Zielsetzung und Anlass des Vorhabens: Das Europäische Klimaforum (European Climate Forum e. V.) ist ein neugegründetes Forum, das verschiedene Akteure im Klima- und Energiebereich zusammenbringt, um einen neuen integrierten Ansatz in der Klimaforschung und -Debatte voranzubringen. Mitglieder sind führende wissenschaftliche Institutionen in Europa, Vertreter der Industrie sowie international aktive Umweltverbände. Die Konferenz in Berlin am 14.-15. Dezember war das Hauptereignis im Jahr 2002 und gehört zu einer Serie von kleineren und größeren ECF-Veranstaltungen. Angesichts der bisherigen Trennung zwischen akademischen Studien im Klimabereich und konkreten Bemühungen der Wirtschaft und der Verbände Lösungen für das Klimaproblem zu finden, ist ein stetiger und strukturierter Dialog wichtig. Die Konferenz hat einen Beitrag zur Zusammenbringung dieser zwei Bereiche geleistet. Fazit: Die Konferenz und die Diskussionen wurde sowohl von den Teilnehmern als auch Veranstalter als höchst interessant und erfolgreich eingestuft. Anregungen zu zukünftigen Forschungsprojekten wurden geliefert. Der Dialogprozess wird weitergeführt. Es wurde deutlich, dass in Zukunft kleinere Studien und Positionspapiere geeignet sind um gezielt bestimmte Klimarelevanten Fragen zwischen Unternehmen, Nichtregierungsorganisationen und Wissenschaftlern zu diskutieren. Die jährlichen ECF Konferenzen werden fortgeführt werden und die nächste wird am 8.-10. September 2003 am Tyndall Centre/UEA (Norwich) stattfinden. Die ECF Konferenz wird als teil der dritten Nachhaltigkeitstage stattfinden.
Die Umweltprobenbank des Bundes (UPB) mit ihren Bereichen Bank für Umweltproben und Bank für Humanproben ist eine Daueraufgabe des Bundes unter der Gesamtverantwortung des Bundesumweltministeriums sowie der administrativen und fachlichen Koordinierung des Umweltbundesamtes. Es werden für die Bank für Umweltproben regelmäßig Tier- und Pflanzenproben aus repräsentativen Ökosystemen (marin, limnisch und terrestrisch) Deutschlands und darüber hinaus für die Bank für Humanproben im Rahmen einer Echtzeitanalyse Blut-, Urin-, Speichel- und Haarproben studentischer Kollektive gewonnen. Vor ihrer Einlagerung werden die Proben auf eine Vielzahl an umweltrelevanten Stoffen und Verbindungen (z.B. Schwermetalle, CKW und PAH) analysiert. Der eigentliche Wert der Umweltprobenbank besteht jedoch in der Archivierung der Proben. Sie werden chemisch veränderungsfrei (über Flüssigstickstoff) gelagert und somit können auch rückblickend Stoffe untersucht werden, die zum Zeitpunkt ihrer Einwirkung noch nicht bekannt oder analysierbar waren oder für nicht bedeutsam gehalten wurden. Alle im Betrieb der Umweltprobenbank anfallenden Daten und Informationen werden mit einem Datenbankmanagementsystem verwaltet und aufbereitet. Hierbei handelt es sich insbesondere um die biometrischen und analytischen Daten, das Schlüsselsystem der UPB, die Probenahmepläne, die Standardarbeitsanweisungen (SOP) zu Probenahme, Transport, Aufbereitung, Lagerung und Analytik und die Lagerbestandsdaten. Mit einem Geo-Informationssystem werden die Karten der Probenahmegebiete erstellt, mit denen perspektivisch eine Verknüpfung der analytischen Ergebnisse mit den biometrischen Daten sowie weiteren geoökologischen Daten (z.B. Daten der Flächennutzung, der Bodenökologie, der Klimatologie) erfolgen soll. Ausführliche Informationen und eine umfassende Datenrecherche sind unter www.umweltprobenbank.de abrufbar.
An der Forstmeteorologischen Messstelle Hartheim (zwei Messtuerme: einer Bestandeshoehe, der andere doppelte Bestandeshoehe) des Meteorologischen Institutes der Universitaet Freiburg werden seit ca. 25 Jahren kontinuierliche Messungen von meteorologischen und hydrologischen Parametern in verschiedenen Hoehen in und ueber dem Kiefernwald (Pinus sylvestris) durchgefuehrt, um Strahlungs-, Waerme- und Wasserhaushalt des Kiefernwaldes in Abhaengigkeit von Wachstum und Durchforstungsmassnahmen zu analysieren.
Das Projekt Quellvariabilität (Source Variability; SV) hat das Ziel zu verstehen wie Schwerewellenquellen zur globalen Verteilung von Schwerewellen beitragen. Hierfür kombinieren wir Beobachtungen und Modellierung: Beobachtungen bilden den Bezug zur Wirklichkeit. Um Verständnis zu erzielen, benötigen wir Theorie, und für quantitatives Verständnis, ein Prozessmodell das gegen die Daten getestet wird. Daher werden globale Verteilungen aus drei Datenquellen verglichen: 1.) Eine Kombination von dedizierten Modellen für Schwerewellenquellen mit Modellen für die Ausbreitung von Schwerewellen, 2.) Schwerewellen, die in UA-ICON explizit aufgelöst werden und 3.) Fernerkundungsdaten verschiedener Satelliten. Modellergebnisse von Quellen und Ausbreitung werden Messungen gegenübergestellt und so freie Parameter der Modelle bestimmt. Umgekehrt lässt sich anhand der Modelldaten bestimmen, in welchen Regionen und Höhenbereichen, bzw. zu welchen Jahreszeiten Schwerewellen aus welchen Quellen für den Impulsfluss und für die Beschleunigung des Hintergrundwindes überwiegen. Je feiner das Modellgitter wird, desto größer wird der Teil des Wellenspektrums, der von ICON aufgelöst wird. Ob die aufgelösten Schwerewellen tatsächlich realistisch sind, wird durch Vergleich mit Satellitendaten überprüft. Quellen in ICON lassen sich identifizieren, indem die Wellen anhand von Strahlverfolgung zu potentiellen Quellprozessen zurückverfolgt werden oder indem man mit Modellierung von Wellenquellen vergleicht. Mögliche Abweichungen der in ICON aufgelösten Schwerewellen von den Beobachtungen lassen sich so diagnostizieren und Ansätze für eine verbesserte Repräsentation entwickeln. Ein besonderer Schwerpunkt soll auf die Interaktion von Orographie und spontaner Imbalanz gelegt werden: Während der GW-LCycle Kampagne wurden einzigartige 3D Messungen mit dem GLORIA Instrument aufgenommen. In mehreren Forschungsflügen haben wir Anzeichen für das Zusammenwirken beider Quellen. Alle Vergleiche zwischen Modellierung und Messung im Projekt SV berücksichtigen den Beobachtungsfilter: insbesondere globale Messungen liefern eine Unterschätzung des Impulsflusses. Verglichen werden sowohl Mittelwerte des Impulsflusses und deren zeitliche Variation (z.B. Jahresgang), aber auch die Intermittenz, d.h. die Verteilung der Schwerewellen bzgl. Häufigkeit und Größe des Impulsflusses der einzelnen Wellen. Unser Ziel ist, für jede Auflösung von ICON die Effekte von Schwerewellen möglichst korrekt zu beschreiben, entweder durch die direkt vom Modell aufgelösten Wellen oder durch eine Parametrisierung von hier entwickelten und angepassten Wellenquellen in Kombination mit dem Ausbreitungsmodell MS-GWAM. MS-GWaM wird im Projekt 3DMSD entwickelt und in ICON integriert. Eine Besonderheit von MS-GWaM ist, dass direkte transiente Wechselwirkung mit dem Hintergrund berücksichtigt wird.
Die Zukunft unserer Gesellschaft hängt von der Entwicklung der Weltmeere ab, da die Ozeane einen großen Einfluss auf das Klimageschehen haben, unverzichtbare Ressourcen, aber auch Gefahren bergen. Gleichzeitig werden die Ozeane durch die vom Menschen verursachte CO2-Freisetzung, die Fischerei und andere menschliche Aktivitäten zunehmend verändert. In dem Exzellenzcluster wird daher eine große Gruppe von Wissenschaftlern an der Christian-Albrechts-Universität zu Kiel (CAU) und den beteiligten Leibniz-Instituten miteinander vernetzt, um den vergangenen Ozeanwandel zu rekonstruieren, den heutigen Ozeanwandel zu untersuchen, die zukünftigen Veränderungen vorherzusagen, die maritimen Ressourcen zu erforschen und Konzepte zu ihrer nachhaltigen Nutzung zu entwickeln sowie die Naturgefahren, die vom Ozean ausgehen, besser einzuschätzen. Durch die Einbindung weiterer Disziplinen (Medizin, Soziologie, Ökonomie, Recht) werden die naturwissenschaftlichen, sozioökonomischen und rechtlichen Aspekte des Ozeans in einem multidisziplinären Ansatz umfassend erforscht. Die Zukunft der Ozeane wurde bisher in keinem vergleichbar breit angelegten Netzwerk exzellenter Forscher untersucht. Die Meeresforschung wird daher durch das Exzellenzcluster auf eine neue Ebene gehoben, auf deren Basis wissenschaftlich fundierte Leitlinien für Politik und Wirtschaft erarbeitet werden können. Die Cluster-Forschung wird unter zwei Themen organisiert: (1) Ozeane und Treibhauseffekt sowie (2) Maritime Ressourcen und Naturgefahren. Zu beiden Themen bestehen bereits profilierte Forschergruppen, die durch weitere Junior-Forschergruppen (JRG) ergänzt werden sollen. Die Forschungsinfrastrukturen werden in Plattformen gebündelt und weiterentwickelt, während Bildungsangebote für Doktoranden und Master-Studenten in einer neuen 'Integrated School of Ocean Sciences' zusammengeführt werden. Das im Cluster erarbeitete Grundlagenwissen wird durch entsprechende Strukturen der Öffentlichkeit, Politik und Wirtschaft zur Verfügung gestellt und zur Anwendung gebracht. Der überwiegende Teil der Cluster-Ressourcen wird jedoch eingesetzt, um JRGs in vielversprechenden neuen Forschungsfeldern zu gründen. Die Leitungspositionen dieser Gruppen werden international ausgeschrieben und den erfolgreichsten Kandidaten wird nach Ende der ersten Förderperiode eine permanente W2/W3-Professur angeboten. Dank der sehr guten Ausstattung der JRGs wird es gelingen, hoch qualifizierte Kandidatinnen und Kandidaten an das Cluster zu binden und die Position der Universität als führender europäischer Standort in der Meeresforschung weiter zu stärken.
Das Ziel des Heisenberg-Programms ist es, herausragenden Wissenschaftlerinnen und Wissenschaftlern, die alle Voraussetzungen für die Berufung auf eine Langzeit-Professur erfüllen, zu ermöglichen, sich auf eine wissenschaftliche Leitungsfunktion vorzubereiten und in dieser Zeit weiterführende Forschungsthemen zu bearbeiten. In der Verfolgung dieses Ziels müssen nicht immer projektförmige Vorgehensweisen gewählt und realisiert werden. Aus diesem Grunde wird bei der Antragstellung und auch später bei der Abfassung von Abschlussberichten - anders als bei anderen Förderinstrumenten - keine 'Zusammenfassung' von Projektbeschreibungen und Projektergebnissen verlangt. Somit werden solche Informationen auch in GEPRIS nicht zur Verfügung gestellt.
Methan ist ein bedeutendes Treibhausgas, das einen starken Einfluss auf die Klimaentwicklung der Erde nimmt. Zurzeit sind das Wissen um die verschiedenen Methanquellen und deren atmosphärischer Einfluss noch äußerst lückenhaft. Eine Quelle, die hier von besonderer Wichtigkeit sein könnte, ist die mikrobielle Methanproduktion innerhalb des Darms bestimmter Zooplanktonorganismen bzw. der von ihnen ausgeschiedenen Kotpillen. Diese Quelle ist hauptsächlich in der oberen sauerstoffhaltigen Wassersäule angesiedelt und kann somit einen unmittelbaren Einfluss auf den Methanfluss zwischen Ozean und Atmosphäre nehmen. In unserem Projekt stellen wir die Hypothese auf, dass in hochproduktive Regionen, wie z.B. in Randmeeren, diese Zooplankton-basierte Methanproduktion besonders stark ausgeprägt ist. Des Weiteren vermuten wir, dass die zeitweise in der Ostsee beobachtete subthermokline Methananomalie durch diese Methanquelle hervorgerufen wird. Im ZooM-Projekt werden wir deshalb die Zooplankton-assoziierte Methanproduktion im Modellgebiet Ostsee mit Hilfe eines multidisziplinären Ansatzes untersuchen, indem wir die Fachgebiete Methanchemie, Mikrobiologie und Zooplanktologie konzertiert einsetzen. Im Detail wollen wir die folgenden Schlüsselfragen beantworten: (1) Ist die subthermokline Methananomalie ein verbreitetes Phänomen in der Ostsee und können wir saisonale und regionale Unterschiede in ihrer Ausprägung identifizieren? (2) Besitzt die Zooplankton-assoziierte Methanproduktion das Potential die beobachtete Methananomalie auszubilden und wie beeinflussen Copepodenarten und Umweltbedingungen (wie die Nahrungszusammensetzung) die Methanproduktion? (3) Welche methanogenen Mikroorganismen sind in die subthermokline Methanproduktion im Copepoden-Darm und ihren Kotpillen involviert und lassen sich Unterschiede der beteiligten methanogenen Gemeinschaften und deren Aktivität ausmachen?
Globale Klimadepression fuehren erst unter bestimmten geografischen Konstellationen ueber Rueckkopplungseffekte zu Vereisungen. Fuer bestimmte Phasen, z.B. den Uebergang von der letzten Warmphase der Nordhemisphaere zur ersten Kaltphase (Eiszeit) werden Klimakarten (Temperaturen, Luftdruck) aufgrund der fossilen Daten und Modellrechnungen fuer bestimmte Zeitscheiben erstellt. Fuer homotype und heterotype Organismenkollektive werden die Wirkungen von Temperaturveraenderungen sowie daraus entstehende moegliche Defekte und Reparaturprozesse in den Populationen und Biozoenosen analysiert, um gemeinsam mit dem ersten Teilprojekt zukunftsrelevante Aussagen treffen zu koennen.
Mischphasenwolken, in denen unterkühltes Flüssigwasser und Eiskristalle gleichzeitig auftreten, sind bisher nur unzureichend beschrieben, denn die akkurate Messung von Mischphasenwolken stellt eine Herausforderung dar. Besonders das Fehlen der vollständigen vertikalen Charakterisierung der Flüssigwasserkomponente ist ein Problem der derzeitig angewendeten Beobachtungsmethoden. Im Rahmen des vorgeschlagenen Projekts soll diese Beobachtungslücke durch Entwicklung neuer Methoden und den Einsatz neuer Modelle geschlossen werden. Mischphasenwolken werden mit modernsten Fernerkundungsinstrumenten wie Doppler-Wolkenradar sowie Doppler- und Polarisationslidar beobachtet werden. Die derzeitig zur Erfassung von unterkühlten Flüssigwasserschichten angewendete synergistische Beobachtung mit Wolkenradar und Lidar ist normalerweise bis zur Höhe limitiert, in der das Signal des Lidars vollständig ausgelöscht ist, was bei einer durchquerten optischen Dicke von etwa 3 geschieht. Das erlaubt meist die Detektion von nur einer Flüssigwasserschicht. Im Gegensatz dazu können Wolkenradare die gesamte Mischphasenwolke auch beim Auftreten mehrerer Flüssigwasserschichten durchdringen. Sie können daher genutzt werden, um die Verteilung der Wolkenphase in der gesamten vertikalen Säule zu bestimmen, wenn geeignete Algorithmen zur Identifikation von Flüssigwasser aus Radarmessungen entwickelt werden. Dafür soll das komplette Radardopplerspektrum analysiert werden, dessen Struktur durch die Mikrophysik und die Dynamik der Wolke bestimmt ist. Zudem soll das Radardopplerspektrum genutzt werden, um Vertikalwinde abzuleiten. Der Fokus des Projekts wird auf der vollständigen Charakterisierung von Fallstudien liegen. Dabei wird insbesondere untersucht werden, wie Vertikalwinde und Lufttemperatur die zeitliche Entwicklung der Partitionierung der Wolkenphasen beeinflussen, um so Einblick in den Lebenszyklus von Mischphasenwolken zu erhalten. In diesem Zusammenhang wird auch der Einfluss von Aerosolpartikeln auf die Wolkenphasenpartitionierung bestimmt werden. Die beobachteten Wolken werden dabei durch Rückwärtstrajektorien in Luftmassenherkunftsklassen unterteilt und es werden Modellvorhersagen sowie eine lidarbasierte Charakterisierung der Aerosoleigenschaften durchgeführt. Das vorgeschlagene Projekt geht über die Entwicklung von Fernerkundungstechniken in Mischphasenwolken hinaus. Ergebnisse eines auf den Messungen basierenden 1D-Mikrophysikmodells sollen als Eingabewerte für einen Vorwärtssimulator für Radardopplerspektren genutzt werden. Dessen Ausgabewerte wiederrum werden mit den beobachteten Dopplerspektren verglichen werden. Dadurch ergibt sich ein geschlossener Kreislauf aus Beobachtung und Modellierung, der es uns möglich machen wird, bestimmte mikrophysikalische Prozesse in Mischphasenwolken, wie z.B. Reif- und Graupelbildung, genauer zu verstehen.
| Origin | Count |
|---|---|
| Bund | 1755 |
| Kommune | 2 |
| Land | 67 |
| Wissenschaft | 4 |
| Type | Count |
|---|---|
| Daten und Messstellen | 1 |
| Ereignis | 3 |
| Förderprogramm | 1685 |
| Sammlung | 3 |
| Text | 26 |
| unbekannt | 57 |
| License | Count |
|---|---|
| geschlossen | 29 |
| offen | 1696 |
| unbekannt | 50 |
| Language | Count |
|---|---|
| Deutsch | 1402 |
| Englisch | 646 |
| andere | 1 |
| Resource type | Count |
|---|---|
| Datei | 3 |
| Dokument | 22 |
| Keine | 1276 |
| Unbekannt | 2 |
| Webseite | 487 |
| Topic | Count |
|---|---|
| Boden | 1270 |
| Lebewesen und Lebensräume | 1248 |
| Luft | 1642 |
| Mensch und Umwelt | 1775 |
| Wasser | 1186 |
| Weitere | 1729 |