<p>Die privaten Haushalte benötigten im Jahr 2024 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen.</p><p>Endenergieverbrauch der privaten Haushalte</p><p>Private Haushalte verbrauchten im Jahr 2024 625 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Energie, das sind 625 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a>.</p><p>Im Zeitraum von 1990 bis 2024 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 4,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 14 % über dem Wert des eher warmen Jahres 1990.</p><p>Höchster Anteil am Energieverbrauch zum Heizen</p><p>Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteil der Anwendungsbereiche der privaten Haushalte 2008 und 2024“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Kochen, Waschen etc.) bzw. <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.).</p><p>Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt</p><p>Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/strukturdaten-privater-haushalte/bevoelkerungsentwicklung-struktur-privater">Bevölkerungsentwicklung und Struktur privater Haushalte</a>“) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um über 40 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)).</p><p>Stromverbrauch mit einem Anteil von rund einem Fünftel</p><p>Der Energieträger Strom hat einen Anteil von rund einem Fünftel am <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> der privaten Haushalte. Hauptanwendungsbereiche sind die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozesswrme#alphabar">Prozesswärme</a> (Waschen, Kochen etc.) und die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Prozessklte#alphabar">Prozesskälte</a> (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteil der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2024“).</p><p>Direkte Treibhausgas-Emissionen privater Haushalte sinken</p><p>Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).</p>
Das Unternehmen beabsichtigt, einen Sattelauflieger für ein schweres Nutzfahrzeug zu bauen, der sowohl als Kippfahrzeug Schüttgüter als auch als Tankfahrzeug Flüssigkeiten transportieren kann (kombinierter Auflieger). Dazu ist die Kombination eines handelsüblichen Zweiseiten-Kippaufliegers mit einem einsetzbaren Kunststoff- oder Edelstahl-Tank geplant. Der Schüttgutladeraum ist vom Umfang her größer als der Tank. Dieser Größenunterschied erklärt sich aus der unterschiedlichen Dichte der zu transportierenden Güter; die Tonnage von Schüttgut bzw. Flüssigkeit entspricht sich ungefähr. Die Tonnagenauslastung pro Transport beträgt ca. 26,5 t bei einem Gesamtgewicht von 40 t. Wenn Schüttgut transportiert wird, wird der leere Tank auf Halteschienen oben auf dem Fahrzeug mitgeführt. Die Konstruktion dieses Systems wird in der firmeneigenen Technikabteilung durchgeführt, die notwendigen Bausätze werden von Zulieferfirmen bezogen. Bei Verwendung der herkömmlichen Technik sind Leerfahrten unvermeidbar, wenn es nicht möglich ist, auf der Hin- und der Rückfahrt dieselbe Güterart (Schüttgut oder Flüssigkeit) zu transportieren. Mit Einsatz eines kombinierten Aufliegers ist der Wegfall der bisherigen Leerkilometer auf Strecken, auf denen in der einen Richtung Schüttgüter und in der anderen Richtung Flüssigkeiten transportiert werden, verbunden. Neben der Reduzierung der Betriebskosten durch den geringeren Treibstoffverbrauch entsteht auch eine einmalige Kostenersparnis dadurch, dass die Anschaffung eines kombinierten Aufliegers günstiger ist als die Anschaffung sowohl eines Kippaufliegers als auch eines Tankaufliegers. Das Projekt hat Modellcharakter, da die eingesetzte Technik auf andere Spediteure sowie eine Vielzahl von Branchen übertragbar ist, die eine ähnliche Kombination der zu transportierenden Güter aus Schüttgut und Flüssigkeit aufweisen. Im Bereich der chemischen Industrie z.B. fallen an fast allen Produktionsorten sowohl flüssige Stoffe als auch Schüttgüter an, die zwischen den verschiedenen Produktionszentren transportiert werden müssen. Viele chemische Stoffe verändern bzw. verschmutzen überdies die Transportgefäße derart, dass sie nur unter hohem Kostenaufwand oder gar nicht wieder gereinigt werden können. Die Beförderung anderer Stoffe ist somit vollkommen ausgeschlossen. Kann man die Transportgefäße für zwei verschiedene Güter ausrüsten, liegt der Nutzenfaktor für die Transportwirtschaft besonders in diesem Bereich auf der Hand.
In dem Vorhaben werden fuer typische VTOL-Flugzeuge bei Variation des maximalen Startschubes optimale Start- und Landeflugprofile berechnet und der hierfuer benoetigte Aufwand an Flugzeit und Kraftstoffverbrauch ermittelt. Fuer einen VTOL-Flugplatz mit vorgegebenen jaehrlichen Transportaufkommen wird der Einfluss der verschiedenen Start- und Landeflugprofile und des Schubes sowie atmosphaerischer Bedingungen auf die Form und Groesse des Laermschutzbereichs um den Flugplatz bestimmt. Dabei werden die Grenzen des Laermschutzbereichs zum einen entsprechend dem deutschen Gesetz zum Schutz gegen den Fluglaerm festgelegt, zum anderen wird eine demgegenueber um weitere Laermkenngroessen erweiterte Definition des Laermschutzbereichs verwendet.
Die verlustarme Fuellungsregelung zur Leistungssteuerung von Ottomotoren ist insbesondere im Teillastbereich eine sehr wirksame Massnahme zur Verminderung des Kraftstoffverbrauches. Da die zum Antrieb von Kraftfahrzeugen eingesetzten Ottomotoren ueberwiegend im Teillastbereich arbeiten, ist bei Anwendung der o.g. Regelungsart eine erhebliche Kraftstoffersparnis zu erwarten. Ziel dieses Forschungsvorhabens ist es, die Auswirkungen von Fuellungsregelungen durch fruehes variables Einlassende mittels verschiedener Steuerungsvorrichtungen auf den ottomotorischen Verbrennungsprozess und das daraus resultierende Verhalten im Hinblick auf Wirkungsgrad und Schadstoffemission experimentell und durch begleitende Rechnung anhand mathematischer Modelle zu untersuchen.
Nitrogen deposition in tropical areas is projected to increase rapidly in the next decades due to increase in N fertilizer use, fossil fuel consumption and biomass burning. As tropical forest ecosystems cover about 17 percent of the land surface and are responsible for about 40 percent of net primary production, even small changes in N (and consequently C) cycling can have global consequences. Until now studies an consequences of enhanced N input in tropical forest ecosystems have been very limited and even very rarely addressed its deleterious effects to the environment. There is undoubtedly a huge discrepancy between the expected increase in N deposition in the tropics and the present knowledge an how tropical forest ecosystems will react to this extra input of reactive N. Our research aims at quantifying the changes in processes of N retention (plant growth, biotic and abiotic N immobilization in the soil) and losses (gaseous N losses, nitrification, denitrification, leaching of different forms of dissolved N). Implementation of policy and management tools, like the international trading of carbon credits under the Kyoto Protocol, need researches that allow us to better understand the consequences of environmental change (N deposition) an forest productivity. Our research will have important implications for predicting future responses of forest C cycle to changes in N deposition, and for the role of N deposition in tropical forests to affect potential feedback mechanisms of CO2 fertilization and climate change.
Zielsetzung: Der vorliegende Projektentwurf zielt darauf ab, die Kosten- und Energieeffizienz sowie die möglichen Umweltauswirkungen von forstlichen Wertschöpfungsketten durch Digitalisierung im Maschinen- und Prozessbereich zu verbessern. Die Praxistauglichkeit der Anwendungsbeispiele steht dabei besonders im Focus. Im Detail sollen nachfolgende Fragestellungen beantwortet werden: Räumlich explizite Abschätzung der Schadholzmengen nach einem Windwurfereignis für eine Modellregion sowie Entwicklung eines optimalen Aufarbeitungskonzepts. - Mit welchen Werkzeugen, Methoden und Modellen kann das Ausmaß und die räumliche Konzentration der geworfenen/geschädigten Bäume schnellstmöglich ermittelt werden? - Wie können geschädigte Bäume sicher geerntet werden, um Pilz- oder Insektenbefall und Feuerrisiko vorzubeugen und um eine Wiederaufforstung zu ermöglichen? - Wie kann die Qualität des Holzes durch effiziente Lagerung und Konservierung erhalten werden, um Lieferungen an die holzverarbeitende Industrie und damit das Einkommen der Waldbesitzer zu erhalten? Evaluierung der wissenschaftlichen und praktischen Anwendbarkeit von sog. Smart Services (z.B. Husqvarna Fleet Services oder Stihl Smart Connector) bei der Motorsäge. Durchführung von Produktivitätsstudien mit dem Ziel die Effizienz und Ergonomie bei der Motorsägentätigkeit zu verbessern. Entwicklung eines Tools für Mastseilgeräte, welches Produktions- und Betriebsparameter für weitergehende Analysen (z.B. Produktivität, Treibstoffverbrauch usw.) zur Verfügung stellt sowie die Kommunikation mit anderen Akteuren entlang der Wertschöpfungskette erlaubt. Implementierung von StanForD als Datenstandard. Optimierung der Holzernte am Steilhang durch Einsatz innovativer Technologien. Der Schwerpunkt liegt bei der hochmechanisierten Holzernte mit Motorsäge und Mastseilgerät mit Prozessor im Baumverfahren sowie der traktionswindenunterstützten vollmechanisierten Holzernte mit Harvester und Forwarder im Sortimentsverfahren. Effizienzsteigerungen, Treibstoffverbrauchsreduktion und Ressourcenschonung (Bestand und Boden) sind dabei die wichtigsten Optimierungsziele. Bedeutung des Projekts für die Praxis: In Zukunft werden in Wirtschaft und Gesellschaft die Relevanz und das Ausmaß der Digitalisierung noch stärker zunehmen. Das vorliegende Projekt soll die Akzeptanz der Akteure entlang der Wertschöpfungskette Holz im Zusammenhang mit Digitalisierungsentwicklungen steigern und Ihnen die Bedeutung und Chancen der Digitalisierung besser bewusstmachen. Aus der Sicht der Forstwirtschaft kann die erfolgreiche Anwendung von digitalen Technologien nicht nur zur Stärkung der Wettbewerbsfähigkeit beitragen, sondern liefert in Zeiten des Klimawandels wichtige Impulse zur Steigerung der Energie- und Kosteneffizienz sowie Ressourcenschonung in Kontext mit einem klimaangepassten Waldmanagement. Der digitale Wandel unterstützt die nachhaltige Entwicklung und den Klimaschutz. (Text gekürzt)
Schienenverkehr Schiffsverkehr Flugverkehr Off-road-Verkehr Baustellen Als Datengrundlage zur Berechnung der Emissionen aus dem Schienenverkehr dienten Informationen der Deutschen Bahn AG, Eisenbahnverkehrsunternehmen auf dem Netz des DB-Schienennetzes, Werks- und Privatbahnen, sowie der Straßenbahn und oberirdisch fahrenden U-Bahn Neben Abgas-Emissionen aus dieselbetriebenen Schienenfahrzeugen entstehen auch Partikel-Emissionen durch Abrieb der Bremsen, Räder, Schienen, Fahrleitungen und Stromabnehmer, wobei diese Partikelemissionen auch von elektrisch betriebenen Fahrzeugen stammen. Insgesamt wurden vom Schienenverkehr in Berlin 6,900 Tonnen CO 2 , 114 Tonnen NO x und 227 Tonnen Feinstaub (PM 10 ) emittiert. Den größten Anteil der gasförmigen Emissionen hat der Güterverkehr, wohingegen für PM 10 und PM 2,5 die höchsten Beiträge vom Personennahverkehr (Regionalbahnen und S-Bahnen) rühren, da aufgrund der höheren Fahrleistungen die Abriebprozesse verstärkt zur Feinstaubemission beitragen. Die Datengrundlage für die Berechnung der Emissionen aus dem Berliner Schifffahrtsverkehr bilden Informationen der Schiffs- und Güterstrombewegungen auf den Bundeswasserstraßen der Wasser- und Schifffahrtsdirektion Ost sowie Auswertungen der Fahrpläne der Fahrgastschiffe der in Berlin tätigen Reedereien. Über die Wasser- und Schifffahrtsdirektion Ost ist zudem die mittlere Flottenstruktur der in Berlin beheimateten Güter- und Personenschiffe, differenziert nach mittlerer Fahrgastanzahl und mittlerer Leistung, bekannt. Schleusendaten erfassen außerdem neben den Güter – und Personenschiffen auch Motorboote, sodass auch diese Schiffsklasse in die Berechnung der schifffahrtsbedingten Emissionen einfließen konnte. Eine weitere Datenquelle für die Emissionsberechnung bildete der Kraftstoffverbrauch sowohl des Güterverkehrs als auch der Fahrgastschifffahrt und der sonstigen Boote. Der größte Anteil der Emissionen auf Berliner Wasserstraßen entfällt auf die Fahrgastschifffahrt, der bei den NO x -Emissionen bei 57 % und bei den PM 10 -Emissionen bei 65 % liegt. Räumlich ist vor allem der Stadtbezirk Mitte mit den vielen Fahrgastschifffahrtsanlegern zwischen Mühlendammschleuse und dem Bundeskanzleramt. Für den Flugverkehr wurden die Abgas-Emissionen des zivilen Flugverkehrs im bodennahen Bereich der Flughäfen bis 3.000 Fuß oder 915 Meter Höhe sowie die Emissionen durch die Fahrzeuge auf den Flughafenvorfeldern berücksichtigt. Für das Basisjahr 2015 wurden die beiden Berliner Flughäfen Schönefeld und Tegel sowie die Flugbewegungen auf den 10 Berliner Hubschrauberlandeplätzen in die Emissionsberechnung einbezogen. Zur Ermittlung der Emissionen wurden die Start- und Landevorgänge, differenziert nach Luftfahrzeugklasse, analysiert, die vom Statistischen Bundesamt zur Verfügung gestellt wurden. Zudem wurden vom Flughafenbetreiber Berlin-Brandenburg GmbH modellfeine Daten aus Flugtagebüchern zur Verfügung gestellt Zudem wurde eine Abschätzung der Emissionen des Flughafen Berlin-Brandenburg (BER) für das Bezugsjahr 2023 durchgeführt. Bei der Berechnung der zu erwartenden Emissionen wurde auf die vom Flughafen Berlin – Brandenburg erstellte Flugverkehrsprognose zurückgegriffen. Die Quellgruppe „Off-road-Verkehr“ umfasst die Anwendung von mobilen Geräten und Maschinen sowie von Fahrzeugen außerhalb des öffentlichen Straßenverkehrs in der Forst- und Landwirtschaft, Industrie, Privaten Gartenpflege, Pflegen öffentlicher Grünflächen und des Militärs. Als emissionsrelevante Daten werden Angaben zum eingesetzten Fahrzeug- und Gerätebestand und deren Einsatzbedingungen benötigt, die aber im Allgemeinen nicht vorliegen. Deshalb muss auf Ersatzdaten ausgewichen werden, die im Folgenden aufgelistet sind: Gesamte Waldfläche und landwirtschaftliche Nutzflächen, Anzahl der Beschäftigten im verarbeitenden Gewerbe Gebäude- und Freiflächendaten im Wohnungsbereich Erholungsflächen, Grünanlagen und Friedhofsflächen Anzahl der militärischen Dienstposten. Anhand dieser Angaben und mittlerer Emissionsfaktoren wurden daraus die Emissionen des Sektors “off-road-Verkehr” abgeschätzt. Durch Baustellen werden verschiedene Emissionen erzeugt, die sich in folgende Teilbereiche einteilen lassen: Abgasemissionen der mobilen Maschinen Aufwirbelungs- und Abriebemissionen der mobilen Maschinen Weitere Emissionen (vor allem Staub) durch unterschiedliche Bautätigkeiten und Arbeitsprozesse (z.B. Abbrucharbeiten, Bohrungen usw.) Baustellen lassen sich jedoch räumlich nur sehr schwer repräsentativ für einen längeren Zeitraum einem bestimmten Gebiet zuordnen. Während mobile Baumaschinen, die zum größten Teil dieselbetrieben sind, stark in ihrer Größe und Leistung je nach Einsatzgebiet variieren und im Straßen-, Hoch- und Tiefbau eingesetzt werden, relativ gut emissionsseitig eingeordnet werden können, ist die Datenlage ihres Einsatzes jedoch sehr unsicher. Der Standort des gemeldeten Bestandes weicht häufig stark von ihrem Einsatzgebiet ab, da Baufirmen nicht nur lokal arbeiten und zudem häufig auch Leihmaschinen einsetzen. Die Staub-Emissionen durch Aufwirbelung und Abrieb sowie durch Abbrucharbeiten überschreiten zudem in der Regel die Abgasemissionen auf Baustellen bei weitem. Emissionsfaktoren für Aufwirbelung und Abrieb werden über die im Bau befindlichen Flächen und über die Baudauer, differenziert nach Gebäudetyp, zur Verfügung gestellt. Auch für Abbrucharbeiten beziehen sich die Emissionsfaktoren üblicherweise auf das abzubrechende Material, das heißt, auf die Größe der Baustelle und des abzubrechenden Gebäudes. Zusammenfassend muss festgestellt werden, dass insbesondere die nicht-motorbedingten Emissionen aus dem Einsatz von Baumaschinen und den Tätigkeiten auf Baustellen aktuell nur sehr grob abgeschätzt werden können. Die Ermittlung der Emissionen der Bauwirtschaft in Berlin wurde deshalb auf Basis anderweitiger Daten durchgeführt: Ermittlung des Gesamtbauvolumes für Berlin, differenziert nach Bauhauptgewerbe und Ausbaugewerbe Abschätzung der Anzahl der Beschäftigten auf Basis der Daten aus der Statistik des Baugewerbes Berlin Ableitung von spezifischen Verbrauchsdaten (Diesel, Benzin, Gemisch) pro Beschäftigten und Ermittlung von typischen Bestandsstrukturen der eingesetzten Baumaschinen Ermittlung von charakteristischen kraftstoffbezogenen Abgas-Emissionsfaktoren sowie Emissionsfaktoren für Aufwirbelung, Abrieb und Abbrucharbeiten.
Im Jahr 2024 sind vorläufig insgesamt Treibhausgasemissionen von 179 Millionen Tonnen CO 2 -Äquivalenten (CO 2eq ) ermittelt worden. Die Emissionen sind im Vergleich zum Vorjahr um 8,9 Millionen Tonnen CO 2eq bzw. 4,7 Prozent gesunken. Demnach liegen die Emissionen im Berichtsjahr 2024 um rund 51 Prozent niedriger als 1990. 64,9 Millionen Tonnen CO 2-eq wurden im Jahr 2024 in Nordrhein-Westfalen in der Energiewirtschaft freigesetzt. Im Vergleich zum Vorjahr sind das 7,2 Millionen Tonnen CO 2-eq weniger. Der Sektor Energie verzeichnet somit eine Reduktion der Treibhausgasemissionen um rund zehn Prozent gegenüber 2023. Im Bundesdurchschnitt sind die Emissionen des Sektors Energiewirtschaft laut Umweltbundesamt im gleichen Zeitraum um 8,7 Prozent gesunken. Auf Bundes- und Landesebene trägt dieser Sektor damit erneut den größten Anteil zur Emissionsminderung bei. Das Umweltbundesamt führt die gesunkenen Emissionen in der Energiewirtschaft hauptsächlich darauf zurück, dass weniger Strom und Wärme aus emissionsintensiven Stein- und Braunkohlen erzeugt wird. Emissionsmindernd wirkt sich laut Umweltbundesamt zudem der Ausbau der erneuerbaren Energien, und hier besonders der Photovoltaik, aus. Mit einem Anteil von 57 Prozent an der Bruttostromerzeugung waren die erneuerbaren Energien im Jahr 2024 bundesweit die wichtigste heimische Energiequelle. Für den Sektor Verkehr gibt das Umweltbundesamt für 2024 deutschlandweit um 1,4 Prozent niedrigere Treibhausgasemissionen als im Vorjahr an. Diese Reduktion wird nahezu vollständig im Straßenverkehr erbracht. Obwohl die Fahrleistung im Berichtsjahr 2024 gestiegen ist, konnte durch mehr Elektrofahrzeuge und effizientere Fahrzeuge der Kraftstoffverbrauch gesenkt werden. Nach Angaben des Kraftfahrzeugbundesamtes hat sich der Bestand an Elektrofahrzeugen in Nordrhein-Westfalen zwischen dem 01.01.2024 und dem 01.01.2025 um 20 Prozent erhöht. Dadurch ist von einem Rückgang der Treibhausgasemissionen um circa 500.000 Tonnen auf 27,7 Millionen Tonnen CO 2-eq auszugehen. Im Flugverkehr sind in Nordrhein-Westfalen im Jahr 2024 die Passagierzahlen um sechs Prozent gestiegen. Das führt zu etwa einem Prozent höheren Emissionen im Vergleich zu 2023. Die Daten für Nordrhein-Westfalen decken sich beim Flugverkehr mit den bundesweiten Erhebungen. Die Emissionen im Sektor Industrie sind nach vorläufigen Erhebungen im Jahr 2024 um 1,2 Prozent nur leicht gesunken. Dabei sind die Tendenzen in den Branchen unterschiedlich. Hohe Energiepreise setzen weiterhin vor allem die energieintensiven Wirtschaftszweige unter Druck. Dadurch ging teilweise die Produktion zurück. Außerdem wurden in der Industrie weniger fossile Brennstoffe eingesetzt. In der Chemie-, Papier- sowie Eisen und Stahl-Industriesind die Emissionen um ein bis vier Prozent gesunken. Dem gegenüber verzeichnen die Nahrungsmittelbranche und die Verarbeitung von Mineralen und Nichteisenmetallen vier bis sechs Prozent höhere Emissionen. Das Umweltbundesamt hat deutschlandweit für den Sektor Haushalte und Kleinverbraucher eine Emissionsminderung von 2,3 Prozent ermittelt. Auf Nordrhein-Westfalen übertragen entspricht diese Entwicklung einer vorläufigen Emissionsminderung von rund 500.000 Tonnen CO 2eq gegenüber dem Jahr 2023. Ein Grund für die geringeren Treibhausgasemissionen aus privaten Haushalten ist der geringere Heizbedarf aufgrund der milden Witterung. Weitere Gründe sind die Einspar- und Substitutionsbemühungen der Verbraucherinnen und Verbraucher aufgrund gestiegener Energiepreise. Geringe bis keine Änderungen werden für die Bereiche Abfall, Landwirtschaft und flüchtige Emissionen aus Brennstoffen angenommen. Im aktuellen Treibhausgas-Emissionsinventar veröffentlicht das Landesamt für Natur, Umwelt und Klima das abschließende Inventar für das Jahr 2023 sowie vorläufige Daten für das Jahr 2024. Die vorläufigen Erhebungen stützen sich auf bisher vorliegende Daten, insbesondere aus dem Emissionshandel. Welche Gase sind klimarelevant und was sind CO 2 -Äquivalene (CO 2eq )? Das Treibhausgas-Emissionsinventar Nordrhein-Westfalen orientiert sich an den Vorgaben des Intergovernmental Panel on Climate Change (IPCC 2006, 2019). Die Treibhausgase Kohlenstoffdioxid (CO 2 ), Methan (CH 4 ), Distickstoffoxid (Lachgas, N 2 O), Schwefelhexafluorid (SF 6 ,), Stickstofftrifluorid (NF 3 ) und die Gruppen der teilfluorierten Kohlenwasserstoffe (HFC) und perfluorierten Kohlenwasserstoffe (PFC) werden darin für die IPCC-Sektoren Energie, Industrieprozesse, Landwirtschaft, Abfall und Sonstige dokumentiert. Die einzelnen Gase haben eine unterschiedliche Klimawirkung. Methan hat beispielweise eine 28mal höhere Klimaschädlichkeit als CO 2 . Die Treibhausgasemissionen werden in Millionen Tonnen CO 2 -Äquivalente (CO 2eq ) angegeben. Die Freisetzung einer Tonne Methan entspricht somit 28 Tonnen CO 2eq . Treibhausgas-Emissionsinventar NRW: https://www.lanuk.nrw.de/themen/klima/klimaschutz/treibhausgasemissionen Informationen des Umweltbundesamtes: https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland#emissionsentwicklun g zurück
| Origin | Count |
|---|---|
| Bund | 880 |
| Land | 22 |
| Wissenschaft | 1 |
| Zivilgesellschaft | 1 |
| Type | Count |
|---|---|
| Daten und Messstellen | 2 |
| Ereignis | 4 |
| Förderprogramm | 762 |
| Text | 121 |
| unbekannt | 15 |
| License | Count |
|---|---|
| geschlossen | 62 |
| offen | 777 |
| unbekannt | 65 |
| Language | Count |
|---|---|
| Deutsch | 834 |
| Englisch | 121 |
| Resource type | Count |
|---|---|
| Archiv | 65 |
| Bild | 4 |
| Datei | 76 |
| Dokument | 95 |
| Keine | 508 |
| Unbekannt | 1 |
| Webseite | 314 |
| Topic | Count |
|---|---|
| Boden | 724 |
| Lebewesen und Lebensräume | 736 |
| Luft | 803 |
| Mensch und Umwelt | 904 |
| Wasser | 661 |
| Weitere | 886 |