API src

Found 330 results.

Related terms

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM62/2

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM52

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM52 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.03.2016 and 28.03.2016 in the Baltic Sea. The cruise aimed gapless imagining of the major pre-alpine tectonic lineaments due to the fact that the Glückstadt Graben and the Avalonia-Baltica suture zone run across the southern Baltic [DOI: 10.2312/cr_msm52]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM52 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. It has a curved transducer of which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Generally, the system was acquiring data throughout the entire cruise. Responsible person during this cruise / PI: Laura Frahm. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM52 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM52 has a resolution of 35 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM51/1

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM51/1 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.02.2016 and 27.02.2016 in the Baltic Sea. The cruise aimed to perform seismo- and hydroacoustic surveys, sampling of Holocene sediments and to investigate the water column wintertime mixing close to sea-ice limits. These surveys improved the understanding of variations in the ventilation of the deeper Baltic, considering not only external climate forcing but also the effects of postglacial sealevel rise and isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM51-1 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM51-1 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM51-1 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

Rasterdaten der beobachteten und projizierten Klimatischen Wasserbilanz für Niedersachsen (AR5-NI Version 2.1)

Der zip-Ordner enthält 30-jährige Rastermittel für Beobachtungs- (1961-1990 bis 1991-2020) und die Ergebnisbandbreite mit Mittelwert der Absolutwerte und Änderungssignale zu 1971-2000 für Projektionszeiträume der Klimaszenarien RCP8.5 und RCP2.6 (2031-2060 und 2071-2100) im Koordinatensystem epsg:4647 (UTM32) für die Zeiteinheiten: - yr: Kalenderjahr (Jan. - Dez.) - sp: Frühling (Mär. - Mai) - su: Sommer (Jun. - Aug.) - au: Herbst (Sep. - Nov.) - wi: Winter (Dez. - Feb.) - hyr: Hydrologisches Jahr (Nov. - Okt.) - hsu: Hydrologisches Sommerhalbjahr (Mai - Okt.) - hwi: Hydrologisches Winterhalbjahr (Nov. - Apr.) - gs: Vegetationsperiode (Apr. - Sep.) - vd: Vegetationsruhe (Okt. - Mär.) - m01.. Monate Januar bis Dezember Neben den Rasterdaten ist eine Information zu den Dateinamen und für eine Darstellung im GIS eine Klassifizierung der Rasterdaten mit Klassenname und hexcolor-code gegeben.

ATKIS - Basis-DLM Land Bremen

Das Digitale Basis-Landschaftsmodell (Basis-DLM) ist ein ATKIS®-Produkt und beschreibt die topographischen Objekte der Landschaft und das Relief der Erdoberfläche im Vektorformat. Die Objekte werden einer bestimmten Objektart zugeordnet und durch ihre räumliche Lage, ihren geometrischen Typ, beschreibende Attribute und Beziehungen zu anderen Objekten (Relationen) definiert. Jedes Objekt besitzt deutschlandweit eine eindeutige Identifikationsnummer (Identifikator). Die räumliche Lage wird für das Basis-DLM maßstabs- und abbildungsunabhängig im Koordinatensystem der Landesvermessung angegeben.

Digitales Höhenmodell Hamburg DGM 10

Abgeleitetes, flächendeckendes digitales Geländemodell mit einer Rasterweite von 10 Meter auf Basis des DGM1. Für die Fläche der Freien und Hansestadt Hamburg (ohne das Gebiet des hamburgischen Wattenmeeres) wurde in 2020 eine Laserscanvermessungen (Airborne Laserscanning) durchgeführt. Die Daten liegen im Lagestatus 310 (ETRS89/UTM) vor, mit Höhenangaben über Normalhöhennull (NHN), gemäß DE_DHHN2016_NH. Die Genauigkeit eines einzelnen Messpunktes liegt in eindeutig definierten Bereichen, wie z.B. auf Straßenflächen, bei ca. ± 105 cm. In Bereichen von Abschattungen (Brücken), Vegetation, insbesondere Flächen in Wald- und Strauchgebieten und bei stark geneigtem Gelände, ist die Genauigkeit geringer. Standardmäßig werden vom LGV folgende Rasterweiten angeboten: DGM 1 (Rasterweite 1m), DGM 10 (Rasterweite 10m), DGM 25 (Rasterweite 25m). Eine jährliche Aktualisierung dieser Daten erfolgt über Luftbildbefliegungen. Neben der reinen Bereitstellung der Höheninformation als regelmäßiges Gitter werden die Daten auch als Dienstleistung in einer Dreiecksvermaschung (TIN) abgegeben. Dabei ist ein Datenaustausch mit 2D- und 3D-CAD-Systemen sichergestellt. Als weitere Dienstleistung können z.B. Höhenlinien und Profile abgeleitet oder Volumina und Neigungen errechnet werden. Durch Integration weiterer Geobasis- und Fachdaten (Vektor- und Rasterdaten) können weitere Dienstleistungen z.B. für die Bereiche Wasserwirtschaft, Tiefbau, Umwelt und Stadtplanung sowie Energieversorgung groß- und kleinräumige Anwendungen abgeleitet werden.

Ramsargebiete in Hamburg

Die Schutzgebietsgrenzen der Ramsargebiete werden als Vektorkoordinaten gemäß Koordinatensystem EPSG::25832 bereitgestellt. Ramsar-Gebiete sind nach der Ramsar-Konvention von 1971 geschützte Feuchtgebiete, die von internationaler Bedeutung sind und insbesondere als Lebensraum für Wasser- und Watvögel dienen.

Schutzgebiet Nationalpark Hamburgisches Wattenmeer

Die Schutzgebietsgrenzen des Nationalparks werden als Vektorkoordinaten gemäß Koordinatensystem EPSG::25832 bereitgestellt. Der Nationalpark Hamburgisches Wattenmeer ist mit seinen 13.750 Hektar der kleinste der drei Wattenmeer-Nationalparks. Er wurde 1990 ausgewiesen, um die besonderen Naturschönheiten und den natürlichen Prozessen unter dem Motto "Natur Natur sein lassen" freien Lauf zu sichern. Mit der Anerkennung als Biosphärenreservat durch die UNESCO im Jahr 1992 gewann die naturverträgliche Ausrichtung der auf Teilen der Insel Neuwerk stattfindenden Nutzungen immer mehr an Bedeutung. Das UNESCO-Welterbe-Komitee hat am 27.06.2011 in Paris beschlossen, auch den Nationalpark Hamburgisches Wattenmeer als Teil des Weltnaturerbe Wattenmeer in die Liste der Welterbestätten der Menscheit einzuschreiben.

Basis-DLM

Das Basis-DLM beschreibt die topographischen Objekte der Landschaft und das Relief der Erdoberfläche im Vektorformat. Die Objekte werden durch ihre räumliche Lage, ihren geometrischen Typ, beschreibende Attribute und Beziehungen zu anderen Objekten (Relationen) definiert. Die räumliche Lage wird für das Basis-DLM maßstabs- und abbildungsunabhängig im Koordinatensystem der Landesvermessung (ETRS89/UTM) angegeben. Das Basis-DLM ist Bestandteil des ATKIS (Amtlichen Topographischen-Kartographischen Informationssystems). Im Basis-DLM werden die realen Objekte der Landschaft sowie ergänzende Informationen zu Namen und Gebieten mit punkt-, linien- und flächenförmigen Objekten vektoriell modelliert. Dabei wird die Landschaft gemäß dem ATKIS Objektartenkatalog (ATKIS®-OK Basis-DLM) in Objekte strukturiert und durch Attribute differenziert. Das Basis-DLM ist zweidimensional und deckt die gesamte Landesfläche von Baden-Württemberg lückenlos ab. Ausgesuchte Objektarten (z.B. Verkehr, Infrastruktur usw.) werden mit höchster Priorität fortgeführt (Spitzenaktualität). Eine flächendeckende Grundaktualisierung erfolgt in einem dreijährigen Zyklus. Grundlage für die geometrische Erfassung der Vektordaten sind vor allem Digitale Orthophotos (DOP20 und DOP10), die Daten des Liegenschaftskatasters (ALKIS) sowie georeferenzierte Unterlagen der jeweiligen Veränderungsverursacher (z.B. Bebauungspläne oder Straßenbaupläne). Die vorgegebene Genauigkeit von wesentlichen linearen Objekten (z.B. Straßen) liegt bei +/- 3 m. Die Lagegenauigkeit aller anderen Objekte soll mindesten +/- 15 m betragen. Mit seiner großen Informationsdichte und hohen geometrischen Genauigkeit lässt sich das Basis-DLM hervorragend für raumbezogene Fachaufgaben einsetzen. Die Definition der Inhalte (Objekt-, Attribut- und Wertearten), die Bildungsregeln und Konsistenzbedingungen sind im ATKIS®-OK Basis-DLM der AdV ( siehe www.adv-online.de). Baden-Württemberg führt die Daten im Anwendungsschema AAA AS7.1 entsprechend eines modifizierter OK Basis-DLM – BW (siehe www.lgl-bw.de)

Naturdenkmale in Hamburg

Die Naturdenkmale des Nationalparks werden als Vektorkoordinaten gemäß Koordinatensystem EPSG::25832 bereitgestellt. Als Naturdenkmal können Einzelschöpfungen der Natur, deren besonderer Schutz aus wissenschaftlichen, naturgeschichtlichen oder landeskundlichen Gründen oder wegen ihrer Seltenheit, Eigenart oder Schönheit erforderlich ist, ausgewiesen werden. Als Einzelschöpfungen der Natur gelten insbesondere alte oder seltene Bäume und Baumgruppen, erdgeschichtliche Aufschlüsse, Gletscherspuren, Findlinge, Quellen, Gewässer, Dünen, Bracks, Tümpel und Moore.

1 2 3 4 531 32 33