Das Projekt "Schadstoffabtrennung und -deponie bei Kohleumwandlungsanlagen" wird/wurde gefördert durch: Dr.-Ing. Uwe Neumann. Es wird/wurde ausgeführt durch: Forschungszentrum Jülich GmbH, Institut für Chemische Technologie.Untersuchung des Langzeitverhaltens von Katalysatoren fuer die Stickoxidumwandlung in Abgasen aus Industrieprozessen. Ueberlegungen zur abfalltechnischen Behandlung verbrauchter Katalysatoren. Verfolgung der Schadstoffbildung und Erstellen von Stoffbilanzen bei Verbrennungsprozessen. Arbeiten zur Bewertung der Deponiefaehigkeit von Kraftwerksreststoffen. Bestimmung der Wechselwirkung zwischen den abgelagerten Materialien und der mineralischen Deponieabdeckung sowie des Auslaugverhaltens unter praxisnahen Bedingungen. Entwicklung eines Trocknersystems unter Einsatz der Pulsbrennertechnik fuer die Energiedarbietung.
Das Projekt "System zur Unterstützung bei der Beurteilung der Umweltgefährlichkeit von Abfallstoffen, Entwicklung eines Expertensystems zur Bewertung der Umweltgefaehrlichkeit von Abfaellen und schadstoffbelasteter Standorte" wird/wurde ausgeführt durch: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, Institut für Angewandte Informatik.Die Entsorgung von Abfaellen und die Sanierung von Altlasten erfordert Entscheidungen ueber Gefahrenpotential, Entsorgungsverfahren, Sicherungs- und Sanierungsmassnahmen. Zur Unterstuetzung der beauftragten Experten wird ein wissensbasiertes Informationssystem entwickelt, das Hilfestellung leistet bei der Gefahrenbeurteilung, Planung chemisch-physikalischer Analysen, Bewertung von Untersuchungsergebnissen. Die Arbeiten orientieren sich zunaechst am Beispiel ehemaliger Kohleveredelungsbetriebe (Gaswerke, Kokereien).
Im letzten Jahrhundert ist der globale Energieverbrauch extrem angestiegen. Auch wenn dieser Trend gebrochen scheint, so haben insbesondere Industrieländer weiterhin einen besonders hohen Pro-Kopf-Verbrauch, zu ihnen zählt auch Deutschland. In Deutschland hat der Energieverbrauch vor dem wirtschaftlichen Krisenjahr 2009 seinen Höhepunkt erreicht. Der damalige Wert wurde in den Folgejahren nicht mehr erreicht, obwohl sich die Konjunktur wieder erholte. Der Primärenergieverbrauch ist seitdem deutlich gesunken, in geringerem Maße auch der Endenergieverbrauch . Mit der Nutzung von Energie sind eine Reihe schädlicher Auswirkungen für die Umwelt verbunden. Werden fossile Energieträger gefördert, kommt es häufig zu massiven Eingriffen in Ökosysteme. Doch auch wenn erneuerbare Energien genutzt werden, wird die Umwelt belastet werden. Die Umwandlung von Primärenergie in End- und Nutzenergie ist für einen wesentlichen Teil des Treibhauseffektes verantwortlich, beispielsweise durch die Verbrennung von Kohle in Kraftwerken oder die von fossilen Kraftstoffen in Autos. Um die negativen Auswirkungen der Energienutzung zu verringern, sind zwei Strategien möglich: Einerseits kann der gesamte Energieverbrauch gesenkt werden, hierfür kommen vor allem Energieeffizienzmaßnahmen oder absolute Verbrauchssenkungen in Frage. Andererseits ist es möglich, das Energiesystem auf alternative Energieformen wie erneuerbare Energien umzustellen. In Deutschland und der EU werden beide Strategien verfolgt. Im Energieeffizienzgesetz von 2023 wurde festgelegt, dass der Endenergieverbrauch bis 2030 um 26,5 % unter dem Wert von 2008 liegen soll. Bis 2045 soll er 45 % unter dem 2008er-Wert liegen. Auch der Anteil Erneuerbarer Energien am Bruttoendenergieverbrauch soll in den kommenden Jahrzehnten deutlich steigen. Bis 2030 soll er laut dem aktuellen „Nationalen Energie- und Klimaplan“ (NECP) bei 41 % liegen (Stand August 2024) und damit den EU-weiten Zielkorridor von 42,5 bis 45,0% untermauern. Ausführliche Informationen zur Herkunft und Verwendung konventioneller und erneuerbarer Energieträger finden sich im Daten-Bereich „Energie“ sowie auf der Themen-Seite „ Erneuerbare Energien in Zahlen “.
Das Projekt "Spitzencluster-BioEconomy: TG4, Bioraffinerie zur integrierten hydrothermalen Produktion von Brennstoff sowie der Grundchemikalien Phenol und Furan aus Biomasse, (VP4.1/HTChem), Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Endress Holzfeuerungsanlagen GmbH.Ziel ist es, biogene kommunale Reststoffe und Reststoffe aus der Bioökonomie für eine Nutzung als Energieträger und zur Produktion von Grundchemikalien zu erschließen. Kern ist dabei die gekoppelte Erzeugung von phenol- und furanhaltige Lösungen und einer für die Monoverbrennung geeigneten Kohle durch Hydrothermale Umwandlung. Dieser integrierte Umwandlungsprozess ist ebenso neu wie die Nutzung der Reststoffe aus der Bioökonomie, die Monoverbrennung von HTC-Kohle und eine zugeschnittene Abtrenntechnik. Damit wird es möglich aus den Reststoffen hochwertige grüne Produkte zu generieren. Diese können in weiteren Bereichen der Bioökonomie genutzt werden. Die Kopplung der Produktion führt zu wesentlichen ökonomischen wie ökologischen Vorteilen, da die Ausgangsstoffe besser ausgenutzt werden und bisherige Abfallströme einer Nutzung zugeführt werden. Ebenfalls erstmalig wird eine Monoverbrennungsanlage für diese Kohle neu errichtet, die komplett unabhängig von fossilen Energieträgern und dezentralisierbar sind. DBFZ: theoretische und praktische Untersuchungen zur Optimierung der Ausbeute und Qualität der Kohle und Chemikalien. HWS: Versuchsbetrieb HTC-Demonstrationsanlage, Optimierung Kohlequalität und Chemikalienausbeuten an der Demonstrationsanlage, Aufbau und Betrieb Monoverbrennungsanlage Endress: passt eine Feuerung aus dem Produktprogramm an die Anforderungen der HTC-Kohlenutzung an. Für die Untersuchung der Abtrennung der Phenole und Furane ergeht ein Unterauftrag.
Das Projekt "Optimierung der Behandlung von Erdölschlämmen durch anaeroben mikrobiellen Abbau" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltmikrobiologie.In diesem Projekt wird der anaerobe mikrobielle Abbau von Erdölkohlenwasserstoffen in methanogenen Bioreaktoren zur Behandlung von Erdölschlämmen als umweltfreundliche und ressourcenschonende Alternative zur Verbrennung oder Deponierung getestet. Erdölschlämme sind Abfälle aus der Erdöl verarbeitenden Industrie, die aufwändig entsorgt werden müssen. Durch Vorbehandlung der Erdölschlämme mittels hydrothermaler und oxidativer Verfahren (Catalytic Wet Air Oxidation, Low Pressure Oxidation) soll die Bioverfügbarkeit der schwer abbaubaren Kohlenwasserstofffraktionen erhöht werden. Aus organisch belasteten Umweltkompartimenten (Altlast-Standorte der Petrolchemie) werden methanogene mikrobielle Konsortien angereichert und in Batch-Kulturen bei verschiedenen Temperaturen auf optimalen Abbau von Erdölfraktionen getestet. Das am besten geeignete Konsortium wird in Biogasreaktoren zur Behandlung der vorbehandelten Erdölschlämme eingesetzt, wobei die Effizienz des anaeroben Abbaus durch den Zusatz leicht vergärbarer und kostengünstiger Kosubstrate (organische Abfall- und Reststoffe aus der Landwirtschaft und Lebensmittelindustrie) gesteigert wird. Durch hydrothermale Karbonisierung erfolgt die Umwandlung der Gärreste in Kohle und gelöste organische Bestandteile, welche anschließend durch oxidative Verfahren abgebaut werden. Somit wird der organische Kohlenstoff aus den Erdölschlämmen in Form von Biogas und Kohle zurückgewonnen, während alle weiteren Bestandteile weitgehend oder vollständig mineralisiert werden und teilweise zur Rückgewinnung mineralischer Ressourcen dienen können. Das Vorhaben dient dem Aufbau einer bilateralen wissenschaftlichen Kooperation zwischen dem UFZ und der TU Istanbul auf den Gebieten der Umwelttechnologie und Biotechnologie. Beide Partner bringen ihre jeweiligen Kompetenzen auf den Gebieten der Umweltchemie, Umweltmikrobiologie und der Umweltingenieurwissenschaften sowie ihre Forschungsinfrastruktur ein.
Das Projekt "Spitzencluster-BioEconomy: TG4, Bioraffinerie zur integrierten hydrothermalen Produktion von Brennstoff sowie der Grundchemikalien Phenol und Furan aus Biomasse, (VP4.1/HTChem)^Teilprojekt C, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH.Ziel des Projektes ist es, biogene kommunale Reststoffe und Reststoffe aus der Bioökonomie für eine Nutzung als Energieträger und zur Produktion von Grundchemikalien zu erschließen. Der Kern hierbei ist die gekoppelte Erzeugung von phenol- und furanhaltigen Lösungen und einer für die Monoverbrennung geeigneten Kohle durch hydrothermale Umwandlung. Dieser integrierte Umwandlungsprozess ist ebenso neu wie die Nutzung der Reststoffe aus der Bioökonomie, die Monoverbrennung von HTC-Kohle und eine auf das Prozesswasser zugeschnittene Abtrenntechnik. Damit wird es möglich, aus den Reststoffen hochwertige grüne Produkte zu generieren. Diese können in weiteren Bereichen der Bioökonomie genutzt werden. Die Koppelung der Produktion führt zu wesentlichen ökonomischen wie ökologischen Vorteilen, da die Ausgangsstoffe besser ausgenutzt und bisherige Abfallströme einer Nutzung zugeführt werden. Ebenfalls erstmalig wird eine Monoverbrennungsanlage für diese Kohle neu errichtet, welche dezentralisierbar und komplett unabhängig von fossilen Energieträgern sind. Das DBFZ übernimmt die wissenschaftlichen Untersuchungen des angestrebten Verfahrens in der Theorie und im Labormaßstab. Dabei erfolgen, ausgehend von der Optimierung der Menge an abtrennbarem Phenol und Furan für den derzeitigen HTC-Prozess, die Übertragung der Technologie auf neuartige Edukte sowie die Maximierung der Chemikalienausbeute. Das gewonnene Know-how ist Basis für die Erstellung eines Gesamtkonzeptes und die Erprobung an der Demonstrationsanlage.
Das Projekt "Teilprojekt A^Spitzencluster-BioEconomy: TG4, Bioraffinerie zur integrierten hydrothermalen Produktion von Brennstoff sowie der Grundchemikalien Phenol und Furan aus Biomasse, (VP4.1/HTChem)^Teilprojekt C, Teilprojekt E" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Abfallwirtschaft GmbH Halle-Lochau.Ziel ist es, biogene kommunale Reststoffe und Reststoffe aus der Bioökonomie für eine Nutzung als Energieträger und zur Produktion von Grundchemikalien zu erschließen. Kern ist dabei die gekoppelte Erzeugung von phenol- und furanhaltige Lösungen und einer für die Monoverbrennung geeigneten Kohle durch Hydrothermale Umwandlung. Dieser integrierte Umwandlungsprozess ist ebenso neu wie die Nutzung der Reststoffe aus der Bioökonomie, die Monoverbrennung von HTC-Kohle und eine zugeschnittene Abtrenntechnik. Damit wird es möglich aus den Reststoffen hochwertige grüne Produkte zu generieren. Diese können in weiteren Bereichen der Bioökonomie genutzt werden. Die Kopplung der Produktion führt zu wesentlichen ökonomischen wie ökologischen Vorteilen, da die Ausgangsstoffe besser ausgenutzt werden und bisherige Abfallströme einer Nutzung zugeführt werden. Ebenfalls erstmalig wird eine Monoverbrennungsanlage für diese Kohle neu errichtet, die eine Wärmeversorgung komplett unabhängig von fossilen Energieträgern ermöglicht und dezentral einsetzbar ist. Die AWH übernimmt im Projekt folgende Aufgaben: den Versuchsbetrieb einer vorhandenen HTC-Demonstrationsanlage zur Optimierung der Kohlequalität bis zur Einsetzbarkeit in der Monoverbrennung, die Übertragung auf neue Edukte, Aufbau und Betrieb der Monoverbrennungsanlage, die Versorgung des Versuchsbetriebes der Monoverbrennungsanlage mit HTC-Kohle und die Bereitstellung der Prozesswässer zur Aufarbeitung für die Gewinnung der Grundchemikalien.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Molekular-isotopische Untersuchung der mikrobiologischen Prozesse und des organischen Materials in der tiefen marinen Biosphäre des Kohleflözes von Shimokita (IODP Exp. 337)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für marine Umweltwissenschaften.Dieses Projekt dient der Auswertung von IODP Expedition 337 (26. Juli bis 30. September, 2012), an der sich Prof. Dr. Kai-Uwe Hinrichs (Antragsteller) als Co-Expeditionsleiter und seine Mitarbeiter Dr. Verena Heuer, Dr. Yu-Shih Lin und Dr. Marshall Bowles als Fahrtteilnehmer beteiligt haben. IODP Exp. 337 hat vor der japanischen Shimokita Halbinsel das erste Mal in der Geschichte wissenschaftlicher Tiefseebohrungen Riser-Technologie eingesetzt, um ein natürliches gasreiches Sedimentsystem zu beproben. Die Bohrung C0020A erreichte in einer Wassertiefe von 1180 m eine Sedimenttiefe von 2466 m und stellt damit zur Zeit die tiefste wissenschaftliche Bohrung im Meeresboden dar. Durch die dabei gewonnenen Proben können wir erkunden, ob und wie die tiefe marine Biosphäre mit einem ca. 2 km tief versenkten Kohleflöz assoziiert ist, und ob sich mit chemischen Methoden Signaturen mikrobiellen Lebens in den bisher tiefsten für die Wissenschaft verfügbaren Proben aus dem Meeresboden nachweisen lässt. Dieses Projekt soll uns ermöglichen mit Hilfe von organisch-geochemischen Methoden eingehend die Wechselwirkungen zwischen Mikroorganismen und organischem Material zu erforschen. Unsere Leitfragen sind: Wirkt das Kohleflöz als geobiologischer Reaktor, der eine mikrobielle Biosphäre in großer Tiefe unterstützt? Beeinflussen Umwandlung und Transport von chemischen Komponenten aus der Kohle die Biomasse und den Kohlenstofffluss in großer Tiefe sowie in den flacheren Sedimentschichten? Wie tief reicht die tiefe Biosphäre in den Meeresboden hinein und welche Faktoren begrenzen das Leben? Wir werden biogeochemische Prozesse und Biomasse mit qualitativen, quantitativen, und molekular-isotopischen Analysen von Gasen, gelöstem organischen Material, und den für lebende Biomasse stehenden intakten polaren Membranlipiden charakterisieren. In Laborexperimenten werden wir unsere Hypothesen zur Rolle es Kohleflözes als Energie- und Kohlenstoffquelle für die tiefe Biosphäre testen. Dabei werden wir zur Aufklärung von Stoffwechselwegen die stabilen Isotope von Kohlenstoff und Wasserstoff und auch Radioisotope des Kohlenstoffs als Tracer in Laborinkubationen einsetzen. Wir erwarten neue Einblicke in den biologischen Abbau von organischer Substanz, in die vorhandene mikrobielle Biomasse, und in den Kohlenstoffwechsel und die Aktivität der mikrobiellen Gemeinschaften.
Das Projekt "Regeneration von Katalysatoren der Niedertemperaturkonversion" wird/wurde ausgeführt durch: Universität Halle-Wittenberg, Institut für Physik, Didaktik der Physik.
Das Projekt "Entwicklung eines Bewertungsverfahrens für ausgewählte sächsische Rohstoffe (Braunkohlenlagerstätten) mit besonderer Berücksichtigung ihrer stofflichen und energetischen Eigenschaften" wird/wurde gefördert durch: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie. Es wird/wurde ausgeführt durch: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie.'-Erarbeitung von Kriterien für die Bewertung der derzeit nicht in Abbau befindlichen sächsischen Braunkohlenlagerstätten, dabei sollen stoffliche Eigenschaften des Rohstoffes für eine chemische Veredelung (z. B. Vergasung, Verflüssigung) besonders berücksichtigt werden -Erarbeitung eines Instrumentes zur Bewertung, in dem die qualitativen und quantitativen Kriterien mit ihren Schwankungsbreiten und ihrer Wichtung für die Lagerstätten festgelegt werden -Neubewertung der Braunkohlenlagerstätten (z. B. rohstoffwirtschaftlich nach Kohlevorräten, Abraumverhältnissen sowie Kohlequalitäten und damit Nutzungsmöglichkeiten), Digitale Darstellung der Ergebnisse u. a. als Grundlage für die Rohstoffsicherung
Origin | Count |
---|---|
Bund | 82 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 81 |
Text | 2 |
License | Count |
---|---|
geschlossen | 2 |
offen | 81 |
Language | Count |
---|---|
Deutsch | 78 |
Englisch | 7 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 1 |
Keine | 74 |
Webseite | 9 |
Topic | Count |
---|---|
Boden | 71 |
Lebewesen & Lebensräume | 58 |
Luft | 39 |
Mensch & Umwelt | 83 |
Wasser | 51 |
Weitere | 83 |