API src

Found 6149 results.

Related terms

Kohlendioxid-Emissionen

<p>Seit 1990 gehen die Kohlendioxid-Emissionen in Deutschland nahezu kontinuierlich zurück. Ursachen waren in den ersten Jahren vor allem die wirtschaftliche Umstrukturierung in den neuen Ländern. Seitdem ist es die aktive Klimaschutzpolitik der Bundesregierung, die in Einzeljahren jedoch auch von witterungsbedingten Effekten überlagert werden kann.</p><p>Kohlendioxid-Emissionen im Vergleich zu anderen Treibhausgasen</p><p>Kohlendioxid ist das bei weitem bedeutendste <a href="https://www.umweltbundesamt.de/themen/klima-energie/treibhausgas-emissionen/die-treibhausgase">Klimagas</a>. Laut einer ersten Berechnung des Umweltbundesamtes betrug 2024 der Kohlendioxid-Anteil an den gesamten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen 88,2 % (siehe Abb. „Anteile der Treibhausgase an den Emissionen“). Der Anteil hat gegenüber 1990 um über 4 Prozentpunkte zugenommen. Der Grund: Die Emissionen von Methan und Distickstoffoxid wurden im Vergleich zu Kohlendioxid erheblich stärker gemindert.</p><p>___<br> Umweltbundesamt, Nationale Treibhausgas-Inventare 1990 bis 2023 (Stand 03/2025), für 2024 vorläufige Daten (Stand 15.03.2025)</p><p>Herkunft und Minderung von Kohlendioxid-Emissionen</p><p>Kohlendioxid entsteht fast ausschließlich bei den Verbrennungsvorgängen in Anlagen und Motoren. Weitere Emissionen entstehen im Bereich Steine und Erden, wenn Kalk zur Zement- und Baustoffherstellung gebrannt wird. Bezogen auf die Einheit der eingesetzten Energie sind die Emissionen für feste Brennstoffe, die überwiegend aus Kohlenstoff bestehen, am höchsten. Für gasförmige Brennstoffe sind sie wegen ihres beträchtlichen Gehalts an Wasserstoff am niedrigsten. Eine Zwischenstellung nehmen die flüssigen Brennstoffe ein.</p><p>Seit 1990 gehen die Kohlendioxid-Emissionen nahezu kontinuierlich zurück. Zwischen 1990 und 1995 ist dies vor allem auf den verminderten Braunkohleeinsatz in den neuen Ländern zurückzuführen. Ab Mitte der 90er-Jahre wirkt sich insbesondere die aktive Klimaschutzpolitik der Bundesregierung emissionsmindernd aus. Durch kalte Winter and durch konjunkturelle Aufschwünge stiegen die Emissionen zwischenzeitlich immer wieder leicht an, zum Beispiel in den Jahren 1996, 2001, 2008, 2010, 2013 und 2015, 2021&nbsp;(siehe Abb. „Emissionen von Kohlendioxid nach Kategorien“ und Tab. „Emissionen ausgewählter Treibhausgase nach Kategorien“). Im Jahr 2009 wirkte die ökonomische Krise emissionsmindernd. 2010 stiegen die Emissionen hauptsächlich durch die konjunkturelle Erholung der Wirtschaft und die kühle ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ wieder an. In den Folgejahren hatte die Witterung den größten Einfluss auf die Emissionsentwicklung, zusätzlich drückt der stetige Rückgang der Emissionen aus der Energiewirtschaft das Emissionsniveau ab dem Jahr 2014 deutlich. Im Jahr 2020 dominieren die komplexen Sondereffekte der Corona-Pandemie das Emissionsgeschehen, während 2021 von Wiederanstiegen dominiert wird. Der Russische Angriffskrieg gegen die Ukraine wirkte sich in unterschiedlicher Weise auf die Entwicklung der Emissionen im Jahr 2022 aus (vgl. <a href="https://www.umweltbundesamt.de/presse/pressemitteilungen/uba-prognose-treibhausgasemissionen-sanken-2022-um">UBA/BMWK: Gemeinsame Pressemitteilung 11/2023</a>).</p><p>Kohlendioxid-Emissionen 2024</p><p>2024 sanken die Kohlendioxid-Emissionen gegenüber 2023 um 21,3 Millionen Tonnen bzw. rund 3,6 % auf 572 Millionen Tonnen Kohlendioxid. Gegenüber 1990 sind die Kohlendioxid-Emissionen demnach um 48,2 % gesunken. Die größten Rückgänge gab es in der Energiewirtschaft. Weitere Nennenswerte Rückgänge der Emissionen gab es im Straßenverkehr, und bei den Haushalten und&nbsp; Kleinverbrauchern.</p><p>Den größten Anteil an den Kohlendioxid-Emissionen hatte 2024, wie in den letzten Jahren, die Kategorie Energiewirtschaft mit 30,8 %. Aus diesem Bereich wurden im Jahr 2024 rund 177 Millionen Tonnen Kohlendioxid freigesetzt. Die Kategorien Haushalte/Kleinverbraucher (18,6 %) und Straßenverkehr/übriger Verkehr (24,9 %) sowie Verarbeitendes Gewerbe/Industrieprozesse (zusammen 24,8 %) besitzen hinsichtlich der Kohlendioxid-Emissionen derzeit eine etwas geringere Bedeutung.</p><p>Die gesamtwirtschaftliche Emissionsintensität (Emissionen bezogen auf das Bruttoinlandsprodukt) sank zwischen 1991 und 2024 um 62 % (siehe Abb. „Kohlendioxid-Emissionsintensität in Deutschland“).</p>

Can the resistance and resilience of trees to drought be increased through thinning to adapt forests to climate change?

Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Ganzjährige Dynamik und Treiber der Biologischen Kohlenstoffpumpe im Weddellmeer durch autonomes Sampling

Die Biologische Kohlenstoffpumpe (BCP) steuert die Zufuhr, Verwertung und Speicherung von Kohlenstoff in den Weltmeeren. Ein mechanistisches Verständnis der BCP erfordert kontinuierliche Beobachtungen, welche Biologie, Ozeanographie und Geochemie über Zeit, Wasserschichten und Umweltbedingungen verknüpfen. Solche Beobachtungen der BCP im Südlichen Ozean fehlen, und erfordern autonome Technologien. Basierend auf autonomen Probennehmern und Sensoren, gibt YIPPEE ganzjährige Einblicke in die taxonomischen und funktionellen Merkmale der BCP im Weddellmeer. Dieses "letzte Eisgebiet" mit zentraler Bedeutung für das globale Klima ist ein natürliches Labor für das Verständnis polarer Prozesse und ihrer Reaktion auf den Klimawandel. Die Verankerung wurde zwischen März 2021 und März 2022 erfolgreich ausgebracht. Vorläufige Analysen von eDNA und Umweltparametern bestätigen die Konsistenz des Datensatzes. Drei Arbeitspakete beleuchten die biologische Vielfalt und funktionelle Genomik über ein komplettes Jahr im Kontext von Wassermassen, Eisbedeckung und Nährstoffkonzentrationen. Essenziell ist die hochauflösende biologische und ökologische Probenahme, welche Dynamiken in der photischen Zone mit geochemischen Flüssen in die Tiefsee verbindet. eDNA-Sequenzierung wird Populationen - von Bakterien bis Metazoen - während spezifischer Ökosystemzustände darstellen, sowie deren zeitliche und ökologische Konnektivität. Dies wird Übergangsperioden und zentrale Wendepunkte im Jahreszyklus aufdecken: die Schwelle des Tageslichts, welches Phytoplanktonwachstum auslöst, bakterielle Aktivitäten nach dem ersten photosynthetischen Impuls, sowie die Sukzession von Protisten und Zooplankton. Die Sequenzierung von Long-Read-Metagenomen wird funktionelle Signaturen saisonaler Ökosystemzustände aufzeigen und den Beitrag biogeochemischer Pfade über Umweltgradienten quantifizieren, was eine Klassifizierung des Jahreszyklus in Perioden der Autotrophie und (Chemo-)Heterotrophie sowie der zugrundeliegenden Stoffwechselwege ermöglicht. Genetische Funktionen, welche während hoher Eisbedeckung vorherrschen, schaffen einen Bezugswert für das "wahre" Weddellmeer vor den Auswirkungen des Klimawandels. Drittens eröffnet der Vergleich antarktischer und arktischer Dynamiken eine bipolare Perspektive auf die funktionale Saisonalität und den Aufbau biologischer Gemeinschaften. Dieses hochauflösende Bild der wichtigsten Taxa, genetischen Vielfalt, ökologischen Netzwerke und Nährstoffflüsse erstellt ein einzigartiges Bild der antarktischen BCP, und polarer Ökosysteme im Allgemeinen. YIPPEE steht im Einklang mit ~10 anderen SPP-Projekten und zentralen SPP-Zielen, einschließlich angeregter Langzeitbeobachtungen. Alle Daten und bioinformatischer Code werden sofort veröffentlicht. Zusätzlich zu wissenschaftlichen Publikationen werden die Ergebnisse über eine interaktive Web-App und gesellschaftliche Kommunikationskanäle verbreitet.

Projekt RiA – Rohstoffrückgewinnung durch innovative Asphaltaufbereitung nach dem NaRePAK-Verfahren (Nachhaltiges Recycling von PAK-haltigem Straßenaufbruch)

Die IVH, Industriepark und Verwertungszentrum Harz GmbH mit Sitz in Hildesheim (Niedersachsen) hat über mehrere Jahre zusammen mit der Umweltdienste Kedenburg GmbH, beide Entsorgungs-/Recyclingunternehmen im Unternehmensverbund der Bettels-Gruppe, Hildesheim, und der Eisenmann Environmental Technologies GmbH, Holzgerlingen, deren NaRePAK-Verfahren zur großmaßstäblichen Umsetzung weiterentwickelt. Stoffkreisläufe zu schließen und somit die effiziente und nachhaltige Nutzung begrenzter Ressourcen zu verbessern ist die erklärte Philosophie der IVH, hier fügt sich das RiA-Verfahren nahtlos ein. In Deutschland fallen jährlich erhebliche Mengen teerhaltigen Straßenaufbruchs an. Dieser Abfallstrom besteht weit überwiegend aus mineralischen Komponenten (z.B. Gesteinskörnungen und Feinsand) und enthält neben Bitumen krebserregende polyzyklische aromatische Kohlenwasserstoffe (PAK). Letztere sind verantwortlich, dass dieser Massenstrom als gefährlicher Abfall eingestuft wird. PAK sind persistent und verbleiben ohne thermische Behandlung langfristig in der Umwelt. Die Abfallmengen sind dabei beträchtlich. Die Bundesregierung geht von einer Menge von etwa 600.000 Tonnen pro Jahr allein von Bundesautobahnen und -straßen aus, dazu kommt der Aufbruch von Landes- und Kreisstraßen, die mengenmäßig die Bundesautobahnen und -straßen weit übertreffen. Bisher wird teerhaltiger Straßenaufbruch überwiegend deponiert, wodurch die im Straßenaufbruch enthaltenen mineralischen Ressourcen dem Wertstoffkreislauf verloren gehen. Der in begrenztem Umfang alternativ mögliche Verwertungsweg: Kalteinbau in Tragschichten im Straßenbau, erfolgt ohne Entfernung der PAK und wird daher nur noch in geringem Umfang angewendet. Eine weitere Möglichkeit ist die thermische Behandlung in den Niederlanden. Dies ist nicht nur verbunden mit langen Transportwegen, auch arbeiten die niederländischen Anlagen in einem deutlich höheren Temperaturintervall – im Bereich der Kalzinierung (Kalkzersetzung) – was dazu führen kann, dass die mineralischen Bestandteile des Straßenaufbruchs nicht mehr die notwendige Festigkeit aufweisen, um für einen Einsatz als hochwertiger Baustoff für die ursprüngliche Nutzung des Primärrohstoffes in Frage zu kommen. Darüber hinaus wird beim Kalzinierungsprozess von Kalkgestein im Gestein gebundenes CO 2 freigesetzt. Mit dem Vorhaben RiA plant die IVH an ihrem Standort in Goslar / Bad Harzburg die Errichtung einer in Deutschland erstmaligen großtechnischen Anlage zur thermischen Behandlung von teerhaltigem Straßenaufbruch. Dabei soll eine möglichst vollständige Rückgewinnung der enthaltenen hochwertigen Mineralstoffe (Gesteinskörnungen)erfolgen. Gleichzeitig werden die enthaltenen organischen Bestandteile, die in Form von Teerstoffen und Bitumen vorliegen, als Energieträger genutzt. In der innovativen Anlage sollen pro Jahr bis zu 135.000 Tonnen teerhaltiger Straßenaufbruch mittels Drehrohr thermisch aufbereitet werden. Dabei werden im Teer enthaltene besonders schädliche Stoffe wie PAK bei Temperaturen zwischen 550 Grad und 630 Grad Celsius entfernt und in Kombination mit der separaten Nachverbrennung vollständig zerstört, ohne dass das Mineralstoffgemisch zu hohen thermischen Belastungen mit der Gefahr einer ungewollten Kalzinierung ausgesetzt ist. Zurück bleibt ein sauberes, naturfarbenes Gesteinsmaterial (ohne schwarze Restanhaftungen von Kohlenstoff), das für eine höherwertige Wiederverwendung in der Bauwirtschaft geeignet ist. Die mineralischen Bestandteile des Straßenaufbruchs können so nahezu vollständig hochwertig verwendet und analog Primärrohstoffen erneut bei der Asphaltherstellung oder Betonherstellung eingesetzt werden. Die organischen Anteile im Abgas werden mittels Nachverbrennung bei 850 Grad Celsius thermisch umgesetzt und vollständig zerstört. Die dabei entstehende Abwärme wird genutzt, um Thermalöl zu erhitzen, um damit Ammoniumsulfatlösungen einer benachbarten Bleibatterieaufbereitung der IVH einzudampfen, aufzukonzentrieren und so ein vermarktungsfähiges Düngemittel herzustellen. Das Thermalöl wird dazu mit 300 Grad Celsius zu der Batterierecyclinganlage geleitet. Die Wärme ersetzt dabei andere Brennstoffe wie z. B. Erdgas. Die verbleibende Abwärme aus der Nachverbrennung wird mittels drei ORC-Anlagen zur Niedertemperaturverstromung genutzt. Es werden ca. 300 Kilowatt elektrische Energie pro Stunde erzeugt. Die beim RiA-Verfahren entstehenden Abgase werden in einer mehrstufigen Rauchgasreinigung behandelt. Die Abgase der Drehrohr-Anlage werden dazu aufwendig mittels Zyklone und nachgeschaltetem Gewebefilter entstaubt. Schwefeldioxid und Chlorwasserstoff werden mittels trockener Rauchgasreinigung nach Additivzugabe abgeschieden. Die Umwandlung von Stickstoffoxiden erfolgt mittels selektiver katalytischer Reduktion mit Harnstoff als Reduktionsmittel. Die bereits genannte Nachverbrennung zerstört verbliebene organische Reste. Die wesentliche Umweltentlastung des Vorhabens besteht in der stofflichen Rückgewinnung des ursprünglichen hochwertigen Gesteins im teerhaltigen Straßenaufbruch, also durch Herstellung eines wiederverwendbaren PAK-freien Mineralstoffgemisches von gleicher Qualität wie die ursprünglichen Primärrohstoffe. Das heißt die besonders umweltschädlichen PAKs werden nachhaltig aus dem Stoffkreislauf entfernt. Mit der Anlage können von eingesetzten 135.000 Tonnen Straßenaufbruch rund 126.900 Tonnen als Mineralstoffgemisch in Form von Gesteinskörnungen und Füller zurückgewonnen und für die Wiederverwendung bereit gestellt werden. Die Gesamtmenge von 126.900 Tonnen pro Jahr reduziert den jährlichen Bedarf von Gesteinsabbauflächen bei einer Abbautiefe von 30 Meter um rund 1.460 Quadratmeter. Bezogen auf den angenommenen Lebenszyklus von 30 Jahren wird eine Fläche von ca. 4,4 Hektar Abbaugebiet allein durch diese Anlage nicht in Anspruch genommen. Zusätzlich wird in gleichem Maße wertvoller Deponieraum bei knappen Deponiekapazitäten eingespart. Bei erfolgreicher Demonstration der technischen und wirtschaftlichen Realisierbarkeit im industriellen Maßstab, lässt sich diese Technik dezentral auf verschiedene Standorte in Deutschland übertragen. Damit wird dem in der Kreislaufwirtschaft propagierten Näheprinzip entsprochen, das heißt die Transportwege und die damit verbundenen Umweltauswirkungen werden weiter reduziert. Auch der nach Region unterschiedlichen Gesteinsarten wird dabei Rechnung getragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: IVH, Industriepark und Verwertungszentrum Harz GmbH Bundesland: Niedersachsen Laufzeit: seit 2024 Status: Laufend

Upcycling von Celluloseabfällen durch enzymatische Verzuckerung von Papierhandtüchern: vom Zellstoff zum Stoff für Zellen

Field based and laboratory data of sediment cores from the Lower Havel Inner Delta near Lake Gülpe, Brandenburg (Germany)

Sediment cores were recovered using a hand-held Cobra Pro (Atlas Copco) core drilling system with a 60 mm diameter open corer. One-meter segments were retrieved and assessed in the field for sedimentological features, including estimations of grain size, carbonate content, humus content, and redox features (AG Boden 2005, 2024). Colour descriptions were carried out using the Munsell Soil Color Chart. The exact positions of the drilling points were recorded using a differential GPS device (TOPCON HiPer II). The cores were photographed, documented and sampled at 5–10 cm intervals for subsequent laboratory analyses. Bulk samples from five selected cores (RK1, RK3, RK13, RK15, RK17) were freeze-dried, sieved (2 mm), and weighed. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents were measured using a CNS analyzer (Vario EL cube, Elementar). Inorganic carbon (TIC) was determined using calcimeter measurements (Scheibler method, Eijkelkamp). Organic carbon (TOC) was calculated as TOC = TC − TIC. For the grain size analyses, sediment samples were first sieved to <2 mm and subsamples of 10 g were treated with 50 ml of 35% hydrogen peroxide (H₂O₂) and gently heated to remove organic matter. Following this, 10 ml of 0.4 N sodium pyrophosphate solution (Na₄P₂O₇) was added to disperse the particles, and the suspension was subjected to ultrasonic treatment for 45 minutes. The sand fraction was analysed by dry sieving and classified into four size classes: coarse sand (2000–630 µm), medium sand (630–200 µm), fine sand (200–125 µm), and very fine sand (125–63 µm). Finer fractions were determined using X-ray granulometry (XRG) with a SediGraph III 5120 (Micromeritics). These included coarse silt (63–20 µm), medium silt (20–6.3 µm), fine silt (6.3–2.0 µm), coarse clay (2.0–0.6 µm), medium clay (0.6–0.2 µm), and fine clay (<0.2 µm).

Strategien und Instrumente zum Erreichen klimaneutraler Gebäude und Gebäudebestände. Deutscher Beitrag zu IEA EBC Annex 89: Ways to implement net-zero whole life carbon building

Bis zu 40 Prozent aller Treibhausgasemissionen (THG) sind dem Handlungsfeld 'Errichtung, Erhalt und Betrieb von Gebäuden' zuzuordnen. Diese als Beitrag zur Begrenzung der globalen Erwärmung zu mindern ist Ziel von Projekten der Internationalen Energie-agentur (IEA). Wurden im Vorläuferprojekt IEA EBC Annex 72 unter deutscher Mitwirkung die Grundlagen für die Bewertung der THG-Emissionen im Lebenszyklus von Gebäuden erarbeitet wird mit dem IEA EBC Annex 89 das Ziel verfolgt, umsetzungsorientierte Strategien und Instrumente für den Klimaschutz im Bau- und Gebäudebereich zu entwickeln und einzuführen. Forschungsthemen und die dabei in Deutschland verfolgten Ansätze sind (1) Zeit- und Stufenpläne für die sektorübergreifende Minderung von THG-Emissionen im Handlungsfeld, die in Deutschland die Umstellung auf THG-Emissionen als Ziel- und Nachweisgröße befördern und verbleibende THG-Budgets definieren; (2) praxistaugliche, zielführende und rechtssichere Anforderungen und Nachweisverfahren, die national eine Basis für die Einführung einer ökobilanziellen Bewertung im Ordnungsrecht liefern können; (3) spezifische Instrumente zur Ermittlung und Beeinflussung von THG-Emissionen, die in Deutschland nicht nur die Planung von Gebäuden unterstützen sondern sämtliche Entscheidungsprozesse durchdringen sowie (4) Ansätze zur Überwindung von Hemmnissen und Stärkung der Handlungsbereitschaft bei ausgewählten Akteursgruppen, darunter Immobilien- und Finanzwirtschaft. Hier sind national Umfragen und Workshops geplant, mit dem Ziel, die in (3) entwickelten Instrumente zur Anwendung zu bringen. Im engen Austausch mit dem nationalen Spiegelprojekt LezBAU (FKZ 03EN1074A, C, D) sollen als deutscher Beitrag zu (2) und (3) u.a. Hilfsmittel erarbeitet werden, die einen niedrigschwelligen Einstieg in die Thematik der ökobilanziellen Bewertung (z.B. Bauteilkataloge) erlauben. Ein Ziel ist die Stärkung der nationalen und internationalen Zusammenarbeit beim Klimaschutz im Bau- und Gebäudebereich.

Klimaangepasstes Wassermanagement (KliWa) aus traditionellen Nutzungen für die Zukunft lernen

Zielsetzung: Die letzten Jahre haben gezeigt, dass wir lernen müssen, Wasser nachhaltiger zu managen und mehr Wasser in der Landschaft zu halten. Vermehrt treten Extremwetterereignisse auf, etwa lange Trockenperioden einerseits sowie Starkniederschläge und Überschwemmungen andererseits. Das sich ändernde Klima führt uns vor Augen, dass Wasser in der Landschaft ein Schlüsselfaktor für die landwirtschaftliche Produktion und den Erhalt von Ökosystemen ist. Herkömmliche Methoden der landwirtschaftlichen Bewässerung kommen allein wegen der Wasserverfügbarkeit an ihre Grenzen. Daher müssen neben technischen (z. B. Zwischenspeicher) auch natürliche Maßnahmen zum Wasserrückhalt umgesetzt werden. Die traditionellen Techniken der Wiesenbewässerungen sind hervorragend dafür geeignet. Durch verzweigte, dem Gelände angepasste Grabensysteme wird Wasser aus einem Fluss über Bewässerungsgräben in die Wiesenfläche geleitet. Unterschiedliche Bewässerungssysteme fluten oder überrieseln die Wiesen durch gezieltes Stauen des Wassers. Ein Teil des Wassers wird anschließend wieder in den Fluss zurückgeleitet. Die Vorteile des Wiesenbewässerung sind mannigfaltig: Sie steigert den Ertrag, trägt zur Bodenbildung bei, bindet Kohlenstoff effektiver als trockene Böden, bietet Lebensraum für feuchteliebende Tier- und Pflanzenarten, puffert Hochwasser- und Starkregenereignisse ab, fördert die Grundwasserneubildung und stellt kühlende Frischluftschneisen für angrenzende Wohngebiete dar. Übergeordnetes Projektziel ist es, die Techniken der fast in Vergessenheit geratenen Bewirtschaftungsform der traditionellen Wiesenbewässerung zu nutzen, um mehr Wasser länger in der Landschaft zu halten. Die Vernetzung des vorhandenen Wissens zu traditioneller Bewässerung und weiteren Methoden des natürlichen Wasserrückhalts sollen neue Anstöße und Lösungsansätze für aktuelle Herausforderungen in unseren Landschaften geben. Darüber hinaus werden bestehende und neue Initiativen zu Fördermöglichkeiten und Projektentwicklung beraten und mit relevanten Kontaktpersonen und Institutionen vernetzt, um neue Projekte zur Verbesserung des natürlichen Wasserrückhalts zu initiieren.

Species level size-normalised weight data for at depth analysis

This dataset contains a compilation of published and new SNW data with corresponding environmental data extracted from CMIP6 that are used in the at depth species level Bayesian regression modelling. Environmental data for G. truncatulinoides comes from 200m depth, all other environmental data is from the sea surface (≤ 20 m).

Linking nutrient cycles, land use and biodiversity along an elevation gradient on Mt. Kilimanjaro

To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.

1 2 3 4 5613 614 615