
| Mensch und Umwelt | 606 |
| Wasser | 457 |
| Weitere | 596 |