Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
This dataset contains ESRI shapefiles of mapped glacial landforms, i.e., initial cirques, cirques, moraines, and moraine crests in the region formerly occupied by the former Haslach glacier in the southern Black Forest (48° N, 8° E WGS 1984), south-west Germany. The last glaciation maximum ice extent of the former Haslach glacier, inferred from ice-marginal moraines, is also provided. Geomorphological mapping was undertaken for the selection of suitable sites for beryllium-10 surface exposure dating of moraine-boulder surfaces for the establishment of a regional glacier chronology. The mapping of glacial landforms in the region formerly occupied by the former Haslach glacier in the southern Black Forest involved the interpretation of derivatives of the high-resolution DGM1 digital elevation model (xy-resolution: 1 m) of the State Agency for Geoinformation and Land Development (LGL) of the state of Baden-Württemberg, freely available at: https://opengeodata.lgl-bw.de/#/(sidenav:product/3) (last access: 6 February 2025), coupled with extensive field campaigns in 2020-2022 CE. To achieve the greatest possible accuracy during the mapping of glacial landforms, exposures were inspected, if available. The shapefiles can be opened with open-source geographic information system software. The coordinate reference system of the shapefiles is EPSG 25832: ETRS89 / UTM Zone 32N (https://epsg.io/25832, last access: 6 February 2025).
Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.
Hinweis: Seit dem 9. Dezember erfasst der LGV die AFIS/ALKIS/ATKIS Daten bundeseinheitlich in der AdV-Referenzversion 7.1 im AFIS-ALKIS-ATKIS-Anwendungsschemas (AAA-AS) Version 7.1.2. Bei Fragen zu inhaltlichen Veränderungen wenden Sie sich an das Funktionspostfach: geobasisdaten@gv.hamburg.de Das Digitale Basis-Landschaftsmodell (Basis-DLM) orientiert sich am Basismaßstab 1: 25 000. Es wird für alle Objekte eine Lagegenauigkeit von ± 3 m angestrebt. Es hat eine Informationstiefe, die über die Darstellung der Digitalen Stadtkarte von Hamburg (1: 20 000) hinausgeht. Der Inhalt und die Modellierung der Landschaft des Basis-DLM sind im ATKIS®-Objektartenkatalog (ATKIS®-OK Basis-DLM) beschrieben. Die Erfassung der Objektarten, Namen, Attribute und Referenzen erfolgte in drei aufeinander folgenden Realisierungsstufen, die im ATKIS®-OK Basis-DLM ausgewiesen sind. In Hamburg stehen die Realisierungsstufen für die gesamte Landesfläche seit 2007 aktuell zur Verfügung. Seit Oktober 2009 wird das Basis-DLM im bundeseinheitlichen AAA-Modell geführt. Die Objektarten sind ATKIS-OK enthalten (siehe Verweis). Besonders geeignet als geometrische und semantische Bezugsgrundlage für den Aufbau von Geoinformationssystemen und zur Verknüpfung mit raumbezogenen fachspezifischen Daten für Fachinformationssysteme, zur rechnergestützten Verschneidung und Analyse mit thematischen Informationen, für Raumplanungen aller Art und zur Ableitung von topographischen und thematischen Karten. Anwendungsgebiete sind alle Aufgabenbereiche, für deren Fragestellungen ein Raumbezug erforderlich ist, unter anderem Energie-, Forst- und Landwirtschaft, Verwaltung, Demographie, Wohnungswesen, Landnutzungs-, Regional- und Streckenplanung, Straßenbau und Bewirtschaftung, Facility Management, Verkehrsnavigation und Flottenmanagement, Transport, Bergbau, Gewässerkunde und Wasserwirtschaft, Ökologie, Umweltschutz, Militär, Geologie und Geodäsie, aber auch Kultur, Erholung und Freizeit sowie Kommunikation.
Die Schutzgebietsgrenzen des Nationalparks werden als Vektorkoordinaten gemäß Koordinatensystem EPSG::25832 bereitgestellt. Der Nationalpark Hamburgisches Wattenmeer ist mit seinen 13.750 Hektar der kleinste der drei Wattenmeer-Nationalparks. Er wurde 1990 ausgewiesen, um die besonderen Naturschönheiten und den natürlichen Prozessen unter dem Motto "Natur Natur sein lassen" freien Lauf zu sichern. Mit der Anerkennung als Biosphärenreservat durch die UNESCO im Jahr 1992 gewann die naturverträgliche Ausrichtung der auf Teilen der Insel Neuwerk stattfindenden Nutzungen immer mehr an Bedeutung. Das UNESCO-Welterbe-Komitee hat am 27.06.2011 in Paris beschlossen, auch den Nationalpark Hamburgisches Wattenmeer als Teil des Weltnaturerbe Wattenmeer in die Liste der Welterbestätten der Menscheit einzuschreiben.
Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM51/1 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.02.2016 and 27.02.2016 in the Baltic Sea. The cruise aimed to perform seismo- and hydroacoustic surveys, sampling of Holocene sediments and to investigate the water column wintertime mixing close to sea-ice limits. These surveys improved the understanding of variations in the ventilation of the deeper Baltic, considering not only external climate forcing but also the effects of postglacial sealevel rise and isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM51-1 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM51-1 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM51-1 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.
Origin | Count |
---|---|
Bund | 198 |
Europa | 10 |
Kommune | 39 |
Land | 240 |
Wirtschaft | 8 |
Wissenschaft | 42 |
Type | Count |
---|---|
Daten und Messstellen | 24 |
Förderprogramm | 27 |
Text | 60 |
Umweltprüfung | 3 |
unbekannt | 246 |
License | Count |
---|---|
geschlossen | 132 |
offen | 186 |
unbekannt | 42 |
Language | Count |
---|---|
Deutsch | 290 |
Englisch | 71 |
Resource type | Count |
---|---|
Archiv | 94 |
Bild | 11 |
Datei | 40 |
Dokument | 131 |
Keine | 60 |
Unbekannt | 10 |
Webdienst | 38 |
Webseite | 123 |
Topic | Count |
---|---|
Boden | 200 |
Lebewesen und Lebensräume | 250 |
Luft | 122 |
Mensch und Umwelt | 349 |
Wasser | 111 |
Weitere | 360 |