API src

Found 599 results.

Related terms

MKonthly assessment of TPW for Europe

Assessment texts on monthly mean tropospheric precipitable water, provided by ECSM - European Climate System Monitoring, WMO Regional Climate Centre (RCC) on Climate Monitoring

RunID 178 MPIOM/HAMOCC/REMO RCP4.5 r1

Dynamical downscaling for the Northwest European Shelf with the regionally coupled ocean-atmosphere climate system model MPIOM/HAMOCC/REMO. Parent global simulation is the first realization (r1) of the CMIP5 simulation by MPI-ESM-LR under RCP4.5 radiative forcing. Coupling domain EURO-CORDEX, coupling time step 1h. Horizontal resolution ocean: ~5 km southern North Sea, ~12 km shelf break. Horizontal resolution atmosphere: ~25 km Initialized by end of "RunID 166 MPIOM/HAMOCC/REMO historical r1"

Transportwege von Feuchte und Wasserdampfisotopologe

Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.

Deutscher Beitrag zu Klimaprojektionen für CMIP7 - AR7 Fast Track, DECK- und ScenarioMIP-Simulationen, Teilprojekt 3: Entwicklung von maschinellen Lernverfahren, Evaluation mit ESMVal und Erweiterung des ESMValTool (DLR)

Elastokalorik für eine effiziente Klimatechnik, Teilvorhaben: Optimierung der elastokalorischen Materialien

Untersuchungen zum Einfluß des Weltraumwetters auf die Chemie und Dynamik der Erdatmosphäre (SPEACH)

Energetische Elektronen aus der Aurora und den Strahlungsgürteln sind bekannte Quellen von Stickoxiden in der Auroraregion der oberen Mesosphäre und unteren Thermosphäre (MLT, 60-140 km). Im polaren Winter können diese Stickoxide bis in die mittlere Stratosphäre (30—45 km) herunter transportiert werden; sie variieren dabei mit der geomagnetischen Aktivität und dem dynamischen Zustand der Atmosphäre. Hier tragen Stickoxide maßgeblich zum katalytischen Ozonabbau bei; da Ozon eine wesentliche Rolle in der Strahlungsheizung der Stratosphäre spielt, ändern sich durch den Abwärtstransport von auroralen Stickoxiden auch Temperaturen und Windfelder. Diese Änderungen der Atmosphärendynamik können die ganze Atmosphäre bis hinunter zu troposphärischen Wettersystemen betreffen. Aus diesem Grund wurde kürzlich zum ersten Mal empfohlen, geomagnetische Aktivität als Teil des solaren Forcings des Klimasystems in Klima-Chemiemodellstudien wie CMIP-6 zu berücksichtigen. Die atmosphärischen Ionisationsraten, welche verwendet werden, um solche Modellexperimente anzutreiben, basieren empirisch auf Flüssen von präzipitierenden Elektronen, welche jedoch mit großen Unsicherheiten behaftet sind; neue Studien legen nahe, daß es ernsthafte Probleme mit der Genauigkeit dieser Daten gibt. In diesem Projekt werden wir untersuchen, wie vom Sonnenwind getriebene Prozesse in der Magnetosphäre präzipitierende Elektronen verschiedener Energien beeinflussen, und welchen Einfluß diese präzipitierenden Elektronen auf die Zusammensetzung, Temperatur, und Windfelder in der mittleren Atmosphäre haben.Insbesondere werden wir untersuchen:• Wie beeinflussen vom Sonnenwind getriebene Prozesse in der Magnetosphäre das Präzipitieren von Strahlungsgürtelelektronen in die Atmosphäre?• Zu welchen Energien werden präzipitierende Elektronen in den unterschiedlichen geomagnetischen Stürmen in der Magnetosphäre beschleunigt? • Welcher Energiebereich der Präzipitierenden Elektronen hat den größten Einfluss auf die Zusammensetzung und Dynamik der mittleren Atmosphäre?Dazu werden Modellsimulationen mit dem neuentwickelten VERB-4D Modell durchgeführt, welches Elektronenbeschleunigung in die Atmosphäre durch Welle-Teilchen-Wechselwirkungen mit Chorus, Plasmaspheric hiss, hiss in plumes, und EMIC-Wellen berücksichtigt. Ergebnisse werden mit NOAA POES Daten validiert. Modellierte Elektronenflüsse am Oberrand des Modells werden als Input verwendet für das neuentwickelte Klima-Chemiemodells EMAC/EDITh (Boden bis 220km). Modellierte Temperaturen und der Stickoxid-Gehalt werden anhand von Beobachtungen validiert. Fallstudien werden durchgeführt werden für geomagnetische Stürme, die durch Korotating Interaction Regions (CIR) und solare koronale Massenauswürfe (CMEs) ausgelöst wurden, um zu untersuchen, wie die verschiedenen Prozesse unterschiedliche Bereiche der Atmosphäre beeinflussen.

Bewertung mariner CO2-Entnahmeoptionen - Synthese, Szenarien und Regulierung, Vorhaben: Ökonomische Bewertung mariner CO2-Entnahme-Optionen

WarmWorld - Modul 1 Better, Teilprojekt 5: Partikelmodell und Landmodell

Elastokalorik für eine effiziente Klimatechnik, Teilvorhaben: Realisieren des Seelecke-Konzeptes

Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel), Teilprojekt: Zuordnung von Verantwortlichkeit für durch Gletscher verursachte, regionale Meeresspiegeländerungen

Abschmelzende Gletscher liefern einen von drei Hauptbeiträgen zum globalen Meeresspiegelanstieg, zusammen mit der Wärmeausdehnung des Meereswassers und den Massenverlusten der Eisschilde in Grönland und der Antarktis. Im 20. Jahrhundert waren sie sehr wahrscheinlich die Hauptursache des Meeresspiegelanstiegs. In den kommenden Jahrhunderten wird der Massenverlust von Grönland und der Antarktis signifikant steigen, während der Gletscherbeitrag durch ihre relativ geringe Größe begrenzt wird. Dieser Anteil wird im 21. Jahrhundert jedoch beträchtlich und über die nächsten mindestens 300 Jahre nicht unbedeutend bleiben. Ein anthropogener Beitrag zur Gletscherschmelze ist in der zweiten Hälfte des 20. Jahrhunderts eindeutig feststellbar, und in den vergangenen Jahrzehnten sind anthropogene zu den Hauptursachen der Gletscherschmelze geworden. Die Reaktion der Gletscher auf Treibhausgasemissionen hängt jedoch von der zeitlichen Abfolge der Emissionen ab. Das zentrale Ziel des beantragten Projekts ist es, die Zuordnung von Verantwortlichkeiten für durch Gletscher verursachte, regionale Meeresspiegeländerungen zu spezifischen Emissionspfaden der Vergangenheit zu ermöglichen. Im Einzelnen werden wir- die Klimasensitivität der globalen Gletschermasse unter Berücksichtigung ihrer Abhängigkeit vom Grundzustand des Klimasystems quantifizieren;- die räumliche Verteilung dieser Sensitivität berechnen, wobei zwischen verschiedenen Strahlungsantriebsmechanismen unterschieden wird (d. h. CO2 und andere langlebige Treibhausgase, Aerosole und Landnutzungsänderung);- regionale Meeresspiegeländerungen ermitteln, die durch die Reaktion der Gletscher auf den Strahlungsantrieb des Klimasystems verursacht werden, wieder mit Unterscheidung verschiedener Mechanismen;- die Informationen über regionale Meeresspiegelmuster mit bestimmten realen, historischen Emissionspfaden (z. B. denen individueller Länder) verbinden, um Verantwortlichkeiten für durch Geltscher verursachte regionale Meeresspiegeländerungen Verursachern zuzuordnen;- die zeitliche Entwicklung von durch Gletscher verursachter Meeresspiegeländerungen ermitteln, die von einem bestimmten Emissionspfad verursacht wurden;- den Ansatz validieren durch Anwendung des globalen Gesamtstrahlungsantriebs, um entsprechende globale Gletschermassenverluste zu rekonstruieren, sowie durch Vergleiche mit Beobachtungsdaten von Gletschern. Mithilfe dieser Schritte wird es uns beispielsweise möglich, Fragen wie die folgenden zu beantworten:- Wie gestaltet sich die Verantwortlichkeit Deutschlands - angesichts seines historischen Emissionspfades - für durch Gletscher verursachte Meeresspiegeländerungen in Indonesien?- Wie viel dieser Meeresspiegeländerungen ist bereits erfolgt, und wie war der zeitliche Ablauf?- Wie viel Meeresspiegeländerung wird in Zukunft erfolgen, und wie wird zeitliche Ablauf sein?- Was sind die Unsicherheiten bei dieser Zuordnung von Verantwortlichkeit?

1 2 3 4 558 59 60