<p>Berechnungen des Umweltbundesamtes (UBA) zeigen, dass die spezifischen Treibhausgas-Emissionsfaktoren im deutschen Strommix im Jahr 2024 weiter gesunken sind. Hauptursachen sind der gestiegene Anteil erneuerbarer Energien, der gesunkene Stromverbrauch infolge der wirtschaftlichen Stagnation und dass mehr Strom importiert als exportiert wurde.</p><p>Pro Kilowattstunde des in Deutschland verbrauchten Stroms wurden im Jahr 2024 bei der Erzeugung durchschnittlich 363 Gramm CO2ausgestoßen. 2023 lag dieser Wert bei 386 und 2022 bei 433 Gramm pro Kilowattstunde. Vor 2021 wirkte sich der verstärkte Einsatz erneuerbarer Energien positiv auf die Emissionsentwicklung der Stromerzeugung aus und trug wesentlich zur Senkung der spezifischen Emissionsfaktoren im Strommix bei. Die wirtschaftliche Erholung nach dem Pandemiejahr 2020 und die witterungsbedingte geringere Windenergieerzeugung führten zu einer vermehrten Nutzung emissionsintensiver Kohle zur Verstromung, wodurch sich die spezifischen Emissionsfaktoren im Jahr 2021 erhöhten. Dieser Effekt beschleunigte sich noch einmal im Jahr 2022 durch den verminderten Einsatz emissionsärmerer Brennstoffe für die Stromproduktion und den dadurch bedingten höheren Anteil von Kohle.</p><p>2023 und fortgesetzt 2024 führte der höhere Anteil erneuerbarer Energien, eine Verminderung des Stromverbrauchs infolge der wirtschaftlichen Stagnation sowie ein Stromimportüberschuss zur Senkung der spezifischen Emissionsfaktoren: Der Stromhandelssaldo wechselte 2023 erstmals seit 2002 vom Exportüberschuss zum Importüberschuss. Es wurden 9,2 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) mehr Strom importiert als exportiert. Dieser Trend setzt sich im Jahr 2024 fort. Der Stromimportüberschuss stieg auf 24,4 TWh. Die durch diesen Stromimportüberschuss erzeugten Emissionen werden nicht der deutschen Stromerzeugung zugerechnet, da sie in anderen berichtspflichtigen Ländern entstehen. Die starke Absenkung des spezifischen Emissionsfaktors im deutschen Strommix ab dem Jahr 2023 ist deshalb nur bedingt ein <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> für die <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a> der Maßnahmen zur Reduzierung der Emissionen des Stromsektors.</p><p>Die Entwicklung des Stromverbrauchs in Deutschland</p><p>Der Stromverbrauch stieg seit dem Jahr 1990 von 479 Terawattstunden (TWh) auf 583 TWh im Jahr 2017. Seit 2018 ist erstmalig eine Verringerung des Stromverbrauchs auf 573 TWh zu verzeichnen. Mit 513 TWh wurde 2020 ein Tiefstand erreicht. Im Jahr 2021 ist ein Anstieg des Stromverbrauchs infolge der wirtschaftlichen Erholung nach dem ersten Pandemiejahr auf 529 TWh zu verzeichnen, um 2022 wiederum auf 516 TWh und 2023 auf 454 TWh zu sinken. Dieser Trend setzt sich 2024 mit einem Stromverbrauch von 439 TWh fort. Der Stromverbrauch bleibt trotz konjunktureller Schwankungen und Einsparungen infolge der Auswirkungen der Pandemie und des russischen Angriffskrieges in der Ukraine auf hohem Niveau.</p><p>Datenquellen</p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2022 ab. Für das Jahr 2023 liegen vorläufige Daten vor. 2024 wurde geschätzt.</p><p>Hinweis: Die im Diagramm gezeigten Daten sind in der Publikation "Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990 - 2024" zu finden.</p>
<p>Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>.</p><p>Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der<a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a>sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren<a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität</p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
Heizkraftwerke, Heizwerke und sonstige Feuerungsanlagen, die mit fossilen Energieträgern Kohle, Gas oder Heizöl betrieben werden.
Die Daten verdeutlichen die auch im Kraftwerksbereich in den letzten Jahren vorgenommenen Angleichungen beim Energieträgereinsatz in der Stadt. Das "Rückrat" des Energieträgereinsatzes in den Berliner Kraftwerken stellen Steinkohle und Erdgas.
Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.
Kohlen sind in Indonesien als Energieträger von wachsender Bedeutung. Die Ablagerung der Kohlen erfolgte vorwiegend im Tertiär. Untersuchungen zu den Ablagerungsbedingungen im Zuge der Genese dieser Kohlen (Palaeoenvironment) und der Zusammensetzung der Wälder, aus denen die Kohlen gebildet wurden, liegen bisher nur in einem geringen Umfang vor. Mit einem im Oktober 2004 begonnenen Forschungsprojekt soll diese Lücke geschlossen werden. Im Rahmen des Projekts werden Kohlen aus dem Mahakam-Delta mit Methoden analysiert. Besonderer Wert wird auf die Bestimmung der Gehalte der Biomarker (Chemofossilien) gelegt. Diese sind besonders zur Rekonstruktion der Ablagerungsbedingungen und des Pflanzeneintrags geeignet. Mikroskopische Untersuchungen geben darüber hinaus Auskunft zur Reife (thermischen Belastung) der Kohlen im Zuge der Diagenese. Außerdem soll der Vergleich der organisch-geochemischen und mikroskopischen Daten helfen, die Eignung der verschiedenen organisch-geochemischen Parameter bei der Analyse der Kohlenfazies zu überprüfen. Die Ergebnisse dieser Untersuchungen sollen als Basis für die zukünftige Bewertung der indonesischen Kohlen nach Reifegrad und Zusammensetzung genutzt werden. Um einen Beitrag zu einer möglichst umweltverträglichen Nutzung der indonesischen Kohlevorkommen zu leisten, werden zudem die Gehalte an Schwermetallen in den Kohlen bestimmt.
Titel: Braunkohlenplan als Sanierungsrahmenplan für den stillgelegten Tagebau Espenhain Planungsstand: fortgeschriebene Fassung wurde am 25.09.2003 durch das Sächsische Staatsministerium des Innern genehmigt, verbindlich seit 15.04.2004 Inhalt: * Die bergbauliche Sanierung mit Tagebau-Großgeräten (Kippenrückgewinnung und Verkippung des Randschlauches) wurde im Mai 2001 abgeschlossen. Arbeiten an den Nord- und Nordostböschungen von Markkleeberger und Störmthaler See, die Ostböschung der ehemaligen Tagebauausfahrt, die Bereiche Göhrener und Getzelauer Insel sowie am Dammbauwerk zwischen den Restseen bildeten die verbliebenen Handlungsschwerpunkte. * Maßnahmen zur Landschaftsgestaltung konzentrieren sich auf die Nordböschung des am 15.07.2006 in öffentliche Nutzung übergebenen Markkleeberger Sees (Uferpromenade im Bereich Bornaische Straße mit archäologischer Fundstätte), das Dammbauwerk zwischen den Seen (Wildwasserstrecke "Kanu-Park", Gewässerverbund), das Steilufer im Bereich Störmthal-Güldengossa (Erhalt "geologischer" und "ökologischer Fenster) sowie das Umfeld des künftigen Wassersportzentrums Gruna (Regattastrecke, Hafen, Strand). * Schwerpunkte bei der Sanierung von Altlasten bilden die Altablagerungen an der B 2/95 (Schutz des Grundwassers, Fassung und Behandlung von Deponiegasen, niveaugleiche Verfüllung) sowie die industrielle Absetzanlage zur Ascheverspülung im östlichen Teil der Halde Trages (Begrünung, Sukzession). Der Betrieb der Zentraldeponie Cröbern soll so erfolgen, dass Grundwasserschutz (Basisabdichtung) und Sichtschutz (Schutzwaldgürtel) gewährleistet werden. * Im Zuge der Restlochflutung unter Einleitung von Sümpfungswässern aus dem aktiven Bergbau entstehen der 2,5 km² große Markkleeberger See (Flutung 1999-2006) sowie der 7,3 km² große Störmthaler See (2003-2011). Die Vorflutgestaltung schließt einen Verbund zwischen beiden Seen, die Anbindung des Markkleeberg Sees über die Kleine Pleiße an die Pleiße, die Bespannung des Gösel-Altlaufes zwischen Pötzschau und Dreiskau-Muckern sowie die Renaturierung der Pleiße ein. * Die in den Altkippenbereichen etablierte Landwirtschaft verfügt über einen Bestandsschutz (Anlage von Alleen und Flurgehölzen zur Landschaftsaufwertung). Prioritäre Handlungsfelder der Forstwirtschaft bestehen in der Waldmehrung (naturnahe, standort- und funktionsgerechte Aufforstungen mit Schwerpunkt Alt- und Neukippenbereiche) sowie im Umbau von Pappel-Reinbeständen (Altkippen und Halde Trages). * Die Entwicklung von Natur und Landschaft schließt die gezielte Belassung von Sukzessionsflächen mit Beschränkung von Sanierungsmaßnahmen auf den Abbau örtlicher Gefährdungspotenziale (Südufer Markkleeberger See mit Getzelauer Insel, Westufer Störmthaler See mit Göhrener Insel), den Erhalt bestehender Formen und Lebensräume (Erosionsformen Halde Trages, Göselaue, Steilufer Störmthal-Güldengossa) sowie gezielte Vernetzungen mit dem Tagebauumfeld (Oberholz) ein. * Freizeit und Erholung werden sich am Markkleeberger See auf das Nord- und Ostufer (Uferpromenade, Wachauer und Auenhainer Strand, Wildwasserstrecke, Segelstützpunkt) und am Störmthaler See auf das Wassersportzentrum Gruna auf der Magdeborner Halbinsel (Kanuregattastrecke, Segelhafen, Strand) konzentrieren. Beide Seen werden untereinander mit einem auch für Segelboote befahrbaren, mit einer Schleuse versehenen Kanal verknüpft und mittelfristig in einen "Gewässerverbund Region Leipzig" eingebunden. * Das Verkehrsnetz wird mit dem im August 2006 fertig gestellten Neubau der Autobahn A 38, der A 72 (Leipzig-Chemnitz) und der K 7924 (Dreiskau-Muckern - Störmthal) schrittweise ausgebaut. Damit werden neben der Verbesserung der regionalen Verkehrsinfrastruktur Voraussetzungen zur Erschließung der Bergbaufolgelandschaft geschaffen. Bei der Herstellung des Wegenetzes bilden Querungen von Pleiße und B 2/95 im Bereich Gaschwitz/Großdeuben Schwerpunkte. * Die Revitalisierung der bis 1993 vom Abbau bedrohten Ortslage Dreiskau-Muckern (EXPO-Dorf 2000) ist weit fortgeschritten (1993 50, 2001 300 Einwohner). Im Sanierungsgebiet entstanden im Rahmen der Initiative "Kunst statt Kohle" mehrere Landschaftskunstwerke (Butterfly am Südufer des künftigen Störmthaler Sees), die in Zukunft ergänzt werden sollen. Der Dispatcherturm (Magdeborner Halbinsel) und der Aussichtsturm (Rundwanderweg Halde Trages) bieten markante Ausblicke.
Ziele: Ermittlung der internen Belastung mit Schwermetallen (Blei, Cadmium, Arsen, Quecksilber) und organischen Schadstoffen (Hexachlorbenzol, Polychlorierte Biphenyle). Ermittlung der Haeufigkeit des Auftretens bzw. der Schwere von Atemwegserkrankungen und Allergien. Fragestellungen: Gibt es Unterschiede in der internen Belastung von Kindern aus unterschiedlich strukturierten Regionen? Unterscheiden sich Kinder aus Regionen mit unterschiedlicher Luftbelastung in Baden-Wuerttemberg hinsichtlich der Entwicklung der Atemwege? Besteht ein Zusammenhang zwischen der Immissionssituation und der Haeufigkeit des Auftretens bzw. der Schwere von Atemwegserkrankungen und Allergien? Bisherige Ergebnisse: Die Ergebnisse liegen insgesamt in einem Bereich, der bei vergleichbaren Untersuchungen im Bundesgebiet beobachtet wurde. Bei der Belastung mit Schadstoffen traten fuer einzelne Parameter Unterschiede zwischen den Orten auf, denen jedoch aufgrund der insgesamt geringen Konzentrationsunterschiede eine geringe Bedeutung zukommt. Fuer die Haeufigkeit von Atemwegserkrankungen und Allergien erwies sich die familiaere Veranlagung als Haupteinflussfaktor. Der Anteil der Kinder, die eine Sensibilisierung aufweisen, liegt im Ballungsgebiet Mannheim deutlich niedriger als in den eher laendlich strukturierten Regionen Kehl und Aulendorf/Bad Waldsee.
<p>Seit der Industrialisierung steigt die durchschnittliche globale Lufttemperatur in Bodennähe. Wissenschaftliche Forschungen belegen, dass wir Menschen für den raschen Temperaturanstieg der letzten 100 Jahre verantwortlich sind. Deshalb sprechen wir von einer anthropogenen – vom Menschen verursachten – Klimaänderung.</p><p>Durch das Verbrennen fossiler Energieträger (wie zum Beispiel Kohle, Erdöl und Erdgas) und durch großflächige Entwaldung wird Kohlendioxid (CO2) in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> angereichert. Land- und Viehwirtschaft verursachen Emissionen von Gasen wie Methan (CH4) und Distickstoffmonoxid (Lachgas, N2O). Kohlendioxid, Methan und Lachgas gehören zu den treibhauswirksamen Gasen. Eine Ansammlung dieser Gase in der Atmosphäre führt in der Tendenz zu einer Erwärmung der unteren Luftschichten.</p><p>Informationen zu den Ursachen von Klimaänderungen, zur Zunahme von Treibhausgasen in der Atmosphäre und zum <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhauseffekt#alphabar">Treibhauseffekt</a> (natürlich und <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=anthropogen#alphabar">anthropogen</a>) finden Sie auf der Seite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klima-treibhauseffekt">Klima und Treibhauseffekt</a></strong>.</p><p>Wir stellen auf der Seite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/weltklimarat-ipcc">Weltklimarat</a></strong>den Zwischenstaatlichen Ausschuss für Klimaänderungen – <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a> (Intergovernmental Panel on Climate Change) kurz vor. Zudem gibt es eine Übersicht zu den Erkenntnissen der letzten IPCC-Sachstandsberichte. Diese Berichte widmen sich den wissenschaftlichen Grundlagen der anthropogenen (durch den Menschen verursachten) <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimanderung#alphabar">Klimaänderung</a>, den beobachteten Klimaänderungen und -folgen, den Projektionen künftiger Klimaänderungen, den Maßnahmen zur Minderung der Emissionen treibhauswirksamer Gase sowie den Maßnahmen zur Anpassung an projizierte (für die Zukunft berechnete) Klimaänderungen.</p><p>Seit dem vergangenen Jahrhundert erwärmt sich das Klima, wie wir aus Beobachtungs- und Messdaten wissen. Das globale Mittel der bodennahen Lufttemperatur stieg deutlich an, Gebirgsgletscher und Schneebedeckung haben im Mittel weltweit abgenommen und Extremereignisse wie Starkniederschläge und Hitzewellen werden häufiger. Mehr zu beobachteten Klimaänderungen erfahren Sie auf der Seite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/beobachteter-klimawandel">Beobachteter Klimawandel</a></strong>.</p><p>Die Ausmaße und Auswirkungen der zukünftigen Klimaänderungen können nur durch Modellrechnungen nachgebildet werden, da vielfältige und komplexe Wechselwirkungen berücksichtigt werden müssen. Durch die Modellierung verschiedener denkbarer Szenarien lassen sich mögliche zu erwartende Klimaänderungen für das 21. Jahrhunderts ableiten. Auf der Seite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/zu-erwartende-klimaaenderungen-bis-2100">Zu erwartende Klimaänderungen bis 2100</a></strong>können Sie sich über mögliche Entwicklungen informieren.</p><p>Die Themen Klimawandel und Klimaänderung sind sehr komplex und uns erreichen daher regelmäßig Fragen zu grundsätzlichen Hintergründen des Klimawandels. Auf der Seite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/haeufige-fragen-klimawandel">Häufige Fragen zum Klimawandel</a></strong>haben wir unsere Antworten auf häufig gestellt Fragen (FAQs) für Sie zusammengestellt.</p><p>Obwohl ein breiter wissenschaftlicher Konsens über die anthropogene Klimaänderung besteht, werden in der öffentlichen Diskussion immer wieder Zweifel gestreut. Über Bücher, Zeitschriften, Fernsehsendungen, das Internet und die sozialen Medien werden Informationen verbreitet, die veraltet, unvollständig, aus dem Zusammenhang gegriffen und/oder falsch sind. Auf der Seite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klimawandel-skeptiker">Klimawandel-Skeptiker</a></strong>setzen wir uns zunächste grundsätzlich mit Klimawandel-Skepsis auseinander und nehmen auf der Unterseite<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/klimawandel/klimawandel-skeptiker/antworten-des-uba-auf-populaere-skeptische">Antworten des UBA auf populäre skeptische Argumente</a></strong>skeptische Thesen genauer unter die Lupe.</p><p>Die meisten Menschen denken an eine allmähliche Erwärmung des Klimas, wenn sie den Begriff „anthropogene Klimaänderung” hören. Es ist jedoch auch möglich, dass besonders starke oder sogar abrupte Klimaänderungen einsetzen. Derartige Prozesse sind mit kritischen Schwellen im <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimasystem#alphabar">Klimasystem</a>, sogenannten Kipp-Punkten, verbunden. Bereits geringe Änderungen im Klimasystem können bewirken, dass Kipp-Punkte erreicht werden, in deren Folge sich das Klima stark ändert. In unserem Hintergrundpapier<strong><a href="https://www.umweltbundesamt.de/publikationen/kipppunkte-kaskadische-kippdynamiken-im-klimasystem">Kipp-Punkte im Klimasystem</a></strong>erhalten Sie dazu ausführliche Informationen.</p>
Origin | Count |
---|---|
Bund | 1510 |
Kommune | 3 |
Land | 163 |
Wissenschaft | 4 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 290 |
Daten und Messstellen | 69 |
Ereignis | 27 |
Förderprogramm | 868 |
Gesetzestext | 170 |
Kartendienst | 2 |
Lehrmaterial | 2 |
Text | 421 |
Umweltprüfung | 12 |
unbekannt | 87 |
License | Count |
---|---|
geschlossen | 520 |
offen | 1030 |
unbekannt | 96 |
Language | Count |
---|---|
Deutsch | 1502 |
Englisch | 320 |
Resource type | Count |
---|---|
Archiv | 97 |
Bild | 5 |
Datei | 146 |
Dokument | 262 |
Keine | 1023 |
Multimedia | 1 |
Unbekannt | 3 |
Webdienst | 19 |
Webseite | 425 |
Topic | Count |
---|---|
Boden | 1637 |
Lebewesen und Lebensräume | 1117 |
Luft | 975 |
Mensch und Umwelt | 1644 |
Wasser | 955 |
Weitere | 1466 |