API src

Found 1456 results.

Related terms

Global Day of Action to stop dirty energy

Am 30. Mai 2015 beteiligten sich tausende Menschen weltweit am "Global Day of Action to stop dirty engergy". In rund 30 Ländern protestierten die Menschen gegen die Energie aus Kohle und Atomkraft und für den Klimaschutz. Auch in 60 Städten Deutschlands demonstrierten Aktivisten auf der Straße. Dazu hatte die Umweltschutzorganisation Greenpeace unter dem Motto " "Klima- oder Kohlekanzlerin? Entscheiden Sie sich, Frau Merkel!" aufgerufen.

GcBÜK400 - Cadmium im Oberboden

Cadmium verdient unter den Schwermetallen besondere Beachtung, da seine Toxizität für Tiere und Menschen erheblich größer als die anderer Schwermetalle ist. Als Akkumulationsgift wird es im Körper angereichert und kann dort über Jahrzehnte verbleiben. Auf Grund seiner chemischen Verwandtschaft zum Zink kommt es fast ausschließlich mit diesem vor, insbesondere in allen zinkführenden Mineralen (u. a. Zinkblende, Galmei) und Gesteinen. Die durchschnittliche Cd-Konzentration der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 0,1 mg/kg, in Böden finden sich Gehalte in der Regel 0,50 mg/kg. Im Gegensatz zu As und anderen Schwermetallen (z. B. Cr, Ni) ist in den oberflächennah anstehenden sächsischen Hauptgesteinstypen keine geochemische Spezialisierung auf Cd nachweisbar. Die petrogeochemische Komponente liegt im Bereich des Clarkwertes um 0,1 mg/kg. In den Erzlagerstätten ist Cd vor allem an die Zinkerze der polymetallischen hydrothermalen Gänge und teilweise an die Skarnlagerstätten und stratigen-stratiformen Ausbildungen gebunden (chalkogene Komponente). Seit Beginn der Industrialisierung gelangt Cadmium über die Emissionen der Buntmetallhütten, die Verbrennung von Kohlen und Erdöl und in jüngerer Zeit über Galvanotechnik, Müllverbrennung, Düngemittel, Klärschlämme und Komposte anthropogen in die Umwelt. Während in den Oberböden Nord- und Mittelsachsens niedrige Gehalte dominieren (Cd-arme periglaziäre sandige bis lehmige Substrate; Löss), kommt es in den Verwitterungsböden über Festgesteinen zu einer relativen Anreicherung. Eine Abhängigkeit vom Tongehalt ist insofern festzustellen, dass die sandigen Substrate gegenüber lehmigen Substraten etwas niedrigere Cd-Gehalte aufweisen. Auf Acker- und Grünlandstandorten sind im Vergleich zu den Waldstandorten im Oberboden höhere Cd-Gehalte anzutreffen, da infolge der sehr niedrigen pH-Werte unter Forst eine Cd-Mobilisierung und Verlagerung in größere Bodentiefen stattfindet. Besonders hohe Cd-Belastungen befinden sich im Freiberger Raum, die durch die geogene Cd-Anreicherung bei der Bildung buntmetallführender Erzgänge aber vor allem anthropogen durch die Verhüttung von Zinkerzen verursacht werden. Die höchsten Gehalte sind in den Oberböden in unmittelbarer Nähe der Hüttenstandorte sowie in geringeren Konzentrationen östlich davon (in Hauptwindrichtung) festzustellen. Andere Lagerstättengebiete mit Zinkverzungen im Westerzgebirge und in der Erzgebirgsnordrandzone weisen nur schwach erhöhte Gehalte auf. Eine besondere Stellung bei der Belastung mit Cadmium nehmen die Auenböden der Freiberger und der Vereinigten Mulde ein. Durch die Abtragung von Böden mit geogen verursachten Anreicherungen im Einzugsgebiet und den enormen anthropogenen Zusatzbelastungen durch die Erzaufbereitung und die Hüttenindustrie, kommt es bei Ablagerung der Flusssedimente und Schwebanteile in den Überflutungsbereichen zu hohen Cd-Anreicherungen. In den Auenböden der Elbe und Zwickauer Mulde treten dagegen deutlich niedrigere Gehalte auf. Die geogenen und anthropogenen Prozesse führen im Freiberger Raum und in den Auenböden der Freiberger und Vereinigten Mulde zu flächenhaften Überschreitungen der Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Cadmium.

Geologische Karte Bänke Saarland 1:25.000

In dem Datensatz Bänke wird, wegen der geringen Mächtigkeit der Horizonte, der Verlauf besonderer Gesteinsausbildungen (Tuffe, Karbonate, Kohle usw.) als Linie dargestellt. Diese Bänke (Member) bilden häufig die Grenze zwischen lithostratigraphischen Einheiten oder besitzen eine für die Kartierung wichtige Funktion als Leithorizont. Geologische Karte 1:25 000 Bänke ist in Bearbeitung und noch nicht flächendeckend vorhanden. Die Daten wurden ins GDZ importiert und dort als Werte der Multifeatureklasse Wert Geologie modelliert, die sich zusammensetzt aus der flächenhaften Featureklasse GDZ2010.A_ghgeowt (enthält die Gk100, die GK25, und die Rohstoffflächen) der linienhaften Featureklasse GDZ2010.L_ghgeowt (enthält die GK15_Bänke, die GK25_Tektonik und die GK100_Tektonik) , der punkthaften Featureklasse GDZ2010.P_ghgeowt (enthält die Geotope) und der dazugehörigen Businessklasse GDZ2010.ghgeowt. Anschließend wurden die Werte für die Objektart = gk25 und Parameter Langtext = Bänke exportiert in die Filegeodatabase GDZ_GDB. Folgende Attribute sind relevant: NR (Nummer der Bänke) BEZEICHNUNG; STRATIGRAPHIE; PETROGRAPHIE.

INSPIRE Verteilung der Vogel-Arten (D-F) in Deutschland - Verbreitung

Der INSPIRE Dienst Verteilung der Vogel-Arten (D-F) in Deutschland - Verbreitung stellt bundesweite Verbreitungsdatensätze gemäß den Vorgaben der INSPIRE Richtline Annex III Thema bereit. Die Verbreitungsdaten wurden vom Dachverband Deutscher Avifaunisten (DDA) zusammengestellt und mit den Vogelschutzwarten und Fachverbänden der Bundesländer abgestimmt. Die Verbreitungsdaten wurden im nationalen Vogelschutzbericht 2019 nach Art. 12 der Vogelschutzrichtlinie der EU übermittelt. Für die Verbreitungsdaten wurden Daten des Atlas deutscher Brutvogelarten (Gedeon et al. 2014), Angaben aus dem Internetportal www.ornitho.de sowie einzelne ergänzende Daten aus einzelnen Bundesländern zusammengeführt. Die Angaben sind methodisch unterschiedlich erhoben worden. Die Erhebungsdaten stammen aus dem Zeitraum 2005 – 2016. Der Dienst enthält keine Informationen zu sensiblen Arten.

INSPIRE Verteilung der Vogel-Arten (D-F) in Deutschland - Vorkommen

Der INSPIRE Dienst Verteilung der Vogel-Arten (D-F) in Deutschland - Vorkommen stellt bundesweite Vorkommensdatensätze gemäß den Vorgaben der INSPIRE Richtline Annex III Thema bereit. Die Vorkommensdaten wurden vom Dachverband Deutscher Avifaunisten (DDA) zusammengestellt und mit den Vogelschutzwarten und Fachverbänden der Bundesländer abgestimmt. Die Vorkommensdaten wurden im nationalen Vogelschutzbericht 2019 nach Art. 12 der Vogelschutzrichtlinie der EU übermittelt. Für die Vorkommensdaten wurden Daten des Atlas deutscher Brutvogelarten (Gedeon et al. 2014), Angaben aus dem Internetportal www.ornitho.de sowie einzelne ergänzende Daten aus einzelnen Bundesländern zusammengeführt. Die Angaben sind methodisch unterschiedlich erhoben worden. Die Erhebungsdaten stammen aus dem Zeitraum 2005 – 2016. Der Dienst enthält keine Informationen zu sensiblen Arten.

Chem-Anorg\Soda-DE-2020

Herstellung von Soda (Natriumcarbonat), einem wichtigen Grundstoff der anorganischen Chemie. Es wird sowohl aus natürlichen Vorkommen gewonnen, als auch synthetisch hergestellt. In Deutschland wird ausschließlich die synthetische Herstellung betrieben. Ausgangsstoffe für das betrachtete Ammoniaksoda- oder Solvay-Verfahren sind Steinsalz bzw. Natriumchlorid (nach Solereinigung) und Kalkstein bzw. (nach Brennen und Löschen) Calciumhydroxid. Der in dieser Bilanz untersuchte Gesamtprozess umfaßt folgende Einzelprozesse: 1. Herstellung einer gesättigten Salzlösung: NaCl + H2O 2. Brennen des Kalksteins (das freigesetzte CO2 wird in Teilprozess 4 benötigt): CaCO3 => CaO + CO2 3. Sättigung der Salzlösung mit Ammoniak: NaCl + H2O + NH3 4. Ausfällen von Bicarbonat durch Einleiten von CO2 in die Lösung: NaCl + H2O + NH3 + CO2 à NH4Cl + NaHCO3 5. Filtern und Waschen des ausgefällten Bicarbonats 6. Thermische Zersetzung des Bicarbonats zu Soda (das freigesetzte CO2 wird in Stufe 4 zurückgeführt): 2 NaHCO3 à Na2CO3 + H2O + CO2 7. Herstellung von Kalkmilch: CaO + H2O => Ca(OH)2 8. Rückgewinnung des Ammoniaks durch Destillation der Mutterlösung aus Teilprozess 4 mit Kalkmilch (das freigesetzte Ammoniak wird in Stufe 3 wieder eingesetzt): 2 NH4Cl + Ca(OH)2 => 2NH3 + CaCl2 + 2H2O Die nach der Destillation verbleibende Lösung wird meist in ihrer Gesamtheit verworfen, da - abhängig von der Nachfrage - nur ein kleiner Teil zur Herstellung von CaCl2 genutzt werden kann. Vereinfacht kann der gesamte Prozess durch die folgende Summengleichung beschrieben werden: 2 NaCl + CaCO3 => Na2CO3 + CaCl2 Dabei verläuft die Reaktion in wässriger Lösung aufgrund der geringen Löslichkeit des Calciumcarbonats von rechts nach links. Daher wird Ammoniak als Promotor der Bildung von Natriumbicarbonat über das Zwischenprodukt Ammoniumbicarbonat eingesetzt (vgl. #2). Im Jahr 1992 standen einer Inlandsproduktion von über 1,2 Mio t (alte Bundesländer) ein Import von 0,25 Mio t (60 % davon aus den USA) und ein Export von ca. 0,02 Mio t gegenüber. Vor diesem Hintergrund wird es als legitim angesehen, bei der Sachbilanz des Soda für Deutschland lediglich die Daten für die synthetische Sodaherstellung zu verwenden. Bilanziert wurde die Soda-Herstellung von der Firma Solvay Alkali GmbH, die nach der ETH zitiert wird (#1). In dieser Bilanz wird der gesamte Prozeß der Sodaherstellung einschließlich der Teilanlagen der Solereinigung, dem Kalkofen und der Energieerzeugung in einem industriellen Kraftwerk mit Kraft-Wärme-Kopplung bilanziert. Dabei werden Steinkohle und Erdgas als Energieträger eingesetzt. Allokation: keine Massenbilanz: Als Rohstoffe zur Soda-Herstellung werden bezogen auf eine Tonne Soda ca. 1550 kg Steinsalz und 1130 kg Kalkstein benötigt (#1). Energiebedarf: Der Energiebedarf der Sodaherstellung, wie sie in diesem Projekt bilanziert wird, wird über Erdgas, Steinkohle und Steinkohlenkoks gedeckt. Da die Energieumwandlung bereits in der Bilanzierung enthalten ist, ist lediglich die Bereitstellung de Energieträger noch zu bilanzieren. Der Energiebedarf nach Solvay setzt sich folgendermaßen zusammen: Energiebedarf der Sodaherstellung (nach #1) Energieträger m³ bzw. kg/ t Produkt GJ/t Produkt Erdgas 28,2 (m³) 1,094 Steinkohle (Vollwert) 270 (kg) 7,938 Steinkohlenkoks 80 (kg) 2,224 Summe 11,256 Die Prozesse zur Sodaherstellung haben folglich einen Energiebedarf von 11,26 GJ/t Soda. Für die Sodaherstellung in Europa kann eine Spannweite von 10-14 GJ/t angegeben werden. Bei den deutschen Herstellern besteht das Bestreben die Energiebereitstellung mehr und mehr über Gas zu decken (Solvay 1996). Prozessbedingte Luftemissionen: Die Luftemissionen werden zum größten Teil durch die Bereitstellung bzw. Umwandlung der Energie verursacht. Dabei werden von Solvay folgende Emissionsfaktoren angegeben: Schadstoff Menge in kg/t Produkt CO2 800 CO 7 SO2 2 NOx 1,8 Staub 0,25 Zusätzlich wird noch CO2 beim Brennen des Kalkes freigesetzt, das nicht im chemisch im Soda gemäß Gleichung 4. gebunden werden kann. Die Menge wird von Solvay mit 176 kg/t Produkt angegeben (#1). Dieser Wert wird in GEMIS übernommen. Wasserinanspruchnahme: Wasser wird vorwiegend zur Bereitstellung von Prozeßdampf und als Kühlwasser in einer Reihe von Einzelprozessen eingesetzt. Der Wasserbedarf ist dadurch relativ hoch. Pro Tonne Soda werden 62,6 m³ Wasser benötigt (#1). Abwasserparameter: Eine organische Belastung des Abwassers, die sich mit den in GEMIS bilanzierten Summenparametern messen läßt, ist nicht zu rechnen. In der Bilanz von Solvay werden ausschließlich anorganische Verunreinigungen aufgeführt. Vor allem die Chloridfracht über das Abwasser ist bemerkenswert. Pro Tonne Natriumcarbonat werden über Calciumchlorid ca. 950 kg Chlorid über das Abwasser emittiert (#1). Reststoffe: Als Reststoffe aus den Prozessen um die Sodaherstellung fällt Asche aus der Verbrennung der Kohle an (6 kg/t P). Weiterhin verbleiben Rückstände des Kalksteins (20 kg/t P) und sog. Downcyclate (22 kg/t P). Bei den Downcyclaten handelt es sich um Produktionsrückstände, die teilweise im Straßenbau eingesetzt werden können. Sie werden in GEMIS allerdings als Reststoff und nicht als Produkt verbucht. Insgesamt fallen somit ca. 48 kg Reststoffe pro Tonne Soda an (#1). Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 64,5% Produkt: Grundstoffe-Chemie

INSPIRE: Map of Mineral Resources of Germany 1:1,000,000 (BSK1000)

The BSK1000 (INSPIRE) provides the basic information on the spatial distribution of energy resources and mineral raw materials (‘stones and earth’, industrial minerals and ores) in Germany on a scale of 1:1,000,000. The BSK1000 is published by the Federal Institute for Geosciences and Natural Resources in cooperation with the State Geological Surveys of Germany. According to the Data Specification on Mineral Resources (D2.8.III.21) the content of the map is stored in five INSPIRE-compliant GML files: BSK1000_Mine.gml contains important mines as points. BSK1000_EarthResource_point_Energy_resources_and_mineral_raw_materials.gml contains small-scale energy resources and mineral raw materials as points. BSK1000_EarthResource_polygon_Distribution_of_salt.gml contains the distribution of salt as polygons. BSK1000_EarthResource_polygon_Energy_resources.gml contains large-scale energy resources as polygons. BSK1000_EarthResource_polygon_Mineral_raw_materials.gml contains large-scale mineral raw materials as polygons. The GML files together with a Readme.txt file are provided in ZIP format (BSK1000-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: Geoscientific Map of Germany 1:2,000,000 - Important deposits (GK2000 Lagerstätten)

The GK2000 Lagerstätten (INSPIRE) shows deposits and mines of energy resources, metal resources, industrial minerals and salt on a greatly simplified geology within Germany on a scale of 1:2,000,000. According to the Data Specifications on Mineral Resources (D2.8.III.21) and Geology (D2.8.II.4_v3.0) the content of the map is stored in three INSPIRE-compliant GML files: GK2000_Lagerstaetten_Mine.gml contains mines as points. GK2000_ Lagerstaetten _EarthResource_polygon_Energy_resources.gml contains energy resources as polygons. GK2000_ Lagerstaetten _GeologicUnit.gml contains the greatly simplified geology of Germany. The GML files together with a Readme.txt file are provided in ZIP format (GK2000_ Lagerstaetten -INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

IS RÜK 500 DS - Informationssystem Rohstoffkundliche Übersichtskarte von Nordrhein-Westfalen 1 : 500 000 - Datensatz

Dieser Datensatz enthält die Daten zum Informationssystem Rohstoffübersichtskarte von Nordrhein-Westfalen 1 : 500 000 (IS RÜK 500). Die Karte gibt einen generalisierten Überblick über die Verteilung der Rohstoffvorkommen in Nordrhein-Westfalen. Sie zeigt aktuell und historisch relevante Rohstoffvorkommen von Kohle und Gas, Steine und Erden sowie von Salzen, Erzen und Mineralien.

Versorgungsbereiche Gebäudewärme und überwiegende Heizungsarten 2005 (Umweltatlas)

Die Daten verdeutlichen die auch im Kraftwerksbereich in den letzten Jahren vorgenommenen Angleichungen beim Energieträgereinsatz in der Stadt. Das "Rückrat" des Energieträgereinsatzes in den Berliner Kraftwerken stellen Steinkohle und Erdgas.

1 2 3 4 5144 145 146