Das Zusammenspiel von atmosphärischem Wasser und Zirkulation über Beeinflussung des Strahlungshaushalts, den Transport latenter Wärme und Rückkopplungsmechanismen von Wolken ist eines der bedeutendsten Hindernisse für das Verständnis des Klimasystems. Ein Vergleich zwischen Modellen verschiedener Auflösungen und Parameterisierungen kann wertvolle Einblicke in die Problematik geben. Jedoch werden für aussagekräftige Modelltests Messdaten benötigt. In diesem Zusammenhang können Isotopologen des troposphärischen Wasserdampfs eine wichtige Rolle spielen. Das Isotopologenverhältnis reflektiert die Bedingungen am Ort des Feuchteeintrags sowie verschiedene Umwandlungsprozesse (z.B. in Wolken). Während der letzten Jahre gab es großen Fortschritt beim Modellieren und Messen der Isotopologenverhältnisse, so dass kombinierte Untersuchungen nun global zeitlich und räumlich hochaufgelöst durchführbar sind. Das Ziel dieses Projektes ist es, Wasserdampfisotopologe als neue Methode zu etablieren, um modellierte atmosphärische Feuchteprozesse zu testen und damit einige der größten Herausforderungen der aktuellen Klimaforschung anzugehen. Um statistisch robuste Untersuchungen zu ermöglichen, werden wir eine große Anzahl von (H2O, deltaD)-Paaren messen (deltaD ist das standardisierte Verhältnis zwischen den Isotopologen HD16O und H216O). Zum ersten Mal wird dann ein validierter Beobachtungsdatensatz zur Verfügung stehen, der große Gebiete, lange Zeiträume und verschiedene Tageszeiten abdeckt. Gleichzeitig wird ein hochauflösendes meteorologisches Modell, welches die Isotopologe simuliert, benutzt, um zu untersuchen inwiefern sich Eintrag und Transport von Feuchte in den Isotopologen wiederspiegeln. Diese Kombination von Messung und Modell ist einzigartig zum Testen der Modellierung von Feuchteprozessen. Das Potential der Isotopologen wird anhand von drei klimatisch interessanten Regionen aufgezeigt. Für Europa wird unser Ansatz einen wertvollen Einblick in den Zusammenhang zwischen Feuchteeintrag und den Isotopologen im Falle hochvariablen Wettergeschehens geben. Über dem subtropischen Nordatlantik werden wir Mischprozessen zwischen der marinen Grenzschicht und der freien Troposphäre untersuchen. Die verschiedenartige Einbindung dieser Prozesse in Modelle ist sehr wahrscheinlich ein Grund für die große Unsicherheit bei Rückkopplungsmechanismen von Wolken. Über Westafrika wird die Modellierung des Monsuns getestet (horizontaler Feuchtetransport, Feuchterückfluss von Land in die Troposphäre, und Tagesgänge in Zusammenhang mit vertikalen Mischprozessen). Die Frage, wie organisierte Konvektion die Monsunzirkulation und die Feuchtetransportwege beeinflusst, wird dabei von besonderem Interesse sein. In Kombination werden die Ergebnisse helfen, Defizite in aktuellen Wetter- und Klimamodellen aufzuspüren und besser zu verstehen, und dadurch einen wichtigen Beitrag für zukünftige Modellverbesserungen liefern.
Die Umweltprobenbank des Bundes (UPB) mit ihren Bereichen Bank für Umweltproben und Bank für Humanproben ist eine Daueraufgabe des Bundes unter der Gesamtverantwortung des Bundesumweltministeriums sowie der administrativen und fachlichen Koordinierung des Umweltbundesamtes. Es werden für die Bank für Umweltproben regelmäßig Tier- und Pflanzenproben aus repräsentativen Ökosystemen (marin, limnisch und terrestrisch) Deutschlands und darüber hinaus für die Bank für Humanproben im Rahmen einer Echtzeitanalyse Blut-, Urin-, Speichel- und Haarproben studentischer Kollektive gewonnen. Vor ihrer Einlagerung werden die Proben auf eine Vielzahl an umweltrelevanten Stoffen und Verbindungen (z.B. Schwermetalle, CKW und PAH) analysiert. Der eigentliche Wert der Umweltprobenbank besteht jedoch in der Archivierung der Proben. Sie werden chemisch veränderungsfrei (über Flüssigstickstoff) gelagert und somit können auch rückblickend Stoffe untersucht werden, die zum Zeitpunkt ihrer Einwirkung noch nicht bekannt oder analysierbar waren oder für nicht bedeutsam gehalten wurden. Alle im Betrieb der Umweltprobenbank anfallenden Daten und Informationen werden mit einem Datenbankmanagementsystem verwaltet und aufbereitet. Hierbei handelt es sich insbesondere um die biometrischen und analytischen Daten, das Schlüsselsystem der UPB, die Probenahmepläne, die Standardarbeitsanweisungen (SOP) zu Probenahme, Transport, Aufbereitung, Lagerung und Analytik und die Lagerbestandsdaten. Mit einem Geo-Informationssystem werden die Karten der Probenahmegebiete erstellt, mit denen perspektivisch eine Verknüpfung der analytischen Ergebnisse mit den biometrischen Daten sowie weiteren geoökologischen Daten (z.B. Daten der Flächennutzung, der Bodenökologie, der Klimatologie) erfolgen soll. Ausführliche Informationen und eine umfassende Datenrecherche sind unter www.umweltprobenbank.de abrufbar.
Since 2006, the Institute for Meteorology and Climate Research (IMK-TRO) is involved in intensive field measurements at the Dead Sea. Long term measurements of meteorological parameters, particle concentrations and ozone mixing ratios were initiated - accompanied by short term activities like vertical profiling and determination of radiation and the surface energy balance. Objective and Results: The objective is to study the mesoscale wind systems and their role in the distribution of pollutants near the Dead Sea. Preliminary data evaluation shows that a complexe superposition of various wind systems is abundant. The existence of the widespread lake plays a mayor role in the development of atmospheric layering during the course of the day. However, synoptic influence can disturb the regional system. Since September 2006 an permanent meteorological station is working at Massada National Monument approx. at elevation sea level. Measurements of the actual week are shown here . The whole data set is available on request.
Die Geschwindigkeit des Austausches von Gasen zwischen Ozean und Atmosphaere ist fuer viele klimatologische Voraussagen von grosser Bedeutung. Das Projekt untersucht die Abhaengigkeit dieses Prozesses von der Windgeschwindigkeit, dem Wellenspektrum und der Kontamination der Oberflaeche des Meeres. Durchgefuehrt werden Laboruntersuchungen, Experimente in einem Wind-Wellen-Kanal und Messungen in der Nordsee. Die Versuche werden durch Modellrechnungen unterstuetzt. Quantitative Resultate liegen fuer den Windeinfluss und den Einfluss oberflaechenaktiver Substanzen auf die Ab-Desorptionsgeschwindigkeit von CO2 und O2 vor.
El Niño ist die warme Phase der El Niño/Southern Oscillation (ENSO), und beschreibt die dominante Variabilität der Tropen auf Zeitskalen von Monaten bis Jahren. Obwohl ENSO im tropischen Pazifik geschieht, werden starke regionale und globale Einflüsse auf das Klima, auf die Ökosysteme der Meere und auf dem Land, und damit auch auf die Wirtschaft einzelner Länder beobachtet. Klimamodelle sagen vorher, dass El Niño sich unter dem Einfluss der globalen Erwärmung verstärken könnte, und dass sich sogenannte Super El Niños entwickeln könnten, d.h. El Niño Ereignisse, welche stärker und langlebiger sind als die stärksten im 20. und 21. Jahrhundert beobachteten Ereignisse. Es ist allerdings noch unklar, ob sich zum Beispiel die sogenannten Teleconnections, also Fernwirkungen von El Niño, linear mit der Stärke des Ereignisses im tropischen Pazifik entwickeln werden. Es ist zudem noch unzureichend erforscht, ob sich die Teleconnections selbst verändern werden. Es gibt aber Hinweise, dass sich die Teleconnections von El Niño nichtlinear verhalten, und dass daher ein Super El Niño völlig andere globale Auswirkungen haben könnte als ein historischer El Niño. Durch die Vorhersage der Klimamodelle, dass sich solche Super El Niño - Ereignisse in Zukunft häufen könnten, ist ein besseres Verständnis möglicher Nichtlinearitäten von Teleconnections nötig. Dieses Forschungsvorhagen untersucht die Nichtlinearität in der Stärke und im Charakter von El Niño Teleconnections für eine Erde in einem wärmeren Klima. Im Speziellen wird die Fernwirkung von El Niño auf die Troposphäre und Stratospähre der mittleren Breiten in der Nord- und Südhalbkugel untersucht.
Die Zielsetzung der Internationalen Stadtklima Homepage (http://www.stadtklima.de) ist die kontinuierliche Bereitstellung von weltweiten Informationen zum Stadtklima. Sie beziehen sich u.a. auf Daten, Tagungen und Hilfsmittel zum Stadtklima. Ein Internet-Handbuch zum Stadtklima und ein Internet Journal zum Stadtklima sind in Vorbereitung. Die Internationale Stadtklima Homepage ist ein Gemeinschaftsprojekt zwischen dem Meteorologischen Institut der Universitaet Freiburg und der Abteilung Stadtklimatologie (Prof. Dr. Juergen Baumueller) des Amts fuer Umweltschutz der Landeshauptstadt Stuttgart.
Die 4D-Var Datenassimilation (4D-var DA) ist eine spezielle Methode, die zur Initialisierung von Klima- und Wettervorsagen durch die Schätzung von Klimamodellparametern benutzt wird, in dem Modelle an beobachtende Daten angepasst werden. Aus verschiedenen Gründen führen DA unvermeidliche methodische Fehler ein, die sich auf die Genauigkeit der Modellvorhersagen auswirken. Aktuelle Methoden zur Fehlerkorrektur brauchen erhebliche Computerressourcen. Dies ist ein Grund, warum die Verwendung dieser Methoden in der Klimamodellierung begrenzt ist und sie nur in vereinfachten Versionen angewandt werden. Die Entwicklung einer konzeptuell neuartigen, robusten und effizienten, nichtlinear-variationellen Fehlerschätzungsmethode (NOVFEM) ist Ziel dieses Projekts. Diese Methode wird Fehler von DA Methoden schätzen und die notwendigen Korrekturen bestimmen. Im Besonderen ist es geplant, VOVFEM im Rahmen einer Anwendung in Klimavorhersagesystemen zu entwickeln. Der Vorteil der vorgeschlagenen Methode ist, dass der Algorithmus auf einer abstrakten mathematischen Formulierung basiert und deshalb in vielen geophysikalischen Bereichen angewandt werden kann. Eine weitere Innovation dieses Projekts ist die Entwicklung einer Methode zur schnellen und einfachen Berechnung von inversen Kovarianzmatrizen, die z. B. Anwendung in DA finden. Die vorgeschlagenen Methode ist im Vergleich mit existieren Methoden effizienter. Es wird erwartet, dass die theoretischen Ergebnisse dieses Projekt national und international veröffentlicht werden und ein freier Zugang zur NOVFEM Software wird bereitgestellt werden.
Der menschliche Einfluss auf großräumige Änderungen des Klimas hat in den letzten Jahrzehnten stark zugenommen, sowohl in Atmosphäre, Ozean und Kryosphäre. Die genauen Eigenschaften physikalischer Prozesse und Mechanismen, die den menschlichen Einfluss von großräumigen auf lokale Skalen übertragen, sind allerdings kaum bekannt. Dies bedeutet eine erhebliche Unsicherheit für die Folgen des Klimawandels in der Zukunft. Das Problem der Übertragung betrifft auch den Gletscherrückgang im Hochgebirge, der überdies ein seltener Indikator für den Klimawandel in der mittleren Troposphäre ist. --- Das vorliegende Projekt hat das Ziel, unser Verständnis des Klimawandels in großer Höhe entscheidend zu verbessern. Das Fundament dafür legt eine neuartige und interdisziplinäre Methodik, mit der wir den menschlichen Anteil am Klimawandel in der großräumigen Klimadynamik, der regionalen Zirkulation über den ausgewählten Gebirgen sowie in der atmosphärischen Grenzschicht der dortigen Gletscher quantifizieren können. Die Verknüpfung prozessauflösender, physikalischer Modelle von globaler bis lokaler Skala sowie außergewöhnliche Messungen auf Gletschern in großer Höhe spannen diese Methodik auf. Sie wird letztlich ermöglichen, den menschlichen Anteil präzise zu erklären und die dafür verantwortlichen Mechanismen ausweisen zu können, inklusive der empfindlichsten Zusammenhänge im multiskaligen System ('Achillesfersen'). --- Der Einfluss des Projekts wird sich deutlich über die Glaziologie hinaus erstrecken. Unser Wissen über das globale Klimasystem wird durch den besser verstandenen Aspekt der Verknüpfung zwischen bodennahen Luftschichten und der mittleren Troposphäre profitieren. Auf regionalen und lokalen Skalen helfen die Ergebnisse für die Abschätzung von Klimafolgen, da Gletscheränderungen Wasserreserven und Naturgefahren beeinflussen. Und schließlich werden die Ergebnisse neue Wege für die Klimafolgenforschung allgemein aufzeigen, indem sie eine prozessauflösende und skalenübergreifende Methodik demonstrieren.
Die erfolgreiche Durchführung des beantragten SFB/TRR benötigt eine gut strukturierte wissenschaftliche und organisatorische Koordination. Diese wichtige Arbeit wird durch eine/n Koordinationsassistent/in (CA) geleistet der/die eng mit dem Sprecher zusammenarbeiten wird. Der/die CA wird in Hamburg arbeiten und eng mit dem CEN-Büro in Hamburg und dem MARUM-Büro in Bremen kooperieren.
Ziel dieses Antrags ist es, das Potenzial von Speläothemen für die Rekonstruktion von (kurzlebigen) Phasen und Ereignissen extremen Klimas, wie besonders niedrigen Temperaturen, extreme, Niederschlagsmengen oder hohen Windgeschwindigkeiten, zu ermitteln. Solche Extremereignisse treten selten auf, verursachen aber oft große Schäden mit schwerwiegenden Folgen für Bevölkerung und Ökosysteme der betroffenen Region. Ein besseres Verständnis der Ursachen und Randbedingungen von Extremereignissen ermöglicht eine bessere Prognose ihres Auftretens in der Zukunft, was wesentlich ist für das Treffen entsprechender Vorkehrungen.Speläotheme bieten präzise datierte Multi-Proxy-Zeitreihen mit nahezu jährlicher Auflösung und haben somit ein großes Potenzial als Archiv von Extremereignissen. Allerdings werden die in Speläothemen gespeicherten Proxy-Signale im Aquifer über der Höhle in einem gewissen Umfang geglättet, weshalb die Sensitivität der jeweiligen Höhlensysteme und Proxys für die Rekonstruktion vergangener Extremereignisse bestimmt werden muss. Der Schwerpunkt dieses Antrags liegt auf dem 8.2 ka Event und den letzten 2000 Jahren. Das 8.2 ka Event war die extremste Klimaanomalie des Holozäns und spiegelt die Auswirkungen eines enormen Süßwassereintrags in den Nordatlantik während eines Interglazials wider. In den letzten 2000 Jahren wurden mehrere hundertjährige Klimaschwankungen identifiziert (z.B. die Mittelalterliche Warmzeit und die Kleine Eiszeit). Zusätzlich konnten andere, kurzlebige Klimaanomalien festgestellt werden, wie z.B. das historische Magdalenenhochwasser im Juli 1342 AD oder Hitze und Trockenheit in Europa von 1540 AD. Manche Ereignisse wurden durch Vulkanausbrüche ausgelöst (z.B. das Jahr ohne Sommer 1816 AD durch die Tambora Eruption 1815 AD).Mehrere Speläotheme, die während des 8.2 ka Event und der letzten 2000 Jahre wuchsen, aus drei Höhlen in Deutschland stehen zur Verfügung. Für alle drei Höhlen wurden langfristige Monitoring-Programme eingerichtet, was eine Voraussetzung ist, um die Prozesse in den Höhlen zu verstehen und die Proxy-Signale der Speläotheme zu interpretieren. Wir werden stabile Isotope und Spurenelemente in den entsprechenden Abschnitten der Stalagmiten mit sehr hoher Auflösung (jährlich) analysieren, und die Proben mittels MC-ICPMS 230Th/U-Datierung präzise datieren. Die Identifizierung der am besten geeigneten Proxys für die Rekonstruktion der Extremereignisse wird unter Verwendung eines quantitativen Modells basierend auf meteorologischen und Monitoring-Daten durchgeführt. Die Kombination aus präzise datierten, hochaufgelösten Multi-Proxy-Records und einem quantitativen Modell stellt eine solide Basis dar, um (i) geeignete Proxys für die Rekonstruktion der Extremereignisse zu identifizieren und (ii) bestimmte Ereignisse in verschiedenen Speläothemen zu vergleichen. Dies ermöglicht die Bestimmung von Zeitpunkt, Dauer und Struktur der Ereignisse.
Origin | Count |
---|---|
Bund | 1755 |
Kommune | 2 |
Land | 65 |
Wissenschaft | 5 |
Type | Count |
---|---|
Daten und Messstellen | 1 |
Ereignis | 3 |
Förderprogramm | 1685 |
Sammlung | 4 |
Text | 23 |
unbekannt | 57 |
License | Count |
---|---|
geschlossen | 26 |
offen | 1697 |
unbekannt | 50 |
Language | Count |
---|---|
Deutsch | 1399 |
Englisch | 647 |
andere | 1 |
Resource type | Count |
---|---|
Datei | 3 |
Dokument | 21 |
Keine | 1275 |
Unbekannt | 2 |
Webseite | 487 |
Topic | Count |
---|---|
Boden | 1413 |
Lebewesen und Lebensräume | 1397 |
Luft | 1644 |
Mensch und Umwelt | 1773 |
Wasser | 1358 |
Weitere | 1738 |