Das Projekt "Menge, Zusammensetzung und Umsetzung der organischen Substanz im Unterboden" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Ökologie, Lehrstuhl für Bodenkunde.Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen). Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluß über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe betrachtet, um die Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.
Das Projekt "FT-IR Spektroskopie als schnelle Methode zur Bestimmung der biochemischen Zusammensetzung pflanzlicher Biomasse" wird/wurde ausgeführt durch: Universität Leipzig, Institut für Biologie I, Abteilung Pflanzenphysiologie.Will man in ökologischen Stoffkreisläufen auch die Energieumsätze bestimmen, ist es erforderlich, den Nahrungswert der einzelnen Stufen in der Nahrungskette zu kennen. Für aquatische Stoffkreisläufe sind die Energieumsätze bislang nicht genau genug untersucht, um einigermaßen genaue Bilanzen aufstellen zu können, da eine ausreichend empfindliche und genaue Analytik nicht verfügbar ist. In dem Vorhaben soll die quantitative spektroskopische Bestimmung von Fetten, Kohlenhydraten und Proteinen, wie sie aus der Lebensmittelanalytik bekannt ist, so verfeinert werden, daß sie auf Phytoplankton anwendbar wird.
Das Projekt "Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Kopplung zwischen pilzlichem Phosphat- und pflanzlichem Zuckerexport in der Ektomykorrhizasymbiose" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Institut für Ökologie, Abteilung Botanik.Essentiell für die Nährstoffversorgung von Waldbäumen ist die Assoziation ihrer Wurzelsysteme mit Bodenpilzen. In angepassten Feinwurzeln (Ektomykorrhizen) wird Phosphat vom Pilzpartner an die Pflanze abgegeben, wobei gleichzeitig seine Versorgung mit pflanzlichem Zucker erfolgt. Die Versorgung des jeweiligen Partners erfolgt dabei wechselseitig. Exportiert einer der Partner eine ungenügende Nährstoff- Metabolitmenge, vermindert auch der andere Partner die Versorgung. Wie dieser Stoffaustausch auf der zellulären Ebene organisiert wird, ist bisher kaum verstanden. Während bisher keine pilzlichen Phosphatexporter bekannt sind, sind Kandidaten für den pflanzlichen Zuckerexport identifiziert. Einige Mitglieder einer neuen Genfamilie pflanzlicher Zuckertransporter (SWEETs) werden in der Modellpflanze Pappel Mykorrhiza-spezifisch induziert und konnten von uns im Rahmen von Vorarbeiten als funkti-onelle Glukoseexporter charakterisiert werden. Ziel des Projekts ist es, mit Hilfe dieser SWEET Gene die Steuerung des pflanzlichen Kohlenhydratexports sowie den Zusammenhang zwischen pilzlicher Kohlenhydrat- und pflanzlicher Phosphatversorgung in der Symbiose auf der molekularen Ebene aufzuklären. Hierzu soll einerseits die Signalkette entschlüsselt werden, die zu einer Mykorrhiza-spezifischen Induktion der SWEET Gene führt. Durch transgene Pappeln, bei denen a) die Expression ausgewählter SWEET Gene unterdrückt bzw. b) bei denen der Kohlenhydratfluss Richtung Pilzpartner moduliert wurden, soll die Auswirkung der veränderten Kohlenhydratversorgung des Pilzpartners auf die pflanzliche Phosphatversorgung analysiert werden. Methodisch soll dies durch Kohlenhydratflussanalysen sowie in vivo Imaging geschehen. Unklar ist bisher, ob der für Pappeln postulierte Mechanismus der pilzlichen Kohlenhydratversorgung auch in anderen Waldbäumen abläuft, und ob unterschiedliche Mykorrhizapilze vergleichbare Effekte in der Pflanze induzieren. Untersucht werden soll hierzu die Expression von SWEET Homologen der Fichte in von natürlichen Standorten isolierten Mykorrhizen, die mit unterschiedlichen Pilzpartnern gebildet wurden. Weiterhin soll analysiert werden, ob und gegebenenfalls wie sich der Phosphatgehalt des Bodens auf die Expression der identifizierten Mitglieder der SWEET-Genfamilie auswirkt. Fernziel ist hierbei zu ergründen, ob unterschiedliche Pilzpartner durch die Beeinflussung der SWEET Gen Expression unterschiedliche Zuckermengen für eine gegebene Phosphatmenge erhalten können.
Das Projekt "Grundlage von Trockentoleranz in hoeheren Pflanzen" wird/wurde gefördert durch: Universität Bonn. Es wird/wurde ausgeführt durch: Universität Bonn, Botanisches Institut und Botanischer Garten.Das Ziel unserer Untersuchungen ist es, molekulare Mechanismen aufzuklaeren, die zur Trockentoleranz bei hoeheren Pflanzen fuehren. Dazu untersuchen wir als Modellsystem die Wiederauferstehungspflanze C. plantagineum. Diese Pflanze zeichnet sich durch eine extreme Trockentoleranz aus. Wir haben mehrere Gene isoliert, die waehrend des Trockenstresses induziert werden. Es wird untersucht, inwieweit diese Genprodukte zur Trockentoleranz beitragen. Die Gene koennen in drei Gruppen eingeteilt werden: Lea-(late anbryogenesis abundant) Gene, Gene, die fuer Produkte des Kohlenhydratstoffwechsels kodieren, sowie regulatorische Gene.
Das Projekt "SP1.1 Dynamische Anreicherungsprozesse von organischer Substanz in der SML" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR).Der Oberflächenfilm (SML) ist die oberste dünne Schicht des Ozeans und Teil jeglicher Wechselwirkung zwischen Luft und Meer, wie Gasaustausch, atmosphärische Deposition und Aerosolemission. Die Anreicherung von organischer Materie (OM) in der SML modifiziert die Luft-Meer-Austauschprozesse, aber welche OM-Komponenten selektiv angereichert werden, sowie warum und wann sie dies tun, ist weitgehend unbekannt (Engel et al., 2017). Unsere bisherige Forschung hat gezeigt, dass Biopolymere aus photoautotropher Produktion wichtige Komponenten der SML sind und den Luft-Meer-Austausch beeinflussen, indem sie als Biotenside (Galgani et al., 2016; Engel et al., 2018) und als Quelle primärer organischer Aerosole (Trueblood et al., 2021) wirken. Die Motivation unseres Projektes ist es daher, die dynamischen Anreicherungsprozesse von OM in der SML aufzuklären und zu beschreiben, wobei ein besonderer Schwerpunkt auf der Auflösung der OM-Quellen liegt. Mit unserem Modellierungsansatz ist es das Ziel, unser mechanistisches Verständnis der Zusammenhänge zwischen den Wachstumsbedingungen des Planktons, der Produktion und der Freisetzung von Biomolekülen, einschließlich potentieller Tenside, und der Akkumulation von OM in der SML zu konsolidieren. Eine solche Modellentwicklung wird in hohem Maße von den Ergebnissen und Erkenntnissen der verschiedenen Teilprojekte des BASS-Konsortiums profitieren. Umgekehrt ist es unsere Motivation, ein Modell zu etablieren, das als Synthesewerkzeug für die Interpretation und Integration von Feld-, Mesokosmen- und Labormessungen der OM-Anreicherung in der SML anwendbar wird.Relevanz für die Forschungsgruppe BASS - SP1.1 wird die Quellen, die Menge und die biochemische Zusammensetzung von OM in der SML entschlüsseln und damit wichtige Informationen für alle BASS-Teilprojekte liefern. Der primäre Ursprung von OM im Oberflächenozean ist die photosynthetische Produktion und die wichtigsten biochemischen Komponenten von frisch produzierter OM, d.h. Kohlenhydrate, Aminosäuren und Lipide, unterliegen der mikrobiellen Verarbeitung (SP1.2) und Photoreaktionen innerhalb der SML (SP1.3, SP1.4) und füllen auch den Pool der gelösten organischen Substanz (DOM) auf (SP1.5). Die Modellentwicklung in SP1.1 stellt eine Verbindung zwischen der Produktion von OM und ihrer Anreicherung innerhalb der SML her und zielt darauf ab, die entsprechenden Auswirkungen auf den Luft-Meer-Gasaustausch (SP2.1) zu bestimmen, indem Änderungen des Impulsflusses auf den Ozeanoberflächenschichten (SP2.2) sowie des Auftriebs (SP2.3) berücksichtigt werden. Das vorgeschlagene SML-Submodell wird auf der Grundlage der Ergebnisse aus SP1.4 und SP2.3 verfeinert. Ergebnisse aus den Modellsensitivitätsanalysen werden ergänzende Informationen über oberflächenaktive Eigenschaften verschiedener OM Komponenten und deren Auswirkungen auf Luft-Meer-Austauschprozesse liefern, die innerhalb von BASS ausgewertet werden.
Das Projekt "Spurenanalyse von Umweltmedien auf die Gegenwart cancerogener N-No-Verbindungen. Synthese kohlenhydratverknuepfter Nitrosamine. Synthese von N-No-Zuckeraminosaeuren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Hamburg, Institut für Organische Chemie und Biochemie.
Das Projekt "Entwicklung einer Pilotanlage zur Vollverwertung von Weizenpülpe und Systemintegration in die industrielle Stärkeproduktion, Teilvorhaben: Weizenpülpe als Ballaststoffquelle für die Humanernährung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Max Rubner-Institut Bundesforschungsinstitut für Ernährung und Lebensmittel, Institut für Sicherheit und Qualität bei Getreide.
Das Projekt "Synthetischer Ansatz zur kontrollierten Herstellung von Materialien aus Kohlenhydraten, von NANO-Technologie zur BULK-Produktion" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Kolloid- und Grenzflächenforschung.
Das Projekt "Wirkungen wasserlöslicher organischer Substanzen auf die Stabilisierung und den Abbau organischer Bodensubstanz" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bochum, Geographisches Institut, Arbeitsgruppe Bodenkunde und Bodenökologie.Mikrobielle Umsetzungsprozesse im Boden verlaufen fast ausschließlich unter Beteiligung einer gelösten Phase, da alle lebenden Zellen von einem Wasserfilm umgeben sind, durch den Substrate hindurchdiffundieren müssen, oder über den Exoenzyme und andere Exsudate abgegeben werden. Bei der Mineralisierung organischer Substanzen kommt daher der gelösten organischen Substanz (DOM) als Substrat für Mikroorganismen eine entscheidende Rolle zu. In dem Vorhaben wird der Frage nachgegangen, ob bestimmte streu- und wurzelbürtige DOM-Komponenten wie Kohlenhydrate oder Phenole darüberhinaus die mikrobielle Aktivität in einem Maße fördern oder hemmen können, daß von ihnen Auswirkungen auf den Abbau oder die Stabilisierung der organischen Bodensubstanz auftreten können. Zur Untersuchung solcher 'Priming Effekte' sollen umfangreiche Inkubationsversuche durchgeführt werden, bei denen die Wirkung unterschiedlicher gelöster 14C-markierter Einzelverbindungen und von DOM-Lösungen unterschiedlicher 13C-Signatur auf die Mineralisierung von Modellsubstanzen und der organischen Substanz verschiedener Bodenproben ermittelt wird. Ein daraus berechneter Priming Index gibt Auskunft darüber, inwieweit es durch die zugesetzten DOM-Lösungen zu einem verstärkten oder vermindertem Abbau der organischen Bodensubstanz kommt
Das Projekt "Biogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS): Chemische und Photochemische Umsetzung Organischer Stoffe" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kiel, Institut für Physikalische Chemie.Die Grenzfläche zwischen Ozean und Atmosphäre ist durch einen allgegenwärtigen, < 1 mm dicken marinen Oberflächenfilm, den sogenannten sea-surface microlayer (SML), charakterisiert. Der SML ist nicht nur direkter UV-Strahlung und atmosphärischen Oxidantien ausgesetzt, sondern zeichnet sich im Vergleich zum unterliegenden Wasser auch durch höhere Konzentrationen an organischen Stoffen aus. Bisher ist unklar, welche Bedeutung die dadurch bedingten SML-spezifischen abiotischen Prozesse für die Umsetzung und die Emission organischer Stoffe insgesamt haben und wie man diese Prozesse parametrisieren kann. In diesem Projekt, das eng mit anderen Projekten der interdisziplinären Forschungsgruppe â€ÌBiogeochemische Prozesse und Ozean/Atmosphäre- Austauschprozesse in marinen Oberflächenfilmen (BASS)â€Ì verbunden ist, sollen daher molekulare Details SML-spezifischer Reaktionen (Photochemie, heterogene Oxidation, Radikalchemie) genauer untersucht werden. Ziel ist es, Reaktionsprodukte und -geschwindigkeiten quantitativ zu erfassen und Unterschiede zwischen Reaktionen im SML und in der freien Wassersäule herauszuarbeiten. Basierend auf der Expertise der drei beteiligten Arbeitsgruppen im Bereich Photochemie, Reaktionskinetik, Laserspektroskopie, Analytik und theoretischer Modellierung, soll ein molekulares Verständnis ausgewählter Reaktionen und des Einflusses der komplexen SML-Reaktionsumgebung erreicht werden. Dazu sollen experimentelle Verfahren wie Schwingungs-Summenfrequenzerzeugung, hochempfindliche Chromatographie-Massenspektrometrie und gepulste Laserphotolyse-Langwegabsorption mit Methoden der Quantenchemie und Molekulardynamik kombiniert werden. Arbeitsschwerpunkte bilden die Oxidationskinetik von Halogen- bzw. Hydroxyl-Radikalreaktionen in der flüssigen Phase, die Ozonolyse von Fettsäure-Monoschichten und die durch Photosensibilisatoren verstärkte Bildung von reaktiven Radikalen bzw. Zersetzung von organischen Schichten. Neben wohldefinierten Labor-Modellsystemen werden auch natürliche Proben analysiert werden. Dabei stellt sich z.B. die Frage nach den Einflussfaktoren der während einer Algenblüte zunehmenden Bildung von oberflächenaktiven Stoffen im SML und der Bedeutung der durch die Sonne bedingten Photolyse auf die abiotische Umsetzung organischer Stoffe. Flankierend werden im Projekt auch die eingesetzten Untersuchungsmethoden weiterentwickelt; das beinhaltet sowohl die Ausarbeitung von Messprotokollen zur Quantifizierung bestimmter organischen Substanzklassen (z.B. Carbonyle und Kohlenhydrate) im SML, die Synthese und Charakterisierung von neuartigen oberflächenaktiven Photosensibilisatoren (z.B. Benzoyl-Benzoesäure-funktionalisierte Lipide) sowie die Entwicklung und Erprobung mehrstufiger Modellierungsverfahren zur theoretischen Beschreibung von Struktur-Reaktivitätsbeziehungen der Fettsäure-Ozonolyse (z.B. Beschreibung des Einflusses sterischer und elektronischer Effekte der organischen Matrix).
Origin | Count |
---|---|
Bund | 387 |
Type | Count |
---|---|
Chemische Verbindung | 3 |
Förderprogramm | 384 |
License | Count |
---|---|
geschlossen | 3 |
offen | 384 |
Language | Count |
---|---|
Deutsch | 353 |
Englisch | 49 |
Resource type | Count |
---|---|
Keine | 257 |
Webseite | 130 |
Topic | Count |
---|---|
Boden | 313 |
Lebewesen & Lebensräume | 360 |
Luft | 191 |
Mensch & Umwelt | 387 |
Wasser | 178 |
Weitere | 382 |